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Abstract: The present study examines the effects of China’s comprehensive big data pilot zone policy
on urban ecological resilience. This is achieved through the utilization of a quasi-natural experiment,
employing panel data from 217 prefecture-level cities in China spanning the years 2010 to 2021. The
research revealed that China’s extensive policy on big data pilot zones has a notable and favorable
influence on the ecological resilience of urban areas. This impact is both constant and subject to
variation across different regions. The aforementioned impact is attained by means of progressions in
industrial structure and the introduction of innovative green technologies. Furthermore, the strategy
exerts a beneficial impact on the ecological resilience of urban areas in adjacent regions by means of
spatial spillover effects.

Keywords: digital economy; China’s comprehensive big data pilot zone; ecological resilience;
difference in differences

1. Introduction

Over the past few decades, China’s economy has expanded roughly and developed
effectively. This resource-dependent mode of production has led to increasingly prominent
environmental problems, seriously weakening the carrying capacity of the environment,
reducing the regional ecological resilience, and posing a major threat to China’s ecolog-
ical security [1]. The Chinese government, in its report to the 20th National Congress,
underscored the importance of integrating carbon reduction, green expansion, pollution
reduction, and economic growth to improve China’s ecological environment. In 2023,
General Secretary Xi Jinping explicitly indicated in the Conference on Environmental and
Ecological Protection that “we must continue to fight a good battle against pollution in
depth; adhere to the precise and scientific treatment of pollution in accordance with the law;
maintain the strength, extend the depth, expand the breadth, and deeply promote the three
major defence wars of blue sky, blue water, and clean soil”. To address the conflict between
economic advancement and ecological conservation within the framework of high-level
urban development and to improve cities’ ecological resilience, a prompt resolution is
necessary [2]. The China big data comprehensive pilot area policy is a unique policy pilot
area created by the state to utilize data as a central component, foster scientific and technical
innovation, and expedite the advancement of industrial digitization and digital industrial-
ization, serving a significant purpose. The implementation of a series of industrial support
policies, data resource opening policies, talent support policies, infrastructure construction
policies and innovation support policies, and other policies and measures in a specific area
aims at data flow driving capital flow, technology flow, talent flow convergence and circula-
tion, the development of digital technologies, digital industries, digital business forms, and
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digital models. The establishment of the China big data comprehensive pilot zone aims to
optimize the benefits of big data and its many uses while facilitating the integration of the
digital economy in various sectors. This initiative also presents a significant opportunity to
enhance urban ecological environments and strengthen urban ecological resilience.

Ecological resilience refers to the ability of ecosystems to maintain stability, functional-
ity, and restoration when subjected to external disturbances and damage [3] and represents
the continuity of relationships within ecosystems [4]. With the continuous development of
ecological resilience theory, scholars have emphasized the ability of ecosystems to achieve
transformation and development by adjusting their structure and changing their path
from an evolutionary perspective [5]. Studies on ecological resilience have focused mostly
on the aspects of measurement and influencing factors. To measure ecological resilience,
Wang S et al. (2022) constructed a three-dimensional system including scale, density, and
morphology to assess the relationship between urbanization and ecological resilience [6]. In
their study, Li and Wang (2023) conducted an assessment of the diversity and convergence
of ecological resilience in urban areas of China, focusing on three distinct dimensions: resis-
tance, adaptation, and resilience [7]. In addition to natural factors, such as vegetation, soil,
water, and climate [8], driving factors include social factors, such as industrial transforma-
tion, scientific and technological innovation [9], population density [10], urbanization [11],
and environmental regulation [12].

The digital economy is environmentally friendly with characteristics of low consump-
tion and low pollution [13]. Data are widely recognized as crucial factors in production [14].
They play a direct role in various aspects of research, production, distribution, exchange,
and consumption by integrating digital services with technology, industry, and the market.
This integration has led to significant transformations in the real economy, thereby stimu-
lating high-quality economic growth in China [15]. Utilizing the data within the compre-
hensive big data pilot zone policy is a novel approach for China to attain environmentally
sustainable and high-quality advancements, thereby capitalizing on the advantageous
position of the digital economy [16]. According to Li and Wang (2022), the advancement of
the digital economy and the reduction of urban carbon emissions can be facilitated by the
enhancement of technical progress, the rectification of flawed resource allocation, and the
optimization of industrial structure [17]. Lyu Y and colleagues (2023) assert that the expan-
sion of the digital economy is accountable for the rise in green total factor productivity [18].
Due to the aforementioned factors, the digital economy greatly contributes to enabling
the green transformation of China’s manufacturing sector [19], enhances regional eco-
efficiency [20], empowers China’s ecological civilization construction [21], and reconciles
economic growth and the ecological environment [22], thus enhancing urban ecological
resilience [23]. Subsequent research has demonstrated that the digital economy impacts
urban ecological resilience through various channels, including economic growth [24],
scientific and technological advancement, transformation of the industrial structure [25],
environmental regulation [26], and resource allocation optimization [27].

According to the literature, experts widely concur on the positive impact of the digital
economy on the environment. However, there are variations in the specific areas of research
that fall under the green effect category. Most scholars have studied the impacts from a
single level, such as pollutant emissions, green total factor productivity, or environmental
governance, while a few scholars have focused on ecological resilience. Ecological resilience
is a systematic concept with more multidimensional measurement criteria, and most studies
on ecological resilience take it as an independent object for measurement and differential
research. Therefore, in contrast to prior research, this study adopts an environmental
economics approach by focusing on a particular policy within the digital economy, namely
China’s big data comprehensive pilot zone, and regards it as a quasi-natural experiment.
The study of the relationship between the two helps to comprehensively strengthen the
ecosystem’s resistance, resilience, and recovery. This study’s novel contributions are evident
in the following aspects. First, the integration of the national big data comprehensive pilot
zone and urban ecological resilience within a research framework expands the scope of
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investigating the environmental advantages associated with the digital economy. Second,
this study utilizes a mathematical model to examine the ecological restoration capabilities
of China’s big data comprehensive pilot zone. This approach addresses a theoretical void in
the existing literature. Third, in terms of heterogeneity analysis, the sample is categorized
not only by the layout of the comprehensive pilot zones but also by the degree of ecological
environmental pollution, thus making the research conclusions more precise. Fourth,
with regards to the mechanism of action, the internal logic by which the pilot zone policy
influences the ecological resilience of a city is clarified through the two paths of green
technological innovation and the advancement of the industrial structure. Fifth, from a
spatial perspective, this study utilizes a spatial econometric model to investigate the impact
of the policy on urban ecological resilience at the “local neighborhood” level. The aim is to
establish a foundation for coordinating regional development efforts.

2. Theoretical Analysis and Research Hypothesis
2.1. Mathematical Model Analysis

This study utilizes research from Hu Zongyi and Li Yi (2020) and Yan Zhijun et al. (2022)
to investigate the effects of establishing a comprehensive big data pilot zone on the ecologi-
cal resilience of urban areas [28,29]. The analysis is conducted through the development of
a straightforward two-sector economic model. It is assumed that there are two sectors in
the economy, the polluting sector x and the clean sector y, with corresponding outputs qx
and qy, respectively. The implementation of the big data comprehensive pilot zone strategy
has a substantial influence on the polluting industry, while the clean industry remains
relatively unaffected. For simplicity, this paper assumes that labour (l) and capital (k) are
input factors, and the production functions of the two sectors are as follows:

qy = lα2
y kβ2

y

where α1, α2, β1, and β2 ∈ (0, 1) denote the shares of labour and capital inputs in the two
sectors, and the total factor inputs are lx + ly = l and kx + ky = k. The polluting sector
produces a certain amount of polluting emissions e during the production process, which
is included in the production function to obtain:

qx = eε
(

lα1
x kβ1

x

)1−ε
, 0 < ε < 1

From the above, the expression of the profit maximization function for the polluting
and clean sectors is:

Max πx = pxqx − cx = pxeε
(

lα1
x kβ1

x

)1−ε
− wlx − rkx − Te

Max πy = pyqy − cy = pylα2
y kβ2

y − wly − rky

where px and py denote the prices of products in the polluting and clean sectors, respec-
tively; w denotes the price of labour; r denotes the price of capital; and T is the amount
of penalties per unit of polluting emissions. The size of the T-value is closely related to
the policy, thanks to the use of advanced technologies and data analysis that enable more
precise monitoring and assessment of the extent and impact of pollution emissions. It is set
according to the condition of profit maximization for polluting sector x:

w = pxα1(1 − ε)

(
e

qx

)ε qx

lx

r = pxβ1(1 − ε)

(
e

qx

)ε qx

kx

pxε
( qx

e

)1−ε
= T
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Similarly, for the clean sector y, the profit maximization condition is:

w = pxα2
qy

ly

r = pyβ2
qy

ky

In summary, the combined conditions for profit maximization in both sectors are
as follows:

pxα1(1 − ε)

(
e

qx

)ε qx

lx
= pyα2

qy

ly

pxβ1(1 − ε)

(
e

qx

)ε qx

kx
= pyβ2

qy

ky

pxε
( qx

e

)1−ε
= T

To observe the changes in the variables caused by the implementation of the policy, the
natural logarithms of both sides of the equation are taken, and the differentiation operation
at time t is performed via the following equation:

εê + (1 − ε)q̂x − l̂x = q̂y − l̂y

εê + (1 − ε)q̂x − k̂x = q̂y − k̂y

ê = q̂x −
1

1 − ε
T̂

In the above equation, X̂ = d ln X
dt . Since this study does not address consumer utility

maximization, p is considered an exogenous variable and does not change in the short run.
Furthermore, the following can be obtained from lx + ly = l and kx + ky = k:

θlx l̂x + θly l̂y = 0

θkx k̂x + θky k̂y = 0

where θlx = lx
l , θly =

ly
l , θkx = kx

k , and θky =
ky
k indicate the share of labour and capital

factor inputs in the polluting and clean sectors, respectively.
In this paper, the same treatment is applied to qx = lα1

x kβ1
x and qy = lα2

y kβ2
y . To simplify

the analysis, it is assumed that there exists at least one fixed-input factor of production in
the short term, and the system of parallel equations yields the expression for the polluting
sector x:

l̂x = −
θly

θlx (1 − α2) + θly(1 − α1)

ε

1 − ε
T̂ < 0

k̂x = −
θky

θkx (1 − β2) + θky(1 − β1)

ε

1 − ε
T̂ < 0

q̂x = −α1
θly

θlx (1 − α2) + θly(1 − α1)

ε

1 − ε
T̂ = −β1

θky

θkx (1 − β2) + θky(1 − β1)

ε

1 − ε
T̂ < 0

ê = −(
α1θly

θlx (1 − α2) + θly(1 − α1)
+

1
ε
)

ε

1 − ε
T̂ = −(

β1θky

θkx (1 − β2) + θky(1 − β1)
+

1
ε
)

ε

1 − ε
T̂ < 0

Similarly, the expression for the clean sector y is:

l̂y =
θlx

θlx (1 − α2) + θly(1 − α1)

ε

1 − ε
T̂ > 0
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k̂y =
θkx

θkx (1 − β2) + θky(1 − β1)

ε

1 − ε
T̂ > 0

q̂y = α2
θlx

θlx (1 − α2) + θly(1 − α1)

ε

1 − ε
T̂ = β2

θkx

θkx (1 − β2) + θky(1 − β1)

ε

1 − ε
T̂ > 0

This policy of the comprehensive big data pilot zone will result in an increase in
the sewage tax paid by the polluting sector and an increase in the penalties imposed
by the government, i.e., T̂ > 0. Combined with the above formula, when the policy is
put into action, it can shift labour and capital from highly polluting industries to cleaner
ones, signalling a shift in economic development towards more environmentally friendly
and sustainable sectors. This, in turn, enhances production capacity in the clean sector,
fosters the green transition of the local economy, and enhances the ecological resilience
of the city. Meanwhile, increasing taxes and punishments for polluting industries leads
to a decrease in pollution emissions, showing that implementing a complete big data
pilot zone policy helps enhance urban ecological resilience. Furthermore, there are two
aspects of the pollution reduction and abatement effects of the construction of the pilot

zone:
α1θ1y

θ1x (1−α2)+θ1y (1−α1)
and 1

ε . The former indicates the industrial cleaning and upgrading

effect; the larger the factor output elasticities α1 and α2 are, the faster the factor transfer
speed is, and the parameter β is the same, which indicates that the construction of the
pilot zone has a noteworthy effect on industrial structure. The latter term denotes the
impact of technological innovation, and technological innovation and the value of ε have a
negative correlation. The construction of the pilot zone stimulates technological innovation,
leading to decreased pollution control costs, the promotion of environmental behaviour,
and improvements to the city’s ecological resiliency.

2.2. Theoretical Analysis

The environmental Kuznets curve theory suggests that technological and structural
effects are key factors in reducing the pollution of the ecological environment. With dig-
ital technology and data elements as the core, China’s comprehensive pilot zone for big
data accelerates the formation of interregional innovation and cooperation networks and
links upstream and downstream industries. This supports the integration of innovation
and industrial chains and induces a gradual change from a high-energy-consuming and
high-polluting economic development mode to a cleaner and more sustainable model
of economic development in the region, thus enhancing ecological resilience. In addi-
tion, the establishment of a pilot zone can strengthen multifaceted monitoring, response,
management, and governance systems; gradually realize digital ecological environmen-
tal governance; and promote improvements in pollution control capacity to protect the
ecological environment and enhance ecological resilience. Therefore, this paper proposes
Hypothesis 1.

Hypothesis 1: China’s comprehensive big data pilot zone is positively related to urban
ecological resilience.

The construction of a pilot zone not only effectively expands the spillover of green
technological knowledge but also fully exploits the green driving role of data elements [30].
On the one hand, the use of big data to collect ecological and environmental information
can establish a unified ecological and environmental data system and break the information
dilemma of urban environmental governance, thus improving the intensity of urban envi-
ronmental regulation [31]. External drivers of enterprises’ green technological innovation
come from strong environmental regulation [32], and a higher intensity of environmental
regulation stimulates enterprises’ environmental protection initiative to carry out green
technological innovation. In addition, as far as the enterprise is concerned, green techno-
logical innovation has the risks of large investment, a long cycle, and an uncertain external
environment, while the comprehensive big data pilot zone policy can break through the
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information asymmetry barriers of the enterprise, increase the predictability of the mar-
ket to alleviate the constraints of enterprise financing [33], reduce the production cost of
traditional production methods [34], and enhance risk-bearing enterprise initiatives [35],
prompting enterprises to take the initiative to make environmental protection decisions,
stimulating corporate investment in green innovation, and accelerating the transformation
of green innovation results. In turn, enterprises that take the lead in completing green
transformation will occupy a competitive advantage due to their ecological advantages,
and, at the same time, force high-polluting enterprises to engage in green innovation and
green production, which will enhance overall green innovation in the region. On the other
hand, the policy can help realize the upgrading and iteration of green technology and
green innovation by coordinating, managing, and applying data resources to address the
inefficiency and unnecessary loss of green innovation resources in the process of matching
supply and demand. Green technology innovation has the potential to decrease the uti-
lization of natural resources, achieve efficient and circular use of resources, promote the
transformation of consumption, production, and lifestyles, thus reducing pressure on the
ecological environment [36], and fundamentally protect the adaptability, resistance, and
recovery of the ecosystem.

The comprehensive big data pilot zone policy supports the coordination of the rela-
tionships among the energy structure, market structure, and industrial structure, thereby
gradually restructuring the regional industrial structure [37]. Firstly, its development
accelerates the reasonable flow of production factors, and, with the flow of production
factors to high-efficiency sectors, the utilization efficiency of regional industrial resources
improves, which is a favourable condition for the advanced industrial structure [38]. Sec-
ondly, the pilot zone is conducive to the coordinated development of traditional industries
and emerging industries. The data characteristics of the digital economy can give rise to a
series of digital-intensive industries and realize digital industrialization. In addition, the
permeability and sharing of the digital economy can force the digital transformation of
traditional low-end industries and realize industrial digitization. An advanced industrial
structure is an important guarantee for realizing urban ecological resilience. In the pro-
cess of industrial restructuring, the dominant industries in the area shift towards being
capital-intensive and knowledge-intensive while decreasing the presence of high-pollution
and high-energy-consuming industries. This transition promotes the environmental friend-
liness and ecological sustainability of industries. Therefore, this paper puts forwards
Hypothesis 2.

Hypothesis 2: Green technology innovation and industrial structure upgrading mediates the rela-
tionship between China’s big data comprehensive pilot zone and urban ecological resilience, respectively.

The established pilot zone policy is able to transcend geographical limitations through
data elements and information communication, realizing the linkage of economic activities
across regions and time and space. The unique spatial geographic characteristics of the
policy make it possible to overcome barriers to the dissemination of knowledge, technology
and factors in the process of influencing ecological resilience. Through learning and
imitation, neighbouring regions may likewise promote the innovation and application
of green technology, optimize the industrial layout, and enhance the efficiency of energy
use to improve the ecological environment and enhance ecological resilience. There is an
obvious spatial spillover effect. Therefore, this paper proposes Hypothesis 3.

Hypothesis 3: China’s comprehensive big data pilot zone is positively related to urban ecological
resilience in neighbouring regions.

Through theoretical analyses, this paper draws the mechanism framework as shown
in Figure 1.
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3. Study Design
3.1. Model Setting

This study treats the policy as a quasi-natural experiment and utilizes a difference-in-
difference approach. Quasi-natural experiments are a method of research which attempts
to assess the impact of policies or behaviours by modelling the effects of randomization
in a non-randomized way. To analyse whether the policy significantly improved urban
ecological resilience, the differences between big data comprehensive pilot zone cities and
non-pilot cities were compared via the following model:

ERit = α + βBig_datait + X′
itλ + µi + δt + εit

where ERit represents the level of urban ecological resilience. Big_datait is a policy variable,
while Xit is the control variable. µi represents the fixed influence of the city, δt represents
the fixed effect of time, and εit represents the random error term. This research focuses on
the coefficients of the policy variables, which quantify the overall impact of implementing
the national big data comprehensive pilot zone policy on urban ecological resilience.

3.2. Variable Selection
3.2.1. Explained Variables

The explanatory variable in this paper is ecological resilience (ERit), which refers to
the ability of an ecosystem to maintain its functionality and stability when it suffers from
various external disturbances. In this paper, the indicators are selected by Peng et al. (2023)
and Shi et al. (2023) [39,40]. First, the resistance index reflects the ability of urban ecosys-
tems to maintain their structure and function when subjected to external pressures and
disturbances, and urban ecosystems with greater resistance are able to reduce the impact of
external disturbances on the system. This study focuses on the characterization of the pres-
sure and disturbance caused by human production activities on the environment through
the three wastes. Second, the adaptability index reflects the ability of urban ecosystems
to make corresponding adjustments or adaptations in the face of external changes, and
more adaptable urban ecosystems can help cities effectively cope with a variety of changing
situations and maintain ecosystem stability. In this paper, the rate of harmless treatment
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of domestic waste and the rate of urban sewage treatment are selected to characterize
the environmental purification power of the ecosystem, and the level of industrialization
is used to characterize the factors that undermine the stability of the ecosystem. Finally,
the resilience index reflects the ability of ecosystems to rebuild and repair quickly after
damage or disaster, and highly resilient urban ecosystems can quickly restore their orig-
inal ecological functions, reduce ecosystem losses and recovery time, and guarantee the
long-term healthy operation of urban ecosystems. In this paper, three greening indicators
are selected to characterize the internal sustainable restoration power of the ecosystem,
and the government’s attention to environmental conservation exemplifies its external
governance authority over the ecosystem. The establishment of the indicator system can
assist in assessing the resilience and flexibility of urban ecosystems while dealing with
external pressures, alterations, and disasters in a thorough manner. It can also serve as a
crucial reference point for sustainable urban growth. Specific indicators are constructed as
follows in Table 1.

Table 1. Urban ecological resilience evaluation system.

Measurement
Dimensions Basic Indicators Measurement Method Unit of

Measure
Indicator

Properties

Resistance

Industrial wastewater
discharge - Tons Negative

Industrial sulphur
dioxide emissions - Tons Negative

Industrial smoke and
dust emissions - Tons Negative

Adaptability

Nonhazardous treatment
rate of domestic waste

(Amount of domestic waste treated
harmlessly/total domestic waste) × 100% % Positive

Urban sewage treatment rate (Sewage treatment capacity/total sewage
discharges) × 100% % Positive

Industrialization level (Secondary industry output/GDP) × 100% % Negative

Recovery

Greening coverage in
built-up areas (Green area/built-up area) × 100% % Positive

Green space per capita
in parks Green area of parks/urban resident population Square metres/

person Positive

Area of landscaped
green space - Hectares Positive

Government environmental
attention

(Eco-friendly word frequency/total word
frequency of government work report) × 100% % Positive

In this paper, the above 10 basic indicators are selected to measure the ecological
resilience. The specific calculation process for the integrated ecological resilience index is
as follows:

Data Standardization

Since there are very large indicators, very few indicators, positive indicators, and neg-
ative indicators used to measure urban ecological resilience, the data must be standardized
to facilitate scientific accuracy and comparability before the empirical analysis.

Positive indicators:

x′ij =
xij − Min(xj)

Max(xj)− Min(xj)

Negative indicators:

x′ij =
Max(xj)− xij

Max(xj)− Min(xj)

where xij is the primary data, x′ij is the extreme differential standardized data, Min(xj) is the
minimum value of the primal data, and Max(xj) is the maximum value of a primary number.
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Entropy Value Method

This work utilizes the entropy weight approach to handle the explanatory variables.

Pij =
x′ij

∑n
i=1xij

(i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m)

ej = − 1
ln n∑n

i=1Pij ln Pij, 0 ≤ ej ≤ 1 (j = 1, 2, 3, . . . , m)

wj =
1 − ej

∑m
j=1(1 − ej)

Scorei = ∑ n
i=1wjxij (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n)

In this study, Scorei is the final comprehensive score of ecological resilience, where Pij
represents the proportion of the value of the jth indicator of the ith city to the sum of the
corresponding indicator values of all cities. The entropy of the jth indicator is written as ej,
while the weight of the jth indicator is denoted as wj.

3.2.2. Core Explanatory Variables

In this research, the primary explanatory variable is China’s comprehensive big data
pilot zone policy (Big_datait). If city i becomes a pilot zone in year t, it is assigned a value
of 1; otherwise, it is assigned a value of 0. According to the pilot list released by the relevant
authorities in turn and the availability of city data, the experimental group in this paper is
the 51 prefecture-level cities in the pilot list. The first sample of the experimental group
includes 4 prefecture-level cities, and the second sample includes 47 prefecture-level cities.
The policy starting points are set to 2015 and 2016. The remaining 166 prefectural-level cities
not included in the list serve as the comparison group. Figure 2 illustrates the spread of
policy implementation throughout China’s big data comprehensive pilot area. The portion
of the figure depicted in dark yellow represents the initial set of big data comprehensive
pilot zones, while the portion represented in light yellow represents the subsequent set of
big data comprehensive pilot zones.
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Figure 2. Distribution map of comprehensive big data pilot zones.

The specific sample distribution is shown in Table 2 below:
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Table 2. Sample distribution.

Treatment Group Control Group

Beijing Shanghai Chongqing Tianjin

Hebei province (11) Shanxi province (0) Hebei province (0) Shanxi province (4)

Inner Mongolia (9) Liaoning province (1) Inner Mongolia (0) Liaoning province (10)

Jilin province (0) Jilin province (6)

Heilongjiang province (0) Heilongjiang province (5)

Jiangsu Province (0) Shandong Province (0) Jiangsu Province (12) Shandong Province (12)

Anhui Province (0) Fujian Province (0) Anhui Province (7) Fujian Province (9)

Zhejiang province (0) Yunnan Province (0) Zhejiang province (11) Yunnan Province (7)

Jiangxi Province (0) Hubei Province (0) Jiangxi Province (10) Hubei Province (10)

Henan Province (17) Hunan Province (0) Henan Province (0) Hunan Province (11)

Guangdong Province (5) Guangxi Province (0) Guangdong Province (6) Guangxi Province (11)

Guizhou Province (4) Gansu Province (0) Guizhou Province (0) Gansu Province (9)

Sichuan Province (0) Xinjiang Province (0) Sichuan Province (11) Xinjiang Province (1)

Shaanxi Province (0) Ningxia Province (0) Shaanxi Province (8) Ningxia Province (4)

Hainan Province (2)

3.2.3. Control Variables

In order to mitigate the issue of biased outcomes resulting from omitted variables and
in accordance with previous research [41–43], the present study has chosen the following
control variables: 1⃝ population density (lnpop); 2⃝ level of science and technology (tech);
3⃝ level of urbanization (urban); 4⃝ degree of financial development (fd); 5⃝ degree of

openness to the outside world (open); and 6⃝ degree of government intervention (govern).
The control variables are measured and the units are shown in Table 3.

Table 3. Description of control variables.

Control Variables Notation Unit of Measure Measurement Method

Population density lnpop 10,000 persons/km2 ln (total population/land area of administrative districts)
Level of science
and technology tech - Science and technology expenditures/local public

budget expenditures
Level of urbanization urban - The urban population/the total population

Degree of
financial development fd - Balance of loans from financial institutions at the end of

the year/GDP
Degree of openness to the

outside world open - FDI/GDP

Degree of
government intervention govern - General public budget expenditure/GDP

3.2.4. Mediating Variables

This article further analyses two ways in which China’s big data comprehensive
pilot zone affects urban ecological resilience, namely, green technological innovation and
industrial structure advancement [44,45]. The mediating variables are measured and the
units are shown in Table 4.

Table 4. Description of mediating variables.

Intermediary Variables Notation Unit of Measure Calculation Method

Green technological
innovation gi 10,000 persons/item Number of green patents granted/total population

Industrial structure
advancement indus - Tertiary industry value added/secondary industry value added
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3.3. Data Sources and Description

The panel data used in the study were obtained from various relevant statistical
yearbooks in China. To maintain the integrity and uniformity of the sample data, cities
with significant missing data are omitted. The remaining cities were filled with the least
amount of missing data using linear interpolation. The primary statistical data of this work
are displayed in Table 5.

Table 5. Descriptive statistics.

Variables Obs Mean Std. Dev. Min Max

ER 2604 0.116 0.082 0.043 0.849
Big_data 2604 0.119 0.324 0 1

lnpop 2604 5.755 0.934 0.683 7.809
tech 2604 0.017 0.017 0.001 0.166

urban 2604 0.557 0.150 0.181 1
fd 2604 2.475 1.194 0.588 12.569

open 2604 0.018 0.018 0.000 0.229
govern 2604 0.194 0.090 0.044 0.704

gi 2604 0.747 1.599 0 24.422
indus 2604 1.049 0.610 0.175 5.350

4. Empirical Analysis
4.1. Benchmark Regression Analysis

Table 6 presents the findings of the benchmark regressions that examined the impact
of the pilot zone strategy on urban ecological resilience. The regression results, which grad-
ually incorporate control variables, are displayed in columns (1)–(7). The study’s findings
indicate that the coefficient estimate for the effect of the national big data comprehensive
pilot zone policy on urban ecological resilience is statistically significant at the 1% level.
Even after accounting for other variables, this significance remains strong. The inclusion
of the control variables gradually increases the coefficient estimate to 0.012, indicating a
1.2 percent improvement in urban ecological resilience due to the implementation of the
big data pilot zone. The findings of this study provide support for Hypothesis 1.

Table 6. Benchmark regression results.

Variables
Explanatory Variable: ER

(1) (2) (3) (4) (5) (6) (7)

Big_data 0.012 *** 0.011 *** 0.011 *** 0.012 *** 0.012 *** 0.012 *** 0.012 ***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

lnpop −0.004 ** −0.004 ** −0.004 * −0.004 * −0.004 * −0.004 *
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

tech 0.082 * 0.070 0.079 * 0.080 * 0.076
(0.045) (0.046) (0.047) (0.047) (0.048)

urban −0.044 *** −0.044 *** −0.044 *** −0.044 ***
(0.011) (0.011) (0.011) (0.011)

fd 0.001 0.001 0.001 *
(0.001) (0.001) (0.001)

open −0.027 −0.023
(0.038) (0.038)

govern −0.010
(0.012)

Constant 0.115 *** 0.140 *** 0.139 *** 0.159 *** 0.156 *** 0.157 *** 0.158 ***
(0.000) (0.012) (0.012) (0.013) (0.013) (0.013) (0.013)

City FE YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES

Observations 2604 2604 2604 2604 2604 2604 2604
R-squared 0.964 0.964 0.964 0.964 0.964 0.964 0.964

*, **, *** represent significance at the 10%, 5%, and 1% levels, respectively. Values in parentheses indicate robust
standard errors.
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Regarding the empirical results, the estimated coefficient of population density (lnpop)
on urban ecological resilience is significantly negative, indicating that population density
adversely affects urban ecological resilience, possibly because high population density
requires the utilization of more natural resources, and the overuse of resources destroys the
resilience and regeneration of ecosystems. Furthermore, high population density leads to
high emissions of waste gas, wastewater, and waste solids, making the whole ecosystem
vulnerable and reducing its adaptive capacity to external changes and disturbances and
undermining its ecological resilience. High emissions make the entire ecosystem fragile, re-
ducing its ability to adapt to external changes and disturbances and undermining ecological
resilience. The estimated coefficient of the effect of the urbanization level (urban) on urban
ecological resilience is significantly negative, indicating that the urbanization process dam-
ages urban ecological resilience. This may be because large-scale land development and
construction encroach upon ecological land, such as farmland, forestland, and grassland,
which destroys the foundation of the ecological environment and reduces the adaptability
and stability of ecosystems. On the other hand, industrialization and transportation accom-
panying urbanization further contribute to negative impacts on environmental protection
and environmental degradation. Industrialization and transportation cause environmental
pollution, affecting ecological health and destroying ecosystem resilience. The estimated
coefficient on the level of finance (fd) is significantly positive, indicating that it enhances
urban ecological resilience and that the dynamic financial market continues to drive green
finance and sustainable investment, which provides financial support for low-carbon,
environmentally friendly, and sustainable development projects. Such green investment
behaviours can help promote the sustainable development of the ecological environment
and the stable and healthy functioning of ecosystems, which enhances ecological resilience.

4.2. Robustness Tests
4.2.1. Parallel Trend Test

In order to conduct research using the double-difference approach, it is essential to
subject both the experimental and control groups to a parallel trend test. This test evaluates
the consistency between the two groups by utilizing the list of pilot zone policies as the
dividing criterion and the year of policy implementation as the boundary. To ensure the
reliability of the regression results, it is crucial that both groups exhibit minimal differences
prior to policy implementation. The parallel trend test is conducted using event study
methodology, with the model structured in the following manner:

ERit = α +
6

∑
k=−4

βkBig_datait + γX′
it + µi + δt + εit

In this paper, the double difference model is used to test the parallel trend, and, since
the big data comprehensive pilot zone began to be implemented in 2015, 2015 is selected
as the time boundary to analyse the ecological effect of the big data comprehensive pilot
zone from 2011 to 2021. In the formula, Big_datait is the policy variables, βk is the impact
coefficient of the big data comprehensive pilot zone on ecological resilience in different
years, and the value range of k is set to −4 ≤ k ≤ 6. The other variables are assigned the
same meanings as in the previous regression equation.

Figure 3 illustrates the parallel trend test, with the y-axis representing the estimated
coefficient β value and the x-axis representing the relationship between policy implementa-
tion and the base year of 2015. The column associated with the value x = 0 represents the
year of policy implementation, specifically 2015. Prior to the introduction of the policy, the
coefficient β value exhibited fluctuations around zero and did not demonstrate statistical
significance, suggesting a lack of meaningful distinction between the experimental and
control groups. From 2015 onwards, the coefficient estimate consistently increases and
reaches a value close to 0.01 by 2017, thereby passing the significance test, which indi-
cates the ecological effectiveness of the program. The conducted parallel trend test has
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yielded positive results. In Figure 3, it can be observed that the implementation of the
complete pilot zone of the big data policy has a temporal lag in its ability to augment urban
ecological resilience.
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4.2.2. Placebo Test

To eliminate the interference of other factors related to the national big data compre-
hensive pilot zone policy on the benchmark regression results, a placebo test is conducted
by means of the replacement test of randomly generated experimental groups. The specific
operation method was as follows. A random construction of the dummy variable for the
counterfactual experimental group and a temporal dummy variable for the counterfactual
policy shock is performed. The sample of 217 prefecture-level cities is then subjected to
1000 iterations. The policy shock is randomly set at different times, and cities in each
sample are randomly taken as the experimental group for the placebo test. The process is
repeated 1000 times to generate the counterfactual coefficients, as shown in Figure 4.
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The left panel shows the kernel density curve of the placebo test coefficient estimates,
which can be seen to be approximately normally distributed, with the coefficient estimates
centrally distributed at approximately 0, indicating that the regression coefficients are
unbiased estimators. The black hollow circles in the right figure indicate the p-values
corresponding to the pseudo-estimated coefficients, and the horizontal dashed line repre-
sents the horizontal line of 0.1. It can be seen from the figure that most of the p-values are
above the horizontal dashed line, i.e., most of the p-values are greater than 0.1. Therefore,
the randomly generated counterfactual experimental group affected by the national big
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data comprehensive pilot zone policy does not indicate a policy effect on urban ecological
resilience, and the placebo test is passed.

4.2.3. Propensity Score Matching Double-Difference Model Estimation

The PSM-DID model is used to address any selection bias in the pilot policy by con-
ducting robustness tests on the baseline regression results. This work utilizes one-to-four
nearest-neighbour matching, radius matching, and kernel matching techniques. Subse-
quently, the double-difference model is employed for estimation based on the matching
findings. Figure 5 displays the results of the balance test for radius matching; the left graph
shows that the data after matching are all within 10% bias, and the right figure is a bar
chart of the common support domain, indicating that the matching effect is better. Other
matching methods also successfully passed the balancing test.
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Table 7 displays the expected results of the balance test after matching. The results
show that the calculated coefficients are consistently positive regardless of the matching
method utilized, indicating that selection bias does not impact the results.

Table 7. PSM–DID robustness test results.

Variables
Explanatory Variable: ER

(1) Nearest Neighbour Matching (2) Radius Matching (3) Kernel Matching

Big_data 0.010 *** 0.012 *** 0.012 ***
(0.002) (0.002) (0.002)

Constant 0.183 *** 0.157 *** 0.157 ***
(0.017) (0.013) (0.013)

Control YES YES YES
City FE YES YES YES
Year FE YES YES YES

Observations 1375 2594 2598
R-squared 0.977 0.964 0.964

*** represents significance at the 1% levels. Values in parentheses indicate robust standard errors.

4.2.4. Endogeneity Test

This research uses the number of landline telephones per 100 persons in 1984 (tele) and
the degree of topographic relief (rdls) as instrumental variables for the double-difference
term Big_data. One aspect to consider is that the level of topographic relief and the
quantity of landline telephones per 100 individuals in 1984 were external factors that did
not influence ecological resilience. Conversely, the level of topography and slope can
influence the progress of digital infrastructure, while the rate of fixed telephone calls per
100 individuals in 1984 can affect the digital economy. As a result, both factors are important
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in implementing the comprehensive big data pilot zone policy. The instrumental variables
meet the criteria of both exogeneity and correlation, allowing them to be included in the
regression instead of the big data comprehensive pilot zone policy. This allows the original
model error term and endogenous variable correlation to be eliminated.

The study uses the interaction terms T-tele and T-rdls between instrumental vari-
ables and time dummy variables of each year as instrumental variables in the empirical
analysis to show changes over time [46]. Below is the building block of the instrumental
variable model.

ERit = ξ0 + ξ1Big_datait + ξ2X′
it + εit

Big_datait = ξ1
0 + ξ1

1 IVit + ξ1
2X′

it + µi + δt + ε1
it

ERit = ξ2
0 + ξ2

1Big_datait − hat + ξ2
2X′

it + µi + δt + ε2
it

where the parameters ξ1, ξ1
1, and ξ2

1 denote the OLS estimation, first-stage IV estimation,
and second-stage IV estimation, respectively. The results of the instrumental variable
estimation are shown in Table 8.

Table 8. Endogeneity test.

Variables
First-Stage Regression Second-Stage Regression

(1) T-tele (2) T-rdls (3) T-tele (4) T-rdls

Big_data 0.064 *** 0.027 ***
(0.010) (0.006)

T-tele 0.589 ***
(0.027)

T-rdls 0.844 ***
(0.032)

Constant −0.035 −0.492 *** −0.092 *** −0.104 ***
(0.039) (0.052) (0.020) (0.022)

Control YES YES YES YES
City FE YES YES YES YES
Year FE YES YES YES YES

Underidentification test 292.479 182.609
[0.000] [0.000]

Weak instruments test 5277.556 2417.831
{16.38} {16.38}

Observations 2604 2604 2604 2604
R-squared 0.684 0.504 0.792 0.798

Note: *** denote significance at the 1%. Values in parentheses indicate robust standard errors. Under identification
tests were performed using the Kleibergen–Paap rk LM statistic, with p values in [ ]; and the weak instruments
test adopts the Donald Wald-F statistic, with the Stock–Yogo test 10% level critical value in { }.

The regression outcomes of the endogeneity test utilizing the two instrumental vari-
ables are presented in Table 8. The initial-stage regression findings for the instrumental
variables are presented on the left side of Table 8. The instrumental variables T-tele and
T-rdls have estimated coefficients of 0.589 and 0.844, respectively. These coefficients are
statistically significant at the 1 per cent level. The results of the second-stage regression
of the instrumental variables are displayed on the right side of Table 8. The instrumental
variables T-tele and T-rdls have estimated coefficients of 0.064 and 0.027, respectively, and
both values have been found to be statistically significant. Furthermore, it can be observed
that both coefficients surpass the previous benchmark regression coefficient of 0.012. This
suggests that the inclusion of instrumental variables in the model leads to larger absolute
values for the estimated coefficients of the policy variables derived from the instrumental
variables approach, as compared with the previous model. Failure to consider the endo-
geneity issue may result in an underestimation of the favourable influence of the big data
comprehensive pilot zone on urban ecological resilience.
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4.2.5. Other Robustness Tests

Table 9 displays the outcomes of further robustness tests. In order to mitigate the
influence of non-random sample data on the model estimation outcomes, the explanatory
variables in columns (1), (2), and (3) of Table 9 are subjected to 1% two-sided shrinkage, 1%
two-sided truncation, and elimination of the municipality samples, respectively. In addition,
this paper incorporates lagged one-period urban ecological resilience into the model for the
full-sample regression analysis, taking into account the potential serial autocorrelation and
inertial correlation of the explanatory variables. The results may be found in column (4) of
Table 9. Given that this article covers the period from 2010 to 2021, it is possible that the
“Broadband China” pilot policy and the smart city pilot policy may intersect with the policy
outlined in this paper. Consequently, this overlap could have an impact on the outcomes of
the model. Hence, the model incorporates additional policies, as indicated in column (5)
of Table 9. The aforementioned regression findings exhibit statistically significant positive
associations, hence substantiating the robustness of the conclusions drawn in this study.

Table 9. Other robustness tests.

Variables
Explanatory Variable: ER

(1) Shrinkage 1% (2) Truncated 1% (3) Excluding
Municipalities (4) Lag One Phase (5) Exclusion of

Other Policies

Big_data 0.008 *** 0.009 *** 0.005 *** 0.004 *** 0.012 ***
(0.002) (0.002) (0.001) (0.001) (0.002)

Broadband 0.005 ***
(0.001)

Smartcity 0.001
(0.002)

L.ER 0.628 ***
(0.055)

Constant 0.149 *** 0.148 *** 0.141 *** 0.068 *** 0.152 ***
(0.013) (0.013) (0.012) (0.010) (0.013)

Control YES YES YES YES YES
City FE YES YES YES YES YES
Year FE YES YES YES YES YES

Observations 2604 2552 2556 2387 2604
R-squared 0.956 0.934 0.954 0.979 0.964

*** represents significance at the 1% levels. Values in parentheses indicate robust standard errors.

4.3. Heterogeneity Analysis

This paper takes these four regions as the standard for regressing the subsamples for
the heterogeneity test by geographic location. As shown in Table 10, the comprehensive big
data experimental zone policy has a significant positive effect on the ecological resilience
of the eastern, central, and western regions, and the effect is greatest in the eastern region.
However, this policy is detrimental to the ecological resilience of cities in the northeast.
One potential explanation for this disparity is that the eastern region encompasses a greater
number of extensive big data pilot zones, such as Beijing–Tianjin–Hebei, the Pearl River
Delta, and Shanghai municipality, where highly developed economies, high administrative
levels, and cross-regional characteristics allow for all-encompassing, high-level, and large-
scale diffusion and radiation effects that boost policy effectiveness. In addition, the eastern
region provides a good foundation for enhancing urban ecological resilience through the
use of cutting-edge innovative technologies, strong resource allocation capacity, and good
green infrastructure. Shenyang, the only comprehensive big data pilot zone in the northeast
region, is located in the centre of Liaoning Province and the southern part of the northeast
region. Although it is the political, economic, cultural, and transportation centre of the
northeast region, Shenyang has not yet given full play to its radiating and driving role
in enhancing urban ecological resilience. In addition, the northeast region belongs to the
agricultural and animal husbandry border zone and forest border zone, the ecological
chain is weak, and the foundation of its ecological resilience has been damaged by the
overutilization of natural resources, such as soil, forestland, and water resources. Moreover,
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as an old industrial base that relies on abundant coal and iron resources, the northeast region
is characterized by heavy industry, which results in a large volume of three-waste emissions
that seriously affect its ecological environment and reduce its ecological resilience.

Table 10. Geographic location heterogeneity.

Variables
Explanatory Variable: ER

(1) East (2) Centre (3) West (4) Northeast

Big_data 0.022 *** 0.011 *** 0.018 *** −0.049 ***
(0.004) (0.002) (0.003) (0.010)

Constant 0.503 *** 0.158 *** 0.106 *** −0.502
(0.104) (0.026) (0.014) (0.542)

Control YES YES YES YES
City FE YES YES YES YES
Year FE YES YES YES YES

Observations 852 708 780 264
R-squared 0.984 0.836 0.884 0.787

*** represents significance at the 1% levels. Values in parentheses indicate robust standard errors.

China’s two major river basins have complex and diverse geomorphological and natural
conditions. With the advancement of industrialization and urbanization, frequent human
activities have caused severe environmental and climatic pollution and ecosystem degradation
in these two river basins, and their ecological security is seriously challenged. Therefore,
the samples from the Yangtze River Economic Belt and the Yellow River Basin are used
for regression estimations, and the results, as shown in columns (1) and (2) of Table 11,
indicate that the comprehensive big data pilot zone policy has a significant effect on the
ecological resilience of the two watersheds and that the ecological resilience of the Yangtze
River Economic Belt is greater than that of the Yellow River Basin. In terms of ecological
conditions, the Yangtze River Economic Belt is located in eastern China, where the climate is
mild and humid and water resources are abundant, which is conducive to ecosystem stability.
In contrast, the Yellow River Basin is located in an arid and semiarid climate zone in northern
China, where water resources are scarce and the ecological environment is poor. In terms
of economic structure, the Yangtze River Economic Zone has relatively balanced economic
development and a diversified industrial structure that does not rely on a single resource.
In contrast, the Yellow River Basin region has a single industrial structure, and excessive
development and utilization resulting from a high degree of resource dependence has caused
serious ecological and environmental problems. As a result, the poorer ecological foundation
of the Yellow River Basin has led to slower policy effects. In addition, the Yangtze River
economy possesses more economically developed city clusters with a more developed level
of digital economic development, more rapid industrial structure transformation, and more
cutting-edge technological innovation than does the Yellow River Basin, which results in a
more pronounced enhancement of ecological resilience.

Table 11. Heterogeneity of the two river basins.

Variables
Explanatory Variable: ER

(1)
Yangtze River Economic Belt

(2)
Yellow River Basin

Big_data 0.050 *** 0.004 **
(0.007) (0.002)

Constant 0.180 *** 0.111 ***
(0.062) (0.012)

Control YES YES
City FE YES YES
Year FE YES YES

Observations 1020 888
R-squared 0.970 0.877

**, *** represent significance at the 5% and 1% levels, respectively. Values in parentheses indicate robust
standard errors.
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The study categorizes the entire sample into resource cities and non-resource cities.
Resource cities are then further classified into growing, mature, declining, and regenerating
cities for regression analysis. The statistical analysis reveals that there is no substantial
enhancement effect observed on the ecological resilience of declining and regenerating
cities, while, according to the findings shown in Table 12, it is evident that the big data
comprehensive pilot zone exerts a significant impact on the ecological resilience of growing
cities, mature cities, and non-resource cities. In resource cities, growing cities and mature
cities refer to cities in which resource development and utilization are in the rising and
stable stages, respectively, and big data technology can realize the fine management and
intelligent planning of resources in growing and mature cities, and realize the rational
allocation and effective utilization of resources. Through real-time monitoring of resource
conditions and forecasting changes in resource demand, cities can better plan and manage
resource development, avoid overdevelopment and waste, and improve the efficiency of re-
source use, thus enhancing the ecological resilience of growing and mature cities. Declining
cities typically experience resource depletion, sluggish economic growth, and significant
ecological and environmental challenges, necessitating the implementation of compre-
hensive environmental governance and resource integration. While the establishment
of a comprehensive big data pilot zone has the potential to enhance resource utilisation
efficiency by providing data support, it necessitates significant capital investment, system
integration, and administrative governance to effectively address the economic challenges
faced by recessionary cities. The constraints and challenges faced by comprehensive big
data pilot zones in enhancing the ecological resilience of declining cities are more complex
due to the overlap of multiple ecological, social, and economic problems, resulting in the
possibility that declining cities may not be able to make full use of big data technologies to
enhance ecological resilience. Regenerative cities are urban states in which resource cities
achieve regeneration through systematic urban renewal and transformation. This process
requires a long period of time and a large amount of investment, while the construction
of a big data pilot zone requires considerable time and cost, and regenerative cities may
not be able to obtain relevant support quickly. In addition, regenerative cities usually take
environmental protection and ecological construction as an important goal, and therefore
usually have a lower level of ecological pollution and a better ecological foundation. Big
data integrated pilot zones cannot significantly enhance the ecological resilience of regener-
ative cities. Column (5) of Table 12 shows that the big data policy enhances the ecological
resilience of non-resource cities more than resource cities. Non-resource cities have the
advantage of diversified economic structures, environmental conservation consciousness,
urban planning and management, and technological innovation and scientific and techno-
logical support, on which a comprehensive big data pilot zone can strengthen this synergy
and improve the ecological resilience of cities.

Table 12. Resource endowment heterogeneity.

Variables

Explanatory Variable: ER

(1)
Growing City

(2)
Mature

City
(3) Declining City (4) Regenerative City (5)

Non-Resource City

Big_data 0.009 * 0.005 ** 0.004 0.003 0.015 ***
(0.005) (0.002) (0.003) (0.004) (0.003)

Constant 0.367 * −0.276 ** 0.067 *** −0.091 0.233 ***
(0.190) (0.125) (0.010) (0.099) (0.017)

Control YES YES YES YES YES
City FE YES YES YES YES YES
Year FE YES YES YES YES YES

Observations 120 504 240 144 1596
R-squared 0.838 0.765 0.685 0.841 0.969

*, **, *** represent significance at the 10%, 5%, and 1% levels, respectively. Values in parentheses indicate robust
standard errors.
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5. Further Analysis
5.1. Analysis of Mediating Effects

The following equations further explore the possible impact of the above policy on
urban ecological resilience, as shown in the following intermediary effect model:

ERit = α1 + β1Big_datait + γ1X′
it + µi + δt + εit

Medit = α2 + β2Big_datait + γ2X′
it + µi + δt + εit

ERit = α3 + β3Big_datait + cMedit + γ3X′
it + µi + δt + εit

In the above equation, Medit is the mediating variable and c is its estimated coefficient.
If the estimated coefficients β1, β2, β3 and c in this equation are significant, the existence
of a mediating effect can be proven. The mediating variables are industrial structure
advancement (indus) and green technology innovation (gi).

The aforementioned findings illustrate the results of the mechanism validation regard-
ing the impact of green technology innovation. The first column of Table 13 demonstrates
that the implementation of the comprehensive big data pilot zone policy has a substantial
impact on the advancement of urban green technology innovation. The second column of
Table 13 demonstrates that the calculated coefficients for both policy variables and green
technology innovation exhibit a statistically significant positive relationship. This suggests
that the policy has a beneficial impact on urban ecological resilience by fostering the de-
velopment of green technology innovation. In order to exclude other policy interference,
columns (3) and (4) of Table 13, controlling for a range of variables, include both smart city
construction and broadband China policy in the model for testing, and the results are each
significantly positive, i.e., indicating the robustness of the mediating effect.

Table 13. Analysis of mediating effects.

Variables
(1) (2) (3) (4) (5) (6) (7) (8)

gi ER gi ER indus ER indus ER

Big_data 0.444 *** 0.010 *** 0.448 *** 0.010 *** −0.031 * 0.012 *** −0.030 * 0.012 ***
(0.093) (0.002) (0.092) (0.002) (0.017) (0.002) (0.017) (0.002)

Smartcity 0.547 *** 0.003 ** 0.040 ** 0.005 ***
(0.066) (0.001) (0.017) (0.001)

Broadband −0.062 0.001 −0.005 0.001
(0.064) (0.002) (0.017) (0.002)

gi 0.004 *** 0.004 ***
(0.001) (0.001)

indus 0.010 *** 0.010 ***
(0.002) (0.002)

Constant 2.722 *** 0.147 *** 2.245 *** 0.143 *** 0.159 0.156 *** 0.125 0.150 ***
(0.847) (0.014) (0.845) (0.014) (0.160) (0.012) (0.163) (0.012)

Control YES YES YES YES YES YES YES YES
City FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES

Observations 2604 2604 2604 2604 2604 2604 2604 2604
R-squared 0.795 0.965 0.802 0.966 0.893 0.965 0.894 0.965

*, **, *** represent significance at the 10%, 5%, and 1% levels, respectively. Values in parentheses indicate robust
standard errors.

The findings of the mechanism validation pertaining to the impact of industrial struc-
ture are presented above. The data presented in columns (5) of Table 13 indicates that the
big data comprehensive pilot zone strategy does not promote the progress of the industrial
structure. Column (7) of Table 13 is an empirical test of the effect of the big data compre-
hensive pilot zone policy on the advancement of the industrial structure by controlling for
some economic factors and further controlling for other policy variables that may affect the
industrial structure. The results show that its estimated coefficient is −0.030, indicating that
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the policy still hinders the advanced industrial structure. Excluding the impact of relevant
economic factors and other policies, this may be because the comprehensive big data pilot
zone policy is a strategy and has led to excessive concentration of resources, structural
misallocation in the labour market, and fundamental changes in traditional production
modes, business models, etc., and the value chain. These impacts cause profound changes
and challenges for traditional industries regarding digital transformation and affect the
advancement of industrial structure. In addition, the big data policy usually involves high
and new technologies and focuses on technological innovation and application practices,
thus generating technological barriers, restricting cooperation and synergistic development
between traditional and high-tech industries, and preventing effective articulation and
collaboration between industrial chains, which may lead to limitations on the advancement
of the industrial structure. The sixth column of Table 13 demonstrates that the calculated
coefficients for both policy variables and industrial structure advancement exhibit a statis-
tically significant positive relationship. This suggests that the advancement of industrial
structures plays a crucial role in enhancing urban ecological resilience. Similarly, column (8)
of Table 13 shows the mediating effect test after controlling for economic factors and other
policies, and the obtained results align with the findings shown in column (6) of Table 13.
The robustness of this mechanism for the advancement of the industrial structure has
been verified.

Therefore, Hypothesis 2 of this research is confirmed.

5.2. Analysis of Spatial Effects

The purpose of this section is to investigate the spillover effect of the comprehensive
big data pilot zone policy on ecological resilience. This is performed by establishing a
double-difference spatial Durbin model (SDMDID) and incorporating spatial elements to
decompose the consequences. The equation that establishes the model is as follows:

ERit = α+ ρW × ERit + βBig_datait + γX′
it + λ1W × Big_datait + λ2W × X′

it + µi + δt + εit

where W is a binary adjacent spatial weight matrix, with W × ERit, W × Big_datait and
W × X′

it representing the spatial lag term of urban ecological resilience, big data policy, and
control variable, respectively.

5.2.1. Spatial Correlation Analysis

This paper used ArcGIS software 10.8.1 to visualize and analyse the ecological tough-
ness of China’s cities in 2010, 2014, 2018, and 2021, and the results are shown in Figure 6.
The minimum values of the ecological toughness of the cities in 2010, 2014, 2018, and 2021
were 0.043058, 0.056607, 0.066113, and 0.073275, respectively, and the maximum values
were 0.641738, 0.683787, 0.740655, and 0.848814, respectively. On the whole, China’s ecolog-
ical toughness has gradually improved, and the areas with higher ecological toughness are
mainly municipalities and some cities along the coastal belt. In addition, according to the
four-year spatial distribution map of ecological toughness, China’s ecological toughness
level exhibited a clustering pattern, and most of the cities with relatively high ecological
toughness levels were provincial core cities, while their development pattern tended to
gradually diffuse from core cities to peripheral cities. In addition, as far as 2021 is concerned,
166 cities are located at the mean value of ecological resilience (0.1321992), which shows
that the level of ecological resilience in China is relatively unbalanced.
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Figure 6. Spatial distribution of ecological resilience.

5.2.2. Global Spatial Correlation Test

Table 14 presents the findings indicating that the Moran indices for urban ecolog-
ical resilience and the pilot zone policy have values exceeding zero, hence implying a
spatial association between these two variables. Therefore, the implementation of the
pilot zone affects urban ecological resilience not only within the pilot region but also in
neighbouring regions.
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Table 14. Global Moran index values.

Year
ER Big_data

Moran’s I Moran’s I

2015 0.028 0.735
2016 0.020 0.634
2017 0.028 0.634
2018 0.020 0.634
2019 0.009 0.634
2020 0.007 0.634
2021 0.012 0.634

5.2.3. Analysis of Spatial Econometric Models

The results shown in Table 15 indicate that both the LR test and the Wald test yield
statistically significant rejections of the initial hypothesis. This finding provides strong
evidence for the suitability of the spatial Durbin model in the context of this research.
The analysis of the urban ecological resilience spillover impact of the comprehensive big
data pilot zone policy takes into account the double fixed effects of time and location, as
indicated by the findings of the Hausman test.

Table 15. SDMDID model applicability test.

Type of Test Statistical Value

LR_spatial_lag 232.08 ***
LR_spatial_error 270.24 ***
Wald_spatial_lag 234.85 ***

Wald_spatial_error 256.72 ***
Hausman test 267.41 ***

*** represent significance at the 1% levels.

The direct effects observed in column (3) of Table 16 align with the findings derived
from the preceding benchmark regression analysis. The column (4) of Table 16 demonstrates
a statistically significant positive spatial spillover effect, suggesting that the establishment
of a big data policy can have an ecological effect on adjacent regions. The reason is that the
neighbouring cities can change their production structure, improve energy efficiency, and
eliminate backward production capacity through imitation and learning, thereby enhancing
their own urban ecological resilience. Therefore, hypothesis 3 of this paper can be argued.

Table 16. Estimates of spatial measures and decomposition of spatial effects.

Variables
Explanatory Variable: ER

(1) Main (2) LR_Direct (3) LR_Indirect (4) LR_Total

Bigdata 0.015 *** 0.015 *** 0.003 *** 0.018 ***
(0.002) (0.002) (0.001) (0.002)

rho 0.183 *** — — —
(0.025)

sigma2_e 0.000 *** — — —
(0.000)

Control Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Observations 2604 2604 2604 2604
R-squared 0.239 0.239 0.239 0.239

Number of id 217 217 217 217
*** represent significance at the 1% levels. Values in parentheses indicate robust standard errors.
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6. Conclusions and Policy Recommendations

The present research investigates the policy variable of China’s big data comprehensive
pilot zone, employing data collected from 217 prefecture-level cities over the period from
2010 to 2021. This study aims to thoroughly analyse the methods by which the digital
economy contributes to the promotion of urban ecological resilience. First, the enforcement
of a comprehensive big data pilot zone significantly enhances urban economic resilience,
and the conclusions are robust after excluding sample municipalities, lagging individual
explanatory variables by one period, deleting extreme values, eliminating the interference
of other policies, and addressing endogeneity issues. Second, the big data pilot zone’s
influence on improving urban eco-resilience varies across different regions. Specifically, the
big data comprehensive pilot zone can significantly affect the urban agglomerations in east,
central, and west China, the two major river basin urban agglomerations, the growing and
mature urban agglomerations, and the non-resource-based urban agglomerations. It also
significantly inhibits urban ecological resilience in the northeast. Third, green technological
innovation and advanced industrial structure are both important channels for enhancing ur-
ban ecological resilience. Fourth, China’s big data comprehensive pilot zone has the potential
to bolster the ecological resilience of nearby cities through a radiation-induced impact.

The aforementioned conclusions of this study provide relevant policy insights.
First, to promote the strong expansion and creative application of the big data sector,

government oversight of the present pilot zones is of paramount importance. This entails
making timely adjustments to policies and support measures, as well as continuously
optimizing the development environment of these zones. Furthermore, there is a need to
aggressively broaden the extent of the comprehensive pilot zone for big data, fully harness
its ecological impact, and bolster the ecological resilience of the urban area. The government
should prioritize creating additional pilot zones in a radial manner. This will create an
inter-regional linkage effect and multiply the ecological effect. Specifically, the government
needs to carefully select sites for planning comprehensive big data pilot zones, choosing
areas with strong development potential and infrastructure conditions. Priority should
be given to cities or regions with convenient transport, well-developed information and
communication infrastructure, and more developed electronic information industries to
ensure the development conditions and environment of the pilot zone. It is imperative for
the government to clarify the positioning and functional orientation of the comprehensive
pilot zone. Additionally, it is crucial to establish the development targets, leading industry
orientations, development priorities, and other pertinent components of the pilot zone. In
addition, the government needs to formulate relevant policy support measures to provide
a favourable policy environment and policy incentives for the comprehensive big data pilot
zone. This includes tax incentives, research project funding policies, industrial development
support policies, etc., to attract enterprises and organizations to actively participate in the
development of the pilot zone.

Second, each locality’s unique circumstances should guide the execution of the policy
for the creation of comprehensive big data pilot zones. The implementation of big data
pilot zones in cities located in the northeastern region of China has the potential to yield
substantial reductions in their ecological impacts. Therefore, for these cities, the first step
should be to enhance its policy direction and prioritize the augmentation of ecological
restoration in the northeastern region to fortify its ecological chain. Based on this conclusion,
it is recommended to leverage the data benefits to enhance the monitoring and oversight
of ecological degradation during resource development and utilization in the northeast
region. Additionally, industries in the northeast can adopt environmentally sustainable
practices by harnessing the green technology impact of the comprehensive big data pilot
zone. The combined effects of ecological restoration, ecological regulation, and economic
transformation are conducive to the sound development of the northeast. The big data
pilot zone policy can strengthen the ecological resilience of the city clusters in the Yellow
River Basin and the growing and maturing city clusters in resource cities. However, the
role of these zones is relatively weak. Therefore, for this kind of city with richer resource
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endowment, the government should fully execute the resource management function of the
big data policy and collect real-time data information of all kinds of resources, including
resource supply and demand, market price, environmental indicators, etc., in order to
establish a comprehensive resource database. Through the data analysis and mining
function of big data technology, the resource data can be deeply analysed and mined to
identify the potential value, potential bottlenecks, and potential risks of resource utilization,
provide a basis for decision-making on resource allocation, and achieve rational allocation
and efficient use of resources, thus reducing resource waste and environmental pollution,
which can effectively protect and improve the ecological environment. Concurrently,
governments should strengthen soil and water protection, vegetation restoration, and water
quality management in resource-endowed cities in order to block the vicious cycle of urban
ecology. In addition, for the declining and regenerating cities, the ecological resilience of the
comprehensive pilot zone on big data will not be significantly enhanced. The government
can establish an ecological compensation mechanism to reward enterprises and individuals
in these cities that have made outstanding contributions to the ecological environment
and resource protection so as to incentivise them to actively participate in ecological
environmental protection by transforming their industrial structure. At the same time,
governments should strengthen environmental supervision of declining and regenerating
cities, strictly enforce the law, increase penalties, promote green business operations by
enterprises, and reduce environmental violations. The government should also combine the
ecological compensation work and environmental regulation work, increase the financial
support and introduction of science and technology, focusing on the transformation of
declining cities to regenerative cities, and ultimately stimulate the latecomer ecological
advantages of highly polluted cities.

Third, the industrial structure should be deeply adjusted, and green technological
innovation should be vigorously promoted to ensure the ecological effect of comprehensive
big data experiments. The presence of digital infrastructure is essential for the robust
growth of a comprehensive big data zone, accelerating information sharing and cooper-
ation between data elements and traditional industries through the construction of data
sharing platforms, industrial Internet platforms, and so on. Industry data standards and
sharing mechanisms should be established, information barriers should be overcome,
and the in-depth integration of cross-industry data should be promoted, thereby forcing
spontaneous technological innovation and in-depth reform of traditional industries, em-
powering traditional industries to break through development bottlenecks, and realizing
new momentum for green development. Additionally, they should provide support for
investigating fundamental environmentally friendly technological advancements, initiate
green innovation alliances through government-led or industry organizations to bring to-
gether enterprises, research institutes, colleges and universities, and other relevant parties,
encourage cross-border cooperation and innovation, and promote cross-innovation be-
tween different fields. Furthermore, green innovation technology incubation bases should
be established to provide innovative enterprises with technical support, financial support,
and market docking services to promote the incubation and transfer of green technologies
and accelerate the in-depth integration of green innovation technologies with industrial
development. This would expedite the process of transitioning to environmentally friendly
practices and promoting sustainable growth in both the agricultural and industrial sectors,
while also achieving ecological progress in urban industries.

Fourth, when providing capital support for comprehensive pilot zones for big data
through financial means, the government should support the design of policies for synergis-
tic regional development, so as to strengthen the spatial effect of comprehensive pilot zones
for big data. The government should summarise and promote the experience of various
types of demonstration zones in a timely manner, establish a sound evaluation mechanism,
set up an information-sharing platform, strengthen exchanges and cooperation, and form
a batch of replicable experience and practices and institutional results. First of all, the
government needs to make timely assessments of the construction experience of various
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types of demonstration zones, including the assessment of their effects and impacts on
economic development, social management, ecological environment, and other aspects.
Through assessment, the government can identify the successes and shortcomings of the
demonstration zones in a timely manner, providing a basis for further summarisation and
promotion. The establishment of an assessment mechanism can also help the government
better understand the characteristics and actual situation of various types of demonstration
zones, providing reference and lessons for the construction of other regions. Moreover, it is
imperative for the government to provide a platform that facilitates the flow of informa-
tion. The government can take advantage of the comprehensive big data pilot zones’ own
strengths to establish an information sharing platform to integrate and collate the successful
experiences, typical cases, and key technologies of the various types of demonstration zones
and share them openly with the society. By utilizing the information sharing platform, the
government can effectively distribute the knowledge and accomplishments derived from
the establishment of demonstration zones. This enables a broader city to comprehend and
derive insights from these zones’ experiences, thereby fostering regional development and
advancement. Finally, the government should strengthen communication and cooperation.
The government can invite relevant persons in charge of the demonstration zones and
experts and scholars to share their experiences and insights by organising various semi-
nars, symposiums, and learning and exchange activities, so as to promote the exchange
of experiences and cooperation between regions. The government can also actively sup-
port co-operation projects and cross-regional co-operation between demonstration zones,
promote resource sharing and complementary advantages between demonstration zones,
achieve the goal of win–win co-operation, and provide more experience and reference
for the construction of other regions. On this basis, lower-level cities can facilitate the
movement of factors and information, implement tailored measures, and support the
advancement of big data. This will help to establish a network of interconnections and
exploit the advantageous spatial spillover phenomenon. Ultimately, this will enhance the
ecological resilience of cities.
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