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Abstract: Accurate precipitation nowcasting is of great significance for flood prevention, agricultural
production, and public safety. In recent years, spatiotemporal sequence models based on deep
learning have been widely used for precipitation nowcasting and have achieved better prediction
results than traditional methods. These models commonly use radar echo extrapolation and utilize
the Z-R relationship between radar and rainfall to predict rainfall. However, radar echo data can be
affected by various noises, and the Z-R correlation linking radar and rainfall encompasses several
variables influenced by factors like terrain, climate, and seasonal variations. To solve this problem, we
propose a dual-source attention dynamic neural network (DSADNet) for precipitation nowcasting,
which is a network model that utilizes a fusion module to extract valid information from radar maps
and rainfall maps, together with dynamic convolution and the attention mechanism, to directly
predict future rainfall through encoding and decoding structure. We conducted experiments on a real
dataset in Jiangsu, China, and the experimental results show that our model had better performance
than the other examined models.

Keywords: precipitation nowcasting; DSADNet; fusion module; dynamic convolution; attention
mechanism

1. Introduction

Precipitation nowcasting is an effective way to make a relatively short-period predic-
tion of the intensity of rainfall at the kilometer level in a local area, which can help local
meteorological departments to make timely and accurate decisions about rainfall warnings,
and to guide governmental departments in the transportation, agriculture, and electric
power industries to make responses in advance, thus reducing potential economic losses [1].
The role of heavy precipitation weather forecasting in today’s society cannot be overempha-
sized. Intense rainfall within a brief timeframe has the potential to trigger natural calamities
like floods and landslides, leading to significant societal harm and adverse effects on ecologi-
cal stability. Accurate rainfall forecasting holds immense significance for pre-emptive flood
management, agricultural productivity, and sustainable progress, empowering proactive
measures. Currently, there exist two primary methodologies for precipitation nowcasting:
numerical weather prediction (NWP) [2] and radar echo extrapolation. NWP relies on
numerical simulations derived from a series of mathematical physics equations, which
involves the calculation of complex physics equations, but it is difficult to meet the re-
quirements of accuracy and real-time precipitation prediction due to the uncertainty of its
initial and boundary conditions, the incompleteness of the physical mechanism, and the
fact that the technique involves the calculation of complex physics equations [3]. With the
continuous increase of meteorological data and the rapid development of deep learning
technology, most of the current research work on precipitation nowcasting mainly adopts
radar echo extrapolation.
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Radar echo extrapolation-based precipitation nowcasting methods can be broadly
classified into two categories: conventional extrapolation algorithms and deep learning
extrapolation algorithms. Among the traditional extrapolation algorithms, numerous
algorithms based on optical flow techniques [4–6] have been shown to have better radar
echo extrapolation performance. Optical flow techniques, based on the assumption of
constant brightness, are globally consistent techniques that can predict the motion of the
entire cloud layer. However, in reality, clouds tend to produce aggregation and dissipation
phenomena, which can affect the accuracy of optical flow techniques.

With the development of deep learning, some deep learning models have been pro-
posed, such as RNN [7], LSTM [8], and GRU [9] to deal with precipitation nowcasting
problems. Both satellite data and radar echo data are important tools used to obtain
precipitation information. However, satellite data cannot directly reflect the precipita-
tion inside the cloud, which needs to be judged by the cloud location, shape, cloud top
temperature, and other characteristics. Radar echo data, on the other hand, can directly
reflect the precipitation situation based on the size of the echo value. Therefore, radar echo
data are more suitable for precipitation nowcasting. By learning from a large amount of
historical radar echo data, these models establish a mapping relationship from previous
observations to future prediction data. Shi et al. [10] innovatively regarded the radar
echo extrapolation task as a spatiotemporal sequence prediction problem and designed
a ConvLSTM model, which substitutes the fully connected architecture of the FC-LSTM
model with a convolutional structure, thus enhancing radar echo extrapolation. This ad-
dresses the limitation of RNN models, which primarily emphasize temporal aspects of
image sequences while neglecting spatial features. However, the memory units of the
ConvLSTM model tend to focus on local spatial dependencies and are inadequate for
capturing long-range spatiotemporal dependencies; therefore, Lin et al. [11] introduced the
self-attention memory (SAM) module, enabling effective feature extraction with extended
spatiotemporal dependencies via the self-attention mechanism. This facilitates improved
accuracy in forecasting future radar echo states. Nevertheless, as the lead time increases,
these methods tend to underestimate areas with high reflectivity, which typically indicate
intense precipitation. This underestimation of such regions can have significant repercussions.
Furthermore, many previous models solely rely on radar maps to forecast future radar
conditions and, subsequently, use the Z-R relationship to derive rainfall maps. While radar
echo intensity provides insight into the size and density of precipitation particles to some
extent, establishing a relationship between echo intensity and precipitation encounters two
common challenges: inconsistency of radar echo data, due to radar’s operating principle,
and various noises; since the Z-R relationship is empirical, this relationship may change
under different meteorological conditions, resulting in inaccurate predicted rainfall data.

Numerous studies have shown that the use of multi-source data is more accurate than
the use of single data in precipitation prediction [12]. For this reason, Geng et al. [13]
proposed the AF-SRNet model for fusing radar and rainfall data to predict future rainfall
data, which extracts the information from radar and rainfall, respectively, through the
SRU module, then fuses the extracted radar and rainfall information using the attention
fusion module, and, finally, decodes and outputs the future rainfall data. The experimental
results show that fusing multi-source data helps to improve the accuracy of prediction.
However, the above model uses a late-fusion strategy to extract information from radar
and rainfall separately before fusing the information, which does not effectively extract the
evolution of the radar data in the two phases and only fuses the radar and rainfall data at
the same moment, which fails to capture the aggregation and dissipation of the radar echo
intensity in the two phases. Therefore, we propose a dual-source attention dynamic neural
network (DSADNet), which utilizes a fusion module (Fusion-Module) to effectively fuse
the radar and rainfall information to extract the evolution of the two-phase radar data with
higher prediction accuracy than the AF-SRNet model. Our model directly predicts future
rainfall using encoding and decoding structure, which overcomes the problem of inaccurate
radar echo data due to noise and inaccurate prediction due to the inability to accurately
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determine its parameters using the Z-R relationship. Rainfall data can accurately reflect
the real rainfall situation through direct measurements such as rain gauges. However,
rainfall data may not fully capture climate fluctuations, whereas radar echo data can depict
the aggregation and dissipation of echo intensity, and the fusion module designed by us
can better fuse the effective information in the radar echo data and the rainfall data, as
well as better capture the aggregation and dissipation of the radar echo in two phases,
which improves the prediction accuracy. To pay more attention to the high-echo heavy-
precipitation region, we replaced static convolution with dynamic convolution [14]. To
improve the ability to capture long-range spatiotemporal dependencies, we added the
SAM [11] module to each module in DSADNet. Numerous experimental results show that
DSADNet can effectively predict future rainfall with better metrics than existing models.

2. Related Work

Shi et al. [10] innovatively considered the radar echo extrapolation task as a spatiotemporal
sequence prediction problem. The authors proposed ConvLSTM by replacing the input-to-state
and state-to-state fully connected structures in FC-LSTM with a convolutional structure, and
the experimental results show that this model outperforms both the optical flow techniques
and FC-LSTM. Afterward, to solve the problem that the convolutional operation in the
ConvLSTM model is position-invariant, while the meteorological variations are usually
position-variant, Shi et al. [15] introduced the TrajGRU model, capable of autonomously
learning motion position changes and achieving superior prediction performance compared
to ConvLSTM. ConvGRU [16] has a similar structure and effect as ConvLSTM, but the
number of parameters is decreased, which optimizes the model’s prediction time.

Wang et al. [17] improved the previous model by proposing a new recurrent neural
network framework called predictive recurrent neural network (PredRNN), which allows
the memory states between different LSTM units to interact from layer to layer. The authors
devised an innovative spatiotemporal LSTM (ST-LSTM) unit, which integrates spatial and
temporal relationships within a unified memory unit. This unit facilitates the horizontal
and vertical transmission of memories, thereby considering both temporal and spatial
states. The experimental results indicated the favorable performance of the model. Since
the accuracy of ConvRNN-based precipitation nowcasting methods is greatly affected by
the gradient vanishing problem [18,19], Wang et al. [20] improved PredRNN and proposed
PredRNN++. This model utilizes a novel recursive structure called Causal LSTM, which
has a cascading double memory, thus making the network structure deeper in time. In
addition, the authors proposed a gradient highway unit that provides alternative quick
routes for the gradient flows from outputs back to long-range previous inputs. Causal
LSTM works seamlessly with the gradient highway to solve the problem of gradient
vanishing. Following this, Wang et al. [21] introduced the PredRNN-V2 version, which
introduced a novel loss function derived from PredRNN and implemented a new sampling
strategy, leading to improved prediction outcomes. Wu et al. [22] presented ISA-PredRNN,
integrating a self-attention mechanism and long-term memory to enhance capability in
handling global and long-term dependencies. Tuyen et al. [23] proposed the RainPredRNN
model, which combines PredRNN-V2 and U-Net [24], which not only reduces the amount
of computation for model prediction but also improves performance.

Highly non-stationary states such as accumulation, deformation, and dissipation of
radar echo in precipitation prediction have a crucial impact on the accuracy of the prediction;
therefore, Wang et al. [25] proposed MIM, which utilizes the difference signals between
neighboring cyclic states to model non-stationary and approximately stationary states
in spatiotemporal dynamics and improves the model’s ability to deal with higher-order
non-stationary states.

In recent years, the attention mechanism has received much attention, so some Con-
vRNN models based on the attention mechanism have been proposed for precipitation
nowcasting. Lin et al. [11] proposed the self-attention memory (SAM) module and em-
bedded SAM into ConvLSTM. The model can improve the ability to capture long-range
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spatiotemporal dependencies through the self-attention mechanism. Since CongGRU
has fewer parameters compared to ConvLSTM, but the prediction effect is similar, Zhou
et al. [26] embedded the SAM module into ConvGRU and obtained a model with better
precipitation nowcasting capability compared to the benchmark model. To amplify the
effectiveness of the attention mechanism, Luo et al. [27] introduced a novel interactive
dual-attention LSTM (IDA-LSTM) model. This model integrates both channel attention
and spatiotemporal attention to retrieve long-term forgotten information.

Previous models have used radar echo extrapolation for precipitation nowcasting tasks.
Radar maps are extrapolated to predict future radar conditions, which are subsequently
converted into rainfall maps using the Z-R relationship. However, the acquisition of radar
echo data is affected by various noises, such as wind speed, humidity in the atmosphere,
and the obstruction of mountains and buildings, resulting in inaccurate extrapolated radar
maps. Moreover, the Z-R relationship linking radar to rainfall involves numerous parame-
ters that fluctuate based on factors such as terrain, climate, and season. Failure to precisely
ascertain these parameters can result in decreased prediction accuracy. Precipitation now-
casting requires a high degree of ability to capture long-range spatiotemporal dependencies
as well as to accurately predict areas of heavy precipitation, but ConvRNN models rarely
consider both of these aspects simultaneously.

3. Methods
3.1. Problem Definition

The precipitation nowcasting model described in our method utilizes past radar
echo and rainfall data to forecast future precipitation patterns. Given a historical radar
echo sequence Rt−k+1:t = {Rt−k+1, Rt−k+2, · · ·, Rt} and a historical rainfall sequence
Pt−k+1:t = {Pt−k+1, Pt−k+2, · · ·, Pt}, we forecast the upcoming rainfall sequence P̂t+1:t+m =
{P̂t+1, P̂t+2, · · ·, P̂t+m}. This can be defined as follows:

P̂t+1, · · ·, P̂t+m = arg max(Pt+1, · · ·, Pt+m|Rt−k+1, · · ·, Rt; Pt−k+1, · · ·, Pt) (1)

where k denotes the input sequence length and m denotes the output sequence length.

3.2. Model

For precipitation nowcasting, most researchers use the radar echo extrapolation algo-
rithm [28–30], but this does not fully utilize the existing historical data. The collection of
radar echo data will be affected by a variety of noises, such as topography, electromagnetic
interference, thunderstorms, strong winds, and other meteorological conditions, which
greatly affects the accuracy of the extrapolation of radar echoes. Rainfall data can be directly
measured using rain gauges and other devices, providing a more accurate representation
of actual precipitation conditions, but by using only rainfall data it may not be possible
to respond to climate changes such as cloud aggregation or dissipation, which may cause
data inconsistency problems. Therefore, in our method in this paper, we designed a new
fusion module to improve the accuracy of prediction by fusing radar echo data and rainfall
data and effectively extracting the aggregation and dissipation of the radar echo intensity
in both phases. Our proposed precipitation nowcasting model adopts the structure of
encoding and decoding with dynamic convolution and the attention mechanism to predict
rainfall directly, which overcomes the problem of inaccurate prediction due to the need to
map the radar map to the rainfall map by using the Z-R relationship in the extrapolation
method of radar echoes.

3.2.1. DSADNet

The overall network architecture of DSADNet is illustrated in Figure 1. DSADNet
comprises two main components: the encoder, which includes Fusion-Module on the left,
and the decoder, which includes Att-DyConvLSTM on the right. Typically, the encoder
is constructed with four layers of Fusion-Module to enhance the extraction of deep spa-
tiotemporal features, while the decoder is composed of four layers of Att-DyConvLSTM.
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Fusion-Module integrates radar echo and rainfall data, capturing variations in radar echo
intensity by encoding data from two phases, and then it merges the rainfall data to con-
solidate the fused information, which is saved in the cell state Cl

t, hidden state Hl
t , and

spatiotemporal memory unit Ml
t and is passed to the decoder; finally, the predicted rainfall

data is decoded and output.
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Figure 1. DSADNet model framework. It comprises both the encoder and decoder structures. The
encoder contains Fusion-Module modules and the decoder contains Att-DyConvLSTM modules. The
inputs are radar echo maps and rainfall maps, and the outputs are rainfall prediction maps generated
by the DSADNet model.

3.2.2. Fusion-Module

Radar echo intensity reflects the scale and density of precipitation particles to a certain
extent, and the relationship between echo intensity and precipitation can be established, so
a radar map can reflect the rainfall situation, but the radar echo data is affected by various
kinds of noise, which leads to inaccurate reflection of the rainfall data. While rainfall
data provide an accurate representation of actual rainfall conditions, their utilization may
overlook factors such as cloud dissipation and atmospheric dynamics, which contribute
to climate fluctuations, while radar echo data can reflect climate change, so the joint use
of radar and rainfall data can compensate for their respective shortcomings. Therefore,
to extract effective information from radar echo data and rainfall data, we designed the
Fusion-Module module to effectively fuse radar echo data and rainfall data and to encode
and extract the effective information.

The configuration of the Fusion-Module module is depicted in Figure 2. Firstly, the
radar echo data Rt, the cell state Cl

t−1, and the hidden state Hl
t−1 of the previous period

enter into Fusion-Module, which decides which of the input data are important through
the input gate it, which information should be retained or forgotten through the forgetting
gate ft, and generates candidate information to help the network update the new cell state
Cl

t through the input modulation gate gt. The specific formulas are as follows:

it = σ(Dy(Wri, Rt) + Dy(Whi, Hl
t−1) + Wci ⊙ Cl

t−1 + bi) (2)

ft = σ(Dy(Wr f , Rt) + Dy(Wh f , Hl
t−1) + Wc f ⊙ Cl

t−1 + b f ) (3)

gt = tanh(Dy(Wrg, Rt) + Dy(Whg, Hl
t−1) + bg) (4)
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Cl
t = ft ⊙ Cl

t−1 + it ⊙ gt (5)

where σ is the Sigmoid activation function, Dy(, ) is the dynamic convolution, ⊙ is the
Hadamard product, tanh is the hyperbolic tangent activation function, W∗∗ is the parameter
to be learned, and b∗ is the bias value.

C CC

σ

σσ

tanh

tanh

SAM

Fusion

⊙

⊙
⊙

+

gt

it

ft

ot

zt

𝑀!"#
$

𝐶!"#$

𝐻!$

𝑃!$

𝑀!
$

𝐶!$

𝐻!"#$

𝑅! 𝑃!
C ：Channel Concat ⊙：Hadamard Product + ：Element-Wise Addition

Figure 2. The structure of Fusion-Module, where ft is the forgetting gate, it is the input gate, gt is
the input modulation gate, zt is the update gate, and ot is the output gate. This module contains the
Fusion-Module module and the SAM module.

Since radar maps can respond to climate changes such as cloud aggregation and
dissipation, inspired by [27], we included the Fusion module in Fusion-Module, which
fuses the hidden state Hl

t−1, which contains the previous radar information, with the
current rainfall data Pt for extracting the radar and rainfall information, and then fuses
the updated data with the cell state Cl

t containing the current radar information through
the update gate zt and the output gate ot. This module not only extracts the evolution of
the radar data in the two time periods, but also fuses the real rainfall data to improve the
accuracy of the prediction. The specific formulas are as follows:

Hl
t , Pl

t = Fusion(Hl
t−1, Pt) (6)

zt = tanh(Dy(Whz, Hl
t) + Wcz ⊙ Cl

t + bz) (7)

ot = σ(Dy(Wpo, Pl
t ) + Dy(Who, Hl

t) + Wco ⊙ Cl
t + bo) (8)

Hl′
t = zt ⊙ ot (9)

where σ is the Sigmoid activation function, Dy(, ) is the dynamic convolution, ⊙ is the
Hadamard product, tanh is the hyperbolic tangent activation function, W∗∗ is the parameter
to be learned, b∗ is the bias value, and Fusion(, ) denotes the fusion mechanism as shown
in Figure 3. The specific formulas are as follows:

Pl
t = Relu(LayerNorm(Convp2p(Pt)) + LayerNorm(Convh2p(Hl

t−1))) (10)

Hl
t = Relu(LayerNorm(Convp2h(Pl

t )) + LayerNorm(Convh2h(Hl
t−1))) (11)
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where Relu() is the Relu activation function, LayerNorm() is Layer Normalization, and
Conv() is the convolution operation. Finally, to capture the long-range spatiotemporal
dependencies, we added SAM to Fusion-Module, and the specific formula is as follows:

Hl
t , Ml

t = SAM(Hl′
t , Ml

t−1) (12)

where SAM(, ) denotes self-attention memory module.

C
on
v

C
on
v

Conv

Conv LayerNorm

LayerNorm

La
ye
rN
or
m

La
ye
rN
or
m

𝑃!"

𝐻!"

𝑃!

𝐻!#$"

+

+ R
eL
u

R
eL
u

Figure 3. The structure of the Fusion. It fuses rainfall information with radar echo information.

3.2.3. Att-DyConvLSTM

To better decode the encoder-generated cell states Cl
t , hidden states Hl

t , and spatiotem-
poral memory cells Ml

t, we employed ConvLSTM as the baseline model and enhanced it by
substituting its convolutional structures with dynamic convolution, aiming to better empha-
size regions with intense precipitation. Similarly, we added the SAM module to the model,
which was used to improve the ability to capture long-range spatiotemporal dependencies.

Att-DyConvLSTM, consisting of ConvLSTM, Dynamic Convolution, and the SAM
module, constitutes the decoder module shown in Figure 4, which is formulated as follows:

i
′
t+1 = σ(Dy(W

′
pi, Hl+1

t+1) + Dy(W
′
hi, Hl

t) + W
′
ci ⊙ Cl

t + b
′
i) (13)

f
′
t+1 = σ(Dy(W

′
p f , Hl+1

t+1) + Dy(W
′
h f , Hl

t) + W
′
c f ⊙ Cl

t + b
′
f ) (14)

g
′
t+1 = tanh(Dy(W

′
pg, Hl+1

t+1) + Dy(W
′
hg, Hl

t) + b
′
g) (15)

o
′
t+1 = σ(Dy(W

′
po, Hl+1

t+1) + Dy(W
′
ho, Hl

t) + W
′
co ⊙ Cl

t + b
′
o) (16)

Cl
t+1 = f

′
t+1 ⊙ Cl

t + i
′
t+1 ⊙ g

′
t+1 (17)

Hl′
t+1 = o

′
t+1 ⊙ tanh(Cl

t+1) (18)

Hl
t+1, Ml

t+1 = SAM(Hl′
t+1, Ml

t) (19)

where σ is the Sigmoid activation function, Dy(, ) is the dynamic convolution, ⊙ is the
Hadamard product, tanh is the hyperbolic tangent activation function, W

′
∗∗ is the parameter

to be learned, b
′
∗ is the bias value, and SAM(, ) denotes the self-attention memory module.

In Equation (19), if the Att-DyConvLSTM module is in the first layer of the decoder, the
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output is the predicted rainfall P̂t+1, while in the other layers the output is the hidden
state Hl

t+1.

⊙
⊙σ σσ tanh

SAM

C

+⊙
tanh

ft it gt ot

𝐶!"

𝐻!"

𝑀!
"

𝐻!#$"#$ 𝑀!#$
"

𝐻!#$"

𝐶!#$"

C ：Channel Concat ⊙：Hadamard Product + ：Element-Wise Addition

Figure 4. The structure of Att-DyConvLSTM. The SAM module is embedded in it.

4. Experiments
4.1. Dataset

In this paper, we used the dataset from the 2022 Jiangsu Meteorological AI Algorithm
Challenge as the training data for the model. The dataset contains data from 2019 to 2021,
from April to September. The radar echo dataset was sourced from the quality-controlled
network of multiple S-band meteorological radars in Jiangsu, encompassing the entire
regional area of Jiangsu Province. The radar echo data spanned a range of 0–70 dBZ with a
horizontal resolution of 0.01° (approximately 1 km), a temporal resolution of 6 min, and a
frame resolution of 480 × 560 pixels. Higher atmospheric water droplet content correlated
with increased radar fundamental reflectivity. Rainfall data were derived through the
interpolation of data collected from automatic meteorological stations in Jiangsu and the
surrounding regions onto a standardized grid, and the rainfall data were the 6-minute
cumulative rainfall from the automatic stations, with a value range of 0–10 mm and a
resolution of 480 × 560 pixels per frame.

In terms of data preprocessing, considering the computational overhead of the experi-
ment, we obtained radar echo maps and rainfall maps of 480 × 480 pixels in the middle
by cropping, and we then scaled the maps to 128 × 128 according to bicubic interpolation.
To enhance training effectiveness, we normalized the pixel values of both the radar echo
and the rainfall maps. The experiment utilized radar echo and rainfall sequences from
the previous hour to predict rainfall sequences for the subsequent hour. The dataset was
divided into training and validation sets in a ratio of 8:2.

4.2. Implementation Details

Our model and comparison models were implemented using Pytorch and were run on
NVIDIA TITAN RTX GPUs. The comparison models were ConvLSTM [10], ConvGRU [16], Pre-
dRNN [17], MIM [25], SA-ConvLSTM [11], IDALSTM [27], AF-SRNet [13], and SA-ConvGRU
[26]. For consistency across the experiments, all our comparison models incorporated radar
echo and rainfall data. We concatenated these data types in the channel dimension, aligning
with the methodology employed in [13]. In this experiment, we utilized the Adam opti-
mizer [31] with a learning rate set to 0.001, a batch size of 16, and trained for a total of 100
epochs. If the loss failed to decrease for 4 consecutive epochs, the learning rate was reduced
to 0.1 times its original value. Moreover, if the loss did not decrease for 10 consecutive
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epochs, the training process was halted. When training the model using the original MSE–
MAE loss function, the model tends to overlook regions of intense precipitation, which
makes the model more focused on the low-rainfall region [32], and the output image is
more blurred. The formula for the MSE–MAE loss function is shown below:

MSE − MAEloss =
1
N

H

∑
j

W

∑
i
((yi,j − ŷi,j)

2 + |yi,j − ŷi,j|) (20)

where N is the number of predicted maps, H and W are the height and width of the maps,
and yi,j and ŷi,j are the actual and predicted maps values, respectively. Therefore, we used
weight loss and the SSIM to build the loss function with the following formula:

loss = weightloss + 1000 × (1 − SSIM(y, ŷ)) (21)

weightloss =
1
N

H

∑
j

W

∑
i

weighti,j × ((yi,j − ŷi,j)
2 + |yi,j − ŷi,j|) (22)

SSIM(y, ŷ) =
(2µyµŷ + C1)(2σyŷ + C2)

(µ2
y + µ2

ŷ + C1)(σ2
y + σ2

ŷ + C2)
(23)

where N is the number of predicted maps, H and W are the height and width of the maps,
yi,j and ŷi,j are the actual and predicted maps values, respectively, µy, µŷ are the means of y
and ŷ, σ2

y , σ2
ŷ are the variances of y and ŷ, σyŷ is the covariance of y and ŷ, C1 and C2 are two

non-zero constants, and weighti,j is the weight value of the map at (i,j). We analyzed the
distribution of different rainfall amounts, and to ensure that areas of heavy precipitation
were not overlooked, we assigned different weight classes to different rainfall amounts;
weighti,j was assigned according to the following equation:

weighti,j =



0.1 0.00 ≤ yi,j ≤ 0.01
1.0 0.01 ≤ yi,j ≤ 0.10
2.0 0.10 ≤ yi,j ≤ 0.50
5.0 0.50 ≤ yi,j ≤ 1.00
10.0 1.00 ≤ yi,j ≤ 2.00
20.0 2.00 ≤ yi,j ≤ 3.00
30.0 3.00 ≤ yi,j ≤ 6.00
50.0 6.00 ≤ yi,j ≤ 10.00

(24)

4.3. Performance Metric

To assess the model’s performance, we utilized four commonly employed evaluation
metrics: the critical success index (CSI), the false alarm rate (FAR), the Heidke skill score
(HSS), and the mean squared error (MSE). The values of the CSI, the FAR, and the HSS
were in the range of 0-1. The closer the CSI and the HSS were to 1, and the closer the FAR
was to 0, the better the prediction of the model was. The MSE was a value greater than or
equal to 0. The closer it was to 0, the closer the predicted data were to the real data and
the better the prediction was. To calculate the CSI, the FAR, and the HSS, we changed the
rainfall map to a bivariate map based on thresholds, where the value was set to 1 if the
rainfall value was greater than the threshold, and 0 otherwise, and the thresholds were set
to 0.05 mm, 0.20 mm, and 0.50 mm, respectively. Using the bivariate map, we calculated the
True Positive (TP), the False Negative (FN), the True Negative (TN), and the False Positive
(FP) values. The CSI, FAR, HSS, and MSE metrics were defined as follows:

CSI =
TP

TP + FP + FN
(25)
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FAR =
FP

TP + FP
(26)

HSS =
2 × (TP × TN − FN × FP)

(TP + FN)× (FN + TN) + (TP + FP)× (FP + TN)
(27)

MSE =
1
N

H

∑
j

W

∑
i
(yi,j − ŷi,j)

2 (28)

where TP denotes the number of predicted values of 1 and true values of 1, FN denotes the
number of predicted values of 0 and true values of 1, TN denotes the number of predicted
values of 0 and true values of 0, FP denotes the number of predicted values of 1 and true
values of 0, N is the number of predicted maps, H and W are the height and width of the
maps, and yi,j and ŷi,j are the true and predicted map values.

4.4. Results and Analysis
4.4.1. Comparative Experiments

We utilized the dataset provided by the 2022 Jiangsu Meteorological AI Algorithm
Challenge to evaluate the performance of DSADNet proposed in this paper alongside
other comparative models. The dataset used for evaluating the model was not used for
the training of the model, and the evaluation results are more reflective of the model’s
generalization ability. Tables 1 and 2 show the experimental results of the comparison at 30
min and at 60 min, where the optimal metrics are in bold. In addition, for a more intuitive
comparison between our model and other models, an example of a randomly selected
visualization is given in Figure 5.

From the results of this experiment, DSADNet performed the best except for the FAR
metric. In the field of precipitation nowcasting, the CSI usually stands for the hit rate
of precipitation, i.e., the proportion of rainfall events that are successfully predicted. It
is a statistical metric used to assess the accuracy of forecasting precipitation events, and
the HSS is a statistical metric used to evaluate the performance of a classification model,
especially for assessing the consistency between prediction results and observations. The
higher of the two metrics means that our proposed DSADNet model can effectively extract
information from radar and rainfall maps, which improves the accuracy of prediction.
Not only that, our model had a lower MSE, which denotes the mean of the squares of the
differences between the predicted and real data, indicating that the model’s predictions fit
the true values better than other models. In addition, the model improves the performance
of maintaining long-range spatiotemporal dependencies by using the SAM module, which
enables the model to maintain stable performance as the prediction time grows. As depicted
in Figure 5, our model’s prediction results exhibit a minimal shift in the overall rainfall
distribution compared to the actual data, and the prediction stability is better than other
comparative models. And our model replaces the convolution structure with dynamic
convolution. As can be seen from the visualization in Figure 5, our model better predicts
the heavy precipitation area (the red part in the figure) compared to other models, which
expand or reduce the heavy precipitation area inconsistently with the reality.

Although our model has outstanding metrics on the CSI and the HSS, it is slightly
below the optimal metrics on the FAR metrics, and, due to the model lacking in extracting
the time evolution information and capturing the process of rainfall intensity change, the
model focuses more on the area of heavy precipitation and ignores the information that the
heavy precipitation decays into weak precipitation.
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Table 1. Average evaluation results of comparison experiments within 30 min. The best metrics are
highlighted in bold; “↑” signifies that higher scores are preferable, while “↓” indicates that lower
scores are preferable.

0.05 mm 0.20 mm 0.50 mm
Model

CSI↑ FAR↓ HSS↑ CSI↑ FAR↓ HSS↑ CSI↑ FAR↓ HSS↑ MSE↓

ConvLSTM 0.5329 0.3124 0.6461 0.4702 0.3951 0.5963 0.3953 0.4418 0.5252 7.5953
ConvGRU 0.5293 0.3668 0.6419 0.4646 0.4333 0.5897 0.3949 0.4200 0.5256 7.6868
PredRNN 0.5400 0.3396 0.6528 0.4721 0.3849 0.5986 0.3948 0.4307 0.5245 7.6427
MIM 0.5352 0.3315 0.6480 0.4762 0.3943 0.6035 0.4050 0.4452 0.5352 8.0327
SA-ConvLSTM 0.5404 0.3172 0.6532 0.4702 0.3768 0.5952 0.3965 0.4202 0.5269 7.2319
IDALSTM 0.5430 0.3584 0.6555 0.4747 0.4087 0.6017 0.3941 0.4371 0.5239 7.8811
AF-SRNet 0.5421 0.3529 0.6561 0.4721 0.4104 0.5996 0.3935 0.4319 0.5232 8.1311
SA-ConvGRU 0.5328 0.3399 0.6459 0.4653 0.3939 0.5910 0.3914 0.4305 0.5204 7.3832
DSADNet 0.5516 0.3189 0.6641 0.4841 0.3921 0.6102 0.4066 0.4217 0.5364 7.1690

Table 2. Average evaluation results of comparison experiments within 60 min. The best metrics are
highlighted in bold; “↑” signifies that higher scores are preferable, while “↓” indicates that lower
scores are preferable.

0.05 mm 0.20 mm 0.50 mm
Model

CSI↑ FAR↓ HSS↑ CSI↑ FAR↓ HSS↑ CSI↑ FAR↓ HSS↑ MSE↓

ConvLSTM 0.4848 0.3651 0.5946 0.4106 0.4459 0.5300 0.3264 0.4922 0.4445 10.3514
ConvGRU 0.4809 0.4117 0.5894 0.4076 0.4834 0.5268 0.3301 0.4736 0.4502 10.5840
PredRNN 0.4911 0.3785 0.6000 0.4126 0.4257 0.5328 0.3262 0.4870 0.4452 10.4432
MIM 0.4889 0.3730 0.5984 0.4160 0.4493 0.5359 0.3324 0.5083 0.4517 10.8839
SA-ConvLSTM 0.4884 0.3547 0.5981 0.4123 0.4104 0.5307 0.3322 0.4715 0.4524 9.9691
IDALSTM 0.4917 0.3971 0.6013 0.4120 0.4425 0.5316 0.3235 0.4989 0.4416 10.6774
AF-SRNet 0.4948 0.3960 0.6054 0.4160 0.4509 0.5369 0.3323 0.4882 0.4530 10.9695
SA-ConvGRU 0.4839 0.3821 0.5935 0.4095 0.4282 0.5286 0.3288 0.4834 0.4479 10.0829
DSADNet 0.5010 0.3548 0.6111 0.4199 0.4268 0.5393 0.3347 0.4758 0.4538 9.8653

As can be seen in the visualization example in Figure 5, our model performs better than
the other models in heavy precipitation prediction. In addition, the prediction accuracy of
ConvLSTM, ConvGRU, IDALSTM, and SA-ConvGRU keeps decreasing as the prediction
time increases, and at 60 min, the regions of different precipitation intensities predicted
by these models are quite different from the real situation. AF-SRNet also employs a
fusion mechanism to predict rainfall, and the model first encodes the radar and rainfall
maps through their respective encoders, and the radar and rainfall maps do not interact at
that stage. After that, the radar and rainfall information are fused by the attention fusion
module, which fuses the radar and rainfall information at the same stage, ignoring the
evolution of the radar echo intensity at the two stages. Therefore this model incorrectly
predicts the rainfall distribution, resulting in a large impact on the prediction.

Therefore, our model not only outperforms other models in terms of forecast accuracy,
maintaining long-range spatiotemporal dependencies and focusing on regions of heavy
precipitation, but is also at a superior level, although the FAR is not optimal.
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Figure 5. Comparative experiments are visualized as follows. The rainfall maps in the first row depict
the input and ground truth at t + 6 min, t + 30 min, and t + 60 min. Subsequent rows display the results
of ConvLSTM, ConvGRU, PredRNN, MIM, SA-ConvLSTM, IDALSTM, AF-SRNet, SA-ConvGRU,
and our proposed model, respectively.

4.4.2. Ablation Study

To further demonstrate the influence of the fusion module, dynamic convolution, and
SAM on the experiments, ablation experiments were conducted to assess the effectiveness
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of the fusion module, dynamic convolution, and SAM individually. Tables 3 and 4 show the
ablation results at 30 min and at 60 min, where the optimal metrics are in bold. In the table,
ConvLSTM is the baseline model, DSNet is the fusion module added to ConvLSTM, DSD-
Net is the convolution structure on DSNet replaced with dynamic convolution, DSANet
is the SAM module added to DSNet, and DSADNet is our proposed model. Similarly,
Figure 6 gives an example of the visualization of the ablation experiment.

Table 3. Average evaluation results of ablation experiments within 30 min. The best metrics are
highlighted in bold; “↑” signifies that higher scores are preferable, while “↓” indicates that lower
scores are preferable.

0.05 mm 0.20 mm 0.50 mm
Model

CSI↑ FAR↓ HSS↑ CSI↑ FAR↓ HSS↑ CSI↑ FAR↓ HSS↑ MSE↓

ConvLSTM 0.5329 0.3124 0.6461 0.4702 0.3951 0.5963 0.3953 0.4418 0.5252 7.5953
DSNet 0.5423 0.3504 0.6557 0.4728 0.4019 0.5989 0.3968 0.4505 0.5283 7.5271
DSDNet 0.5428 0.3651 0.6550 0.4784 0.4362 0.6058 0.4018 0.4215 0.5325 7.3648
DSANet 0.5438 0.3145 0.6564 0.4737 0.3976 0.5998 0.3934 0.4561 0.5244 7.3382
DSADNet 0.5516 0.3189 0.6641 0.4841 0.3921 0.6102 0.4066 0.4217 0.5364 7.1690

Table 4. Average evaluation results of ablation experiments within 60 min. The best metrics are
highlighted in bold; “↑” signifies that higher scores are preferable, while “↓” indicates that lower
scores are preferable.

0.05 mm 0.20 mm 0.50 mm
Model

CSI↑ FAR↓ HSS↑ CSI↑ FAR↓ HSS↑ CSI↑ FAR↓ HSS↑ MSE↓

ConvLSTM 0.4848 0.3651 0.5946 0.4106 0.4459 0.5300 0.3264 0.4922 0.4445 10.3514
DSNet 0.4931 0.3987 0.6033 0.4126 0.4443 0.5321 0.3300 0.5065 0.4502 10.2246
DSDNet 0.4930 0.4146 0.6018 0.4174 0.4924 0.5385 0.3338 0.4916 0.4547 10.0921
DSANet 0.4947 0.3597 0.6048 0.4166 0.4411 0.5378 0.3309 0.5212 0.4528 10.0208
DSADNet 0.5010 0.3548 0.6111 0.4199 0.4268 0.5393 0.3347 0.4758 0.4538 9.8653

From the results of the ablation experiments: Firstly, by comparing the evaluation
indexes of the benchmark model ConvLSTM and DSNet, Fusion-Module was added to
help the model better extract the radar information and rainfall information, and the CSI
and HSS indexes of DSNet were better than those of the benchmark model, but, due to
the weak ability of Fusion-Module in extracting information, strong precipitation decayed
into weak precipitation, which led to the FAR being on the high side. So, Fusion-Module
helps to improve prediction performance, but the FAR index needs to be reduced. Secondly,
to improve the focus on strong precipitation, we replaced the convolution structure on
DSNet with dynamic convolution. As shown in Figure 6, DSDNet paid more attention to
the region of strong precipitation than DSNet (the red part in the figure). Next, to improve
the model’s ability to maintain long-range spatiotemporal dependencies, we added the
SAM module to DSNet, and, as observed in Tables 3 and 4, DSANet with the addition
of SAM outperforms DSNet in all the metrics as the prediction time grows. Our model,
DSADNet, which combines the fusion module, dynamic convolution, and the SAM module,
is basically optimal in all metrics. With the addition of dynamic convolution, the SAM
module, and Fusion-Module, basically, the MSE metric decreases and the model predictions
improve. According to Figure 6, DSADNet not only outperforms other models in capturing
heavy precipitation areas, but also maintains stable model performance as the prediction
time increases. Although our model combines the fusion module, dynamic convolution,
and the attention mechanism, Fusion-Module plays a dominant role. Fusion-Module
improves model prediction more significantly than dynamic convolution and the attention
mechanism, which can be seen in Tables 3 and 4. While our model generally outperforms
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the baseline model across all metrics, the improvement is not substantial. Enhancing the
model’s prediction accuracy remains the primary focus of future work.

DSADNet

DSNet

DSDNet

DSANet

ConvLSTM

t-12 min t-6 min t min t+6 min t+30 min t+60 min

0.00

0.01

0.05

0.10

0.20

0.40

1.00

2.00

4.00

6.00

10.00

Precipitation
（
m
m
）

Figure 6. Ablation experiments are visualized as follows. The rainfall maps in the first row depict
the input and ground truth at t + 6 min, t + 30 min, and t + 60 min. Subsequent rows display the
results of ConvLSTM, DSNet, DSDNet, DSANet, and our proposed model, respectively. In this figure,
ConvLSTM serves as the baseline model. DSNet represents the fusion module added to ConvLSTM,
DSDNet denotes the replacement of the convolution structure on DSNet with dynamic convolution,
and DSANet signifies the SAM module added to DSNet.

5. Conclusions

This paper introduces a novel precipitation nowcasting model, DSADNet. The model
endeavors to maximize the utilization of valuable information from multiple data sources
through the development of a novel fusion module. This module effectively captures
variations in radar echo intensity and extracts useful information from both radar echo
and rainfall data. To improve prediction, we replaced the convolution in the model with
dynamic convolution, which can pay more attention to areas of heavy precipitation. The
added SAM module allows prediction to remain stable as prediction time increases and
improves the model’s ability to capture long-range spatiotemporal dependencies. Our
proposed model has higher CSI and HSS metrics and lower MSE metrics, but our model
focuses more on the effective combination of radar and rainfall information and is weaker in
extracting time-evolution information and capturing the rainfall intensity change process.
The model predicts weak precipitation regions as strong precipitation regions, which
ultimately leads to high FAR metrics. In future endeavors, our emphasis will be on
refining Fusion-Module to minimize the false alarm rate (FAR) and enhance the accuracy
of precipitation nowcasting.
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