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Abstract: Automatic detection of foliar diseases in potato fields, such as early blight caused by
Alternaria solani, could allow farmers to reduce the application of plant protection products while
minimizing production losses. UAV-based, high resolution, NIR-sensitive cameras offer the ad-
vantage of a detailed top-down perspective, with high-contrast images ideally suited for detecting
Alternaria solani lesions. A field experiment was conducted with 8 plots housing 256 infected plants
which were monitored 6 times over a 16-day period with a UAV. A modified RGB camera, sensitive
to NIR, was combined with a superzoom lens to obtain ultra-high-resolution images with a spatial
resolution of 0.3 mm/px. More than 15,000 lesions were annotated with points in two full size images
corresponding to 1250 cropped tiles of 256 by 256 pixels. A deep learning U-Net model was trained
to predict the density of Alternaria solani lesions for every pixel. In this way, density maps were
calculated to indicate disease hotspots as a guide for the farmer.

Keywords: deep learning; drones; potato crops; precision farming; supervised; U-Net

1. Introduction

Potato (Solanum tuberosum L.) cultivation is important on a global scale. With an annual
global production of 360 million tons on 16.5 million hectares and a gross production
value of 94 billion US$ in 2020, potato cultivation ranks as the seventh largest in crop
gross production worldwide [1]. For a potato crop, early blight caused by two species of
genus Alternaria (Alternaria solani and Alternaria alternata) can result in yield losses of 20 to
50% [2–4], and is the second most devastating foliar pathogen after Phytophthora infestans.
Alternaria spp. occur worldwide and particularly in the regions with high temperature
and during times of heavy dew [5]. Although both species are not distinguishable based
on symptoms (i.e., necrotic spots or lesions) [6], Alternaria solani is recognized as a true
pathogen of potato, while Alternaria alternata is often regarded as a weak parasite [7].
Traditionally, damage of early blight can be limited through resistant or tolerant varieties or
frequent application of plant protection products [5,8]. However, timing of plant protection
product application is key, and automatic detection of symptoms could make the mapping
of early blight more objective and enhance early warning systems. Remote sensing could
provide the objective information to improve agricultural management.

Detection of symptoms of plant diseases through remote sensing has been widely
investigated [9–11]. Data originating from different platforms; i.e., satellites and airborne
and unmanned aerial vehicles (UAVs); different sensors; and data analysis methods have
been proposed and tested for the early detection of plant diseases [12]. Studies have
shown that in the determination of diseases with leaf spots, a high spatial resolution
is crucial [13–17]. The use of UAV for agricultural applications has increased in the last
decade [18] and allows for the acquisition of imagery at high spatial and temporal resolution.
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The spatial resolution of UAV imagery is traditionally between 1 and 10 cm as a result
of sensor characteristics and altitude [19]. However, early detection of Alternaria solani
symptoms requires very-high-resolution imagery (<0.5 mm/pixel), as shown in Van De
Vijver et al. in 2019 [20].

Research on early disease detection through very high spatial resolution imagery
from a UAV platform for different crops, e.g., soybean [13], kohlrabi [21], wheat [16] and
maize [17]. However, model robustness, long processing times and high costs often prove
a bottleneck for large-scale adoption [22,23].

Deep learning can provide a more robust image analysis method, but requires a large
reference dataset for building efficient and accurate pattern recognition models [22,24–29].
When trained on sufficiently large datasets, deep learning models have been shown to be
able to capture the variability in the dataset and reduce prediction errors [30–33].

In our previous publication on Alternaria solani detection with hyperspectral imag-
ing [20], we noted that (1) high spatial resolution is required for disease detection, as spatial
patterns were found to be more differentiating than were spectral patterns; and (2) the near-
infrared region (NIR, 700–1300 nm) proved crucial for the detection of Alternaria solani,
as this range allows for high-contrast images that ease the detection by deep learning
models [20]. Therefore, the aim of this study was to investigate if we can (1) detect
Alternaria solani in potato crops from a UAV platform as a proof of concept for the broad
domain of disease detection and (2) pave the way towards large-scale application.

We hypothesize that very high resolution (<0.5 mm/pixel) is required for detecting
diseases based on small spatial features, such as fungus-induced leaf lesions. To this
end, we propose a three-step workflow: (1) recording ultra-high-resolution images with a
UAV, (2) training and validating deep learning models and (3) merging the results into an
infection map that can be used as input for a variable rate application map.

2. Materials and Methods
2.1. Field Trials

In order to collect sufficient data for further analysis, a field trial with laboratory-
grown inoculum was established [20]. Potato seedlings of cultivar S. tuberosum L. cv. Spunta
were planted on 6 May 2019, at an experimental field of 40 × 20 m with a sandy loam soil
in Merelbeke, Belgium (50.986544◦N, 3.774066◦E). The between-row distance was 0.75 m,
and the planting distance between the tubers was 0.4 m. After crop closure and flowering,
four twin plots were delineated. Each single plot measured 3.4 × 1.8 m and contained
32 plants (4 rows of 8 plants). Per twin plot, one plot was assigned as a control and one
as an infected plot. An overview of the field experiment is given in Figure 1, where the
red boxes indicate the infected plots and the orange boxes the control plots. Inoculum
was produced by growing local field isolates of A. solani on V8 agar plates under near UV
light for 10 days. Conidiospores were rinsed off the plates using water with 0.01% Tween,
filtered using nylon netting (200 µm), counted with a haemocytometer and diluted to
3× 103 spores per mL.

The inoculation was performed on 30 July 2019 in the evening by spraying the plants
in the plot homogenously with 400 mL of inoculum using a handheld sprayer (Birchmeier,
Stetten, Argau, CHE). To facilitate a sufficiently long period of leaf wetness and promote
infection, the plants were covered overnight with a transparent plastic foil and supported
by beams of plastic tubing to avoid contact with the plants. Control plots were not sprayed
or covered with plastic foil.

The first noticeable symptoms appeared at 3 days after inoculation (DAI); thereafter,
the symptoms developed steadily until 14 DAI when the lesion growth ceased. During
symptom development, UAV flights were carried out the day before inoculation and at 3, 6,
9, 13 and 15 DAI.
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Germany). The RGB version of the camera was modified by LifePixel (LifePixel, Seattle, 

WA, USA) to remove the near-infrared (NIR) blocking filter. This adaptation allowed the 

red channel of the camera to also capture photons in the NIR range. Previous research 
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hovering accuracy of ±1.5 m) in combination with the flight planning software, DJI 
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Figure 1. (a) Overview of the field trial with control plots (orange) and inoculated plots (red) and
(b) a zoom-in on an infected plot (top, red) and a control plot (bottom, orange); (c) the potato plants
were inoculated with a spore suspension, and (d) immediately after inoculation, the plants were
covered to maintain leaf wetness and a high humidity during spore germination and infection of the
potato plants.

2.2. UAV Flights

The UAV flights were performed with a DJI Matrice 600 (DJI, Shenzhen, Guangdong,
CHN) equipped with a Ronin MX gimbal (DJI, Shenzhen, Guangdong, China) and a
modified RGB Sony a7R III camera (42.4 MP, mirrorless) (Sony, Minato, Tokyo, Japan), with
a 135 mm lens, type Carl Zeiss Batis 135 mm f2.8 (Zeiss, Oberkochen, Baden-Württemberg,
Germany). The RGB version of the camera was modified by LifePixel (LifePixel, Seattle,
WA, USA) to remove the near-infrared (NIR) blocking filter. This adaptation allowed the
red channel of the camera to also capture photons in the NIR range. Previous research
showed that higher contrast between healthy and infected tissue can be perceived in the
NIR spectrum [20], making the modified RGB camera more appropriate compared to the
regular RGB version for this specific use.

At a flying height of 10 m above ground level, ultra-high-resolution images with a
field-of-view (FOV) of about 2.7 m × 1.5 m with a resolution of 0.3 mm/px were obtained
for disease detection. Due to the relative error of the on-board GNSS system (horizontal
hovering accuracy of±1.5 m) in combination with the flight planning software, DJI Ground
Station Pro (DJI, Shenzhen, Guangdong, China), a preprogrammed flight could not guar-
antee sufficient cover of the plots. Hence, flights were performed manually with the UAV
hovering over the plots to allow the acquisition of a sufficiently large number of images
of the plots. The cameras recorded an image every second. This resulted in an average
number of 60 images per plot.

Additionally, flights at 60 m (FOV of 16 m × 9 m, 1.8 mm/px resolution) above
ground level were performed to construct an overview map, for which Agisoft Metashape
Professional v1.8 (Agisoft, St. Petersburg, Russian) was used. Nine ground control points
(GCPs) were used during the flights and were measured with an RTK-GPS (S10 GNSS
Receiver) (Stonex, Paderno Dugnano, Milan, Italy), allowing location measurements to
be made at centimetre-level precision. Using these reference measurements, the stitched
orthomosaic could also be georeferenced at centimetre-level precision.
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To assess the spectral response of this camera, a spyder color checker (Datacolor,
Trenton, NJ, USA) was used as spectral reference in the field during the flights. The
spectral reference was also measured by an FX10e hyperspectral linescan camera covering
the wavelength range from 400 to 1000 nm with an average FWHM (full width at halve
maximum, i.e., spectral resolution) of 5.5 nm.

As mentioned in the introduction, high spatial resolution is crucial for disease de-
tection. To verify the resolution, a coin was placed in the images as a reference during
each flight. By measuring the coin diameter and the corresponding area in the images, an
accurate estimation of the spatial resolution could be obtained. The colour checker and
coin were placed on a tray to ensure the resolution was measured around canopy height
(Figure 2). The area of the coin in a representative image was recorded and compared with
the actual surface of the coin. This confirmed that the image resolution was 0.32 mm/pixel.
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Figure 2. Calibration targets captured at 10 m flying height with (a) Tricolour, the colour checker
used as a spectral reference and coin to measure spatial resolution, (b) close-up of the colour checker
with the coin and (c) close-up of the coin. Note the high spatial resolution that allows recognising the
markings on the coin.

2.3. Image Analysis Workflow

The image analysis workflow is illustrated schematically in Figure 3. As a first action
in the analysis workflow, the images were labelled using QGIS 3.10 (QGIS Association,
Gossau, Zürich, CHE) [34]. For annotation geometry, points placed at the lesion centre
were chosen over rectangles or polygons, as annotating rectangles or polygons is more
time-consuming and the main objective is the localization of the lesions and the estimation
of their size. For this proof of concept, two images of 42 MP (7952 × 5304 pixels), recorded
at 5 August 2019 (6 DAI), were randomly selected and annotated with 5465 and 9887 lesions,
respectively.

The annotated points (vectors) were then converted into a density map using a kernel
density estimation (Equation (1)). Previous research indicated that the use of density maps
eases the training process of the CNN by reducing the complexity of predicting the exact
location to predict a coarse location [35]. To calculate the density maps, the Python module
scikit-learn was used with the values 2, 10, 25 and 100 pixels as bandwidths [36]. The
bandwidth defines the area over which the points are averaged. A larger bandwidth will
therefore result in a more smoothed approximation. This bandwidth should be chosen in
relation to the density of the objects and thus reversely with the size of the objects [37].
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Figure 3. Schematic illustration of the image analysis workflow involving (1) image acquisition
from a low altitude UAV flight using a modified RGB camera, (2) image annotation using QGIS,
(3) subsampling into 256× 256 tiles, and (4) split into validation and training data. (5) Standardization
of the tiles; (6) conversion of the annotations into density maps using a kernel density estimation;
(7) training of a U-Net using these tiles and heat maps.

The main motivation for using densities (raster) instead of discrete points (vector) is
its ease of use during evaluation (regression) and implementation. Moreover, the nature of
the problem (counting lesions within a certain area) lies closer to a regression problem than
to object detection. In addition, the conversion from points to density maps is often done
in deep learning as an in-between step for point detection to guide the network towards
the correct coordinates [38,39]. Moreover, models trained to estimate density maps are
computationally faster and can be easily converted to additionally produce coordinates
when required. As the images and labels were too large to be fed directly to the network,
both were subsampled to smaller images 256 × 256 pixels in size.

Pij = Limg ·
1√
2π

e−d2/2h2
(1)

with

Pij: density estimate of lesion occurrence at pixel ij
Limg: the number of annotated lesions in the image
d: the distance to the annotated lesion
h: the bandwidth of the kernel density estimation

In Figure 4a, the frequency distributions of Alternaria solani lesions are compared
between the two labelled images. Clearly, the longer tail for one image (DSC06979) indi-
cates the higher density of annotations. It should be noted that similar concentrations of
Alternaria solani lesions can be expected for both images, but the slightly lower sharpness in
image DSC07392 resulted in a lower visibility of the symptoms. A comparison between the
number of lesions and the approximation by a kernel density function for the two images
is illustrated in Figure 4b,c. An identity line is plotted to ease comparison. For tiles with a
low lesion count, the kernel density approximate tends to overestimate, while for higher
occurrences, underestimation can be noted. It is clear that for higher bandwidths, this effect
is worse than for smaller bandwidths. This is also in line with Zhang et al., 2016, who
indicated that the optimal bandwidth is related to the size of the objects [37]. Therefore, a
bandwidth of 2 pixels was used to train the model.
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Figure 4. Inspection of the labelled dataset (a) was achieved by comparing the frequency distribution
of lesion annotations in 256 × 256 subimages and (b–e) by evaluating the actual number of lesions
with the approximation based on a kernel density function with a bandwidth of 2, 10, 25 and
100 pixels.

Three different datasets were constructed: a training dataset to train the model, a
validation dataset for hyperparameter tuning and finally an independent test dataset for
assessing model performance. The validation dataset was constructed by randomly taking
186 tiles of 256 × 256 pixels from the two annotated images. After sampling, these tiles
were removed from the original images. Then, the training set of 744 tiles was randomly
subsampled during model training as a data augmentation technique so that no tiles were
exactly the same. Occasionally, training tiles were picked with overlap where the validation
tiles were removed, resulting in partially occluded training tiles. To ensure a good quality
of the training set (i.e., the images contained enough nonempty regions), only tiles that had
a less than 25% overlap (occlusion) with previously sampled tiles were selected.

The independent test set was randomly sampled separately from the remaining UAV
images, and the selected tiles were annotated. This resulted in a test set of 320 image tiles.
By comparing the distributions of Alternaria solani occurrences in the test and training set
(Figure 5), it was confirmed that the training set was similar to the test set and therefore
representative for the whole dataset.

Prior to image analysis, the images were normalized by subtracting the mean colour
value and dividing by the standard deviation of the colour bands. This standardization
was applied to both the images and the labels based on statistics derived from the training
set (Table 1). It was shown in earlier research that standardization has a positive impact
on the learning speed [40]. This can be explained by the centring of values around zero,
thereby minimizing imbalances in the pixel values that could result in exploding gradients.
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Table 1. Image and density map statistics used for the standardization.

Red Green Blue Density Map

Mean 0.72 0.27 0.079 0.00020

Standard deviation 0.22 0.12 0.063 0.00051

As model architecture, a segmentation model was chosen to allow pixel-based regres-
sion. U-Net is a well-established segmentation model [41–44]. This architecture was used
with a ResNet-50 backbone and one output layer, as only one class probability needed to
be predicted [45]. A linear activation function of the output layer allows linear regression
estimations of per-pixel probabilities of disease occurrence, computed trough the kernel
density estimation. Initial weights trained on ImageNet were used. As the mean squared
error (MSE, Equation (2)) is commonly used as a performance measure in regression, this
was also applied here as the loss function. Adam was used as the optimizer with a learning
rate of 10−3. The models were trained using Python 3.8 (Python Software Foundation,
Fredericksburg, VA, USA), Tensorflow 2.5 (Google Brain, Mountain View, CA, USA) and
the Segmentation Models package [46–48].

MSE =
1
n ∑n

i=0(yi − yi
p)2 (2)

with:

n: the number of pixels in an image
yi: the ground truth value for the i-th pixel
yi

p: the predicted value for the i-th pixel

A batch size of 8 images was used during training as a trade-off between GPU mem-
ory (GTX 1080, 8 GB RAM) (NVIDIA, Santa Clara, CA, USA) and training speed. The
model was trained for 100 epochs while the loss function was monitored to verify that the
training converged.

3. Results
3.1. Image Characteristics

Figure 6 shows a section of a normal RGB image (also acquired with a Sony a7R III
and the 135 mm lens on the UAV at the same 10 m flight height) and a modified RGB image.
Both images were taken at the same day (5 August 2019, 6 DAI) over the same area.
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Figure 6. Comparison between (a) a modified RGB image and (b) a normal RGB image of a potato
field recorded at a flying height of 10 m using a Sony a7R III with 135 mm lens, obtaining a resolution
of 0.32 mm/px.

3.2. Model Analysis

During preprocessing, the standardization of the tiles clearly enhanced the contrast
between lesions and unaffected leaf areas (Figure 7). The validation loss converged after
15 epochs (Figure 8). This indicates that the model learns the required features very quickly.
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Figure 7. Illustration of the effect of the preprocessing workflow on the acquired images: (a,b)
example tiles of size 256 × 256 pixels before preprocessing (step 3 in Figure 3), (c,d) preprocessed tiles
after standardization (step 5 in Figure 3), (e,f) density maps generated by kernel density estimation
of the annotated point data (step 6 in Figure 3) and (g,h) the model predictions.
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Figure 8. Evolution of the MSE for the training and validation set during training over 100 epochs.

In Figure 9, the performance of the detection algorithm is illustrated via the plotting of
the number of detected lesions per tile against the corresponding kernel density estimation
based on annotated lesions. The R2 of 0.96 indicates a very good lesion counting perfor-
mance. However, the slope of 0.81 and negative intercept of −0.11 suggest that the model
underestimates the true number of lesions in a tile.
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Figure 9. Scatter plot of the number of lesions detected in an image tile of 256 × 256 pixels against
kernel density estimation based on manually annotated lesions. The solid blue line shows the linear
regression with the 95% confidence interval marked in light blue. The dotted line represents the
identity line.

In Figure 10, the detection performance of the U-Net is illustrated for a number of
representative image tiles. The network accurately detected most lesions and sometimes
even performed better than did the labeller, finding lesions that the labeller had missed
(Figure 10a). Note also the fly in the modified RGB image (white arrow). The model was
slightly triggered, but was able to accurately distinguish Alternaria solani lesions from
the fly.
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Figure 10. Qualitative inspection of the predicted density maps. (a–c) shows the ground truth
kernel density estimation. (d–f) shows the model-predicted density maps, and (g–i) shows the
corresponding input image tile, whereas (j–l) shows the spot in detail. White rectangles indicate
zones of interest where the model performed unexpectedly. The white arrow shows another deviation
of expected model results.

Figure 10b,c show regions where the model falsely indicates lesions (false positives) or
misses lesions (false negatives), respectively. In Figure 10b, the large size of the lesions is
uncommon and causes confusion, resulting in a lower confidence score and a false negative.
In Figure 10c, the leaf axils look very similar to lesions having a small size and clear borders
while being surrounded by healthy tissue. While a human labeller takes the leaf and stem
branch into account, the model clearly failed to take this larger context into account. This is
a difficulty already noted in previous research [49,50], where small objects were still often
missed due to (1) the absolute size of the object providing less information for the network
to classify the object correctly and (2) the mismatch in receptor head and the object size.
This was solved respectively by (1) providing more detail to the network by additionally
sampling the earlier feature maps [51,52] or incorporating both local and global context [53]
and (2) maintaining higher spatial resolution in the deeper layers [54].

It was also noted that the centre of the lesions is often predicted a few pixels away from
the ground truth annotation. This might be attributed to small inaccuracies in the labelling.

During image acquisition, the drone was manually flown with the camera triggering
every second. This strategy resulted in a large dataset of 672 high-resolution images of
infected zones as well as healthy zones. By applying the trained model to all images,
geographical estimates of infection pressure could be calculated, which are illustrated in
Figure 11. It can be seen that the noninfected plots (orange rectangles) and the rest of the
field are clearly distinguishable from the infected plots. The infected plots show higher
numbers of lesions at their centres compared to the border regions. This can be attributed
to the size of the images (2.7 × 1.5 m), which overlaps almost completely with a plot. This
implies that images taken at the border of an infected plot contain both infected plants as
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well as noninfected plants surrounding the plot. The large coverage of the image therefore
has a spatial smoothing effect.
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Figure 11. Disease pressure map resulting from application of the deep learning model to the georef-
erenced images taken on the field trial on 5 August 2019 containing infected plots (red rectangles)
and control plots (orange rectangles). Legend class levels were selected based on Jenks natural breaks
method in QGIS.

A number of lesions were predicted in every image regardless of the actual location
or presence of Alternaria solani. As the field is amply sampled with images, these points
give an accurate measure of infection hotspots (Figure 12). In order to obtain this density
map, ordinary kriging was used as interpolation technique [55]. Typically, the interpolated
infection map is obtained at high spatial resolution (10 cm/px) as a detailed guide for the
farmer to locate potential sources of infection. By grouping and averaging neighbouring
pixels, a lower resolution application map (1 m/px) is generated, specifically designed to fit
the farmer’s spraying machine. This will allow a farmer to adjust the protection measures
according to the infection pressure and could lead to a reduction in pesticide use and a
higher degree of protection.
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Figure 12. Visualization of the entire workflow. Several steps can be identified: (1) ultra-high-
resolution NIR imagery of the crops, (2) density map prediction using deep learning models,
(3) application of the model on the entire dataset, (4) use of interpolation techniques to convert
point measurements (i.e., the drone images) into a density map for the whole field and (5) conversion
of this infection map into an application map for a specified machine.

4. Discussion
4.1. Image Characteristics

It can be seen that the increased sensitivity to the NIR region enhances the contrast
between the Alternaria solani-induced lesions, visible as dark spots on the leaves, and the
unaffected zones on the leaves. In addition, the wax layer on the leaves introduces glare
in the RGB images reducing the contrast, whereas the modified RGB images display less
specular reflectance, further increasing the image contrast.

4.2. Model Analysis

It should also be noted that the model is still prone to under- and overestimations.
In addition, the green points in Figure 11 show a slightly elevated lesion density (green
dots) even though they are also outside the infected plots. These false positives can be
linked to leaf axils, earth or other brown spots, or even flies on the leaves (Figure 10a). To
reduce these false positives, it is recommended to train the model on real-world datasets,
with more healthy plants compared to Alternaria solani-infected plants and thus an in-field
occurring class imbalance.

The minimal lesion density threshold that can be detected by the model should also be
investigated. As the model outputs per-pixel probabilities (regression) rather than classes,
there will always be base noise, linked to the limit of detection of the model. Extending the
training dataset with other potato varieties, fields and illumination conditions will enhance
the model robustness and further decrease the limit of detection. Estimating this threshold
will be essential (and nontrivial) for its final application, as farmers would want to detect a
disease outbreak as early as possible (when only few lesions are present).

It should be noted that in a first stage, the maps will be a guide for the farmers to show
them which zones in the field to check. The farmer will still have to make the final decision
whether the model estimates are correct or require adjustments.

Further research might focus on implementing state-of-the-art point detection models
such as CenterNet [39] and the one developed by [38]. In addition, even though the
labelling effort was minimal owing to the pointwise detections, it could be interesting to
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investigate alternative approaches, such as classification based on the subtiles of a UAV
image to further reduce the labelling effort and lower the burden to retrain AI models.

In addition, future research should investigate the impact of UAV flight velocity and
camera settings, such as diaphragm, shutter speed and ISO value, on the model accuracy,
as it was seen that at high velocity segments, images were blurred and a larger number of
false positives occurred.

Automating the workflow will be key to adoption by farmers. In this study, expert
knowledge about the UAV, camera, lens and gimbal was still required to operate the UAV
successfully. A small UAV with an integrated high-resolution camera, possibly with near
real-time processing in the cloud through 5G data streaming could substantially increase
the applicability, as it would allow the farmer to use the result immediately after the flight
as an input for precision crop protection.

The demonstrated methodology can be transferred to other plant–pathogen inter-
actions, with the main challenge being collecting and accurately annotating the disease
symptoms. This is especially relevant for disease detection, where a pronounced class
imbalance requires the collection and annotation of a sufficiently large training dataset. Fu-
ture work will include the detection of Phytophthora infestans due to its notorious economic
impact on potato production.

Extending the methodology towards correctly classifying different diseases at the
same crop might be challenging, as differentiating symptoms often requires fine detail and
expert knowledge. It should therefore be further investigated if the used spatial resolution
(0.3 mm/px) is sufficient for classifying multiple diseases. This methodology should
therefore initially be used as a guide for a process in which the farmers are decision makers.

From an economic perspective, mapping multiple plant–pathogen interactions will
increase the profitability of a UAV platform for the farmer. This might be catalysed by
regulated drone-in-a-box solutions, where consecutive flights will become relatively cheap
and might discover several anomalies in the farmers’ fields. In a first stage, the farmer will
be able to act in a timelier fashion and reduce the disease impact. In a later stage, when the
detection method is extremely accurate and curative crop protection products are highly
efficient, this methodology might even enable site-specific spraying of infected plants.

5. Conclusions

A workflow was created to map the spread of Alternaria solani infection in potato fields
based on UAV imaging. Modified RGB imaging was used to provide enhanced contrast
between Alternaria solani lesions and unaffected tissue. In combination with the state-
of-the-art spatial resolution that can be obtained using consumer cameras, this modified
RGB camera was found to be ideally suited for UAV-based disease detection. Ultra-high
-resolution images were captured with a spatial resolution of 0.3 mm/pixel, crucial for
the detection of Alternaria solani–induced lesions on potato leaves. We demonstrated how
combination of this ultra-high-resolution imagery with deep learning can promote precision
crop protection.

A segmentation network (U-Net) was trained to estimate the probability of disease
presence by counting the number of lesions in an image. Even though the size of the
training dataset was limited, the model proved to be very accurate on the leaf level. When
extrapolated towards the field scale, prediction errors were found to accumulate, raising
the detection limit of the model.
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