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Abstract: The Hindukush and Himalaya regions of Pakistan are chronically prone to several geological
hazards such as landslides. Studying landslides in these regions is crucial for risk assessment and
disaster management, as well as for determining the effects of adverse climatic conditions, infrastructure
management, and increasing anthropogenic activities. High-relief mountains in these regions face severe
challenges because of frequently occurring landslides and other natural hazards, especially during intensive
rainfall seasons and seismic activity, which destroy infrastructure and cause injuries and deaths. Landslides
in the Alpuri Valley (Hindukush) and the Neelum Valley (Himalaya) have been activated through
high magnitude earthquakes, intensive rainfalls, snowfall, floods, and man-made activities. Landslide
susceptibility mapping in these areas is essential for sustainable development as it enables proactive
risk management, up-to-date decision-making, and effective responses to landslide hazards, ultimately
safeguarding human lives, property, and the environment. In this study, the relative effect method was
applied for landslide susceptibility modeling in both study areas to determine the capability to reduce
the effects of landslides, and to improve the prediction accuracy of the method. The relative effect is a
statistical model that has only been used for very limited time for landslide susceptibility with effective
results. A total of 368 (Neelum Valley) and 89 (Alpuri Valley) landslide locations were identified, which
were utilized to prepare the reliable landslide inventory using GIS. In order to evaluate the areas at risk
for future landslides activities and determine their spatial relationship with landslide occurrences, the
landslide inventory was developed with 17 landslide causative factors. These factors include slope gradient,
slope aspect, geology, plan curvature, general curvature, profile curvature, elevation, stream power index,
drainage density, terrain roughness index, distance from the roads, distance from the streams, distance
from fault lines, normalized difference wetness index, land-use/land-cover, rainfall, and normalized
difference vegetation index. Finally, the performance of the relative effect method was validated using the
success and prediction curve rate. The AUC-validated result of the success rate curve in the Alpuri Valley
is 74.75%, and 82.15% in the Neelum Valley, whereas, the AUC-validated result of the prediction rate curve
of the model is 87.87% in the Alpuri Valley and 82.73% in the Neelum Valley. These results indicate the
reliability of the model to produce a landslide susceptibility map, and apply it to other landslide areas.
The model demonstrated a more effective result in the Alpuri Valley, having a smaller area. However, the
results are also desirable and favorable in Neelum Valley, with it being a large area. It will assist in general
landslide hazard management and mitigation, and further research studies related to future landslide
susceptibility assessments in other parts of the region.

Keywords: relative effect model; Neelum Valley; Alpuri Valley; landslide susceptibility mapping;
remote sensing; GIS; sustainable development
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1. Introduction

A landslide is the most terrible natural hazard globally, occurring in mountainous
regions [1,2]. The rapid development of infrastructure in mountainous regions, increased
human activity, and global climatic changes have increased the trend and frequency of
landslides [3]. Landslide events cause the loss of human life and billions of dollars in
property damages every year [1]. Globally, the number of human causalities due to
landslide events was 4800 from 2004 to 2016 [4]. Planning and management are very
necessary to protect areas from landslide hazards in future.

Landslide events are frequent in the mountain ranges of northern Pakistan. These
mountain ranges have rough terrain, weak geology, steep slopes, high elevation, deforesta-
tion, soil cohesion, precipitation, variation in climatic conditions, infrastructure on unstable
slopes, and seismic activities, which all make the area increasingly prone to landslides.

Remote sensing data, such as air photographs and satellites images with their spa-
tial resolution, coverage of the area from time to time, and ease of acquisition, are more
effectively used in landslide monitoring and analysis from local to regional scales [5–8]. A
landslide inventory, acquired from satellite images and air photos, is utilized for landslide
hazard, vulnerability, and risk assessment. It also plays a role in the rapid appraisal of the
distribution and intensity of landslides, as well as for landslide susceptibility mapping [9].
This mapping is used for future planning and mitigation of the effects of landslide oc-
currence. Quantitative, qualitative, and semi-quantitative methods have been utilized in
landslide susceptibility mapping in a GIS environment [10].

This research evaluated where landslides are likely to occur through landslide sus-
ceptibility mapping of the Alpuri Valley and the Neelum Valley [11], and was prepared
using the relative effect method. It is a quantitative model, mathematically establishing
the relation of landslide occurrence with various causative factors [12]. Results of the area
under the curve were compared to determine the model’s suitability, accuracy, and perfor-
mance in different valleys. The Alpuri and Neelum Valleys have different characteristics.
The area of the Alpuri Valley is one-third of the Neelum Valley. Due to the variation in area,
the effectiveness of the relative effect method varied equally in the valleys. This variation
indicates the applicability, suitability, and plausibility of the model.

2. Study Area

Two high-relief mountain regions in northern Pakistan, the Alpuri Valley and the Neelum
Valley, were selected for landslide susceptibility mapping in this study (Figure 1). The Alpuri
Valley is part of the Hindukush mountain range (District Shangla of Khyber Pakhtunkhwa
province), while the Neelum Valley is located in the Himalaya mountain range (largest district
of Azad Kashmir). These mountain ranges are seismically and tectonically active. The Alpuri
Valley is bounded by latitude 34–35◦ N and longitude 72–73◦ E, and the Neelum Valley is
bounded by latitude 32–35◦ N and 73–75◦ E. Approximately, the Alpuri Valley covers an area
of 812 Km2, while the Neelum Valley covers an area of 3737 Km2. The altitude of the Alpuri
Valley and the Neelum Valley is 1471 m and 4700 m above mean sea level, respectively. The
annual precipitation rate in the Alpuri Valley and the Neelum Valley is 1600 mm and 1650 mm,
respectively [13]. The climate of the Alpuri Valley is humid to sub-humid zone, whereas
in the Neelum Valley, the climate is sub-humid. Valleys in the region are filled with thick
layers of unconsolidated lacustrine, glacial, and fluvial deposits. The rugged topography with
steep mountain slopes contains loose material, and the valley floor produces a high rate of
erosion by the river and its tributaries. Various factors in these valleys, such as active tectonics,
anthropogenic factors, high erosion process, and rugged topography, make them prone to
various types of geohazards, particularly landslides. Both valleys are famous for their scenic
beauty and tourism. They are blessed with natural resources including precious minerals
and forests.
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Figure 1. The study areas (a) Alpuri Valley and (b) Neelum Valley.

3. Materials and Methods

In this study, quantitative assessment of landslide susceptibility was evaluated through
the relative effect model, using 17 landslide causative factors. These factors include slope
gradient, elevation, profile curvature, plan curvature, slope aspect, SPI, drainage density,
TRI, NDWI, NDVI, general curvature, geology, distance from roads, distance from fault
lines, LULC, rainfall, and distance from streams for landslides. Different reliable sources
were used to collect the required data for landslide susceptibility (Table 1). Geological
maps of northern Pakistan, fault lines maps of the study areas, Google Earth images,
ALOSPALSAR digital elevation model, global precipitation measurement mission rainfall
data, topographic maps, Sentinel-2 satellite images, and Sentinel-2 land-use land-cover
maps were utilized in this study. Field surveys were conducted to evaluate the landslide
causative factors and map the past landslides in study areas. Remotely sensed data in GIS
environment were used to develop the landslide inventory and causative factors maps.

Table 1. Data used for landslide susceptibility model.

Landslide Inventory Field Data and
Satellite Images Scale Polygons and Points

Lithology Geological map 1:50,000 Lithological units
Slope gradient ALOSPALSAR DEM 12.5 m Natural break
Slope aspect ALOSPALSARDEM 12.5 m Natural break

Elevation ALOSPALSAR DEM 12.5 m Natural break
General curvature ALOSPALSAR DEM 12.5 m Natural break
Profile curvature ALOSPALSAR DEM 12.5 m Natural break
Plan curvature ALOSPALSAR DEM 12.5 m Natural break

TRI ALOSPALSARDEM 12.5 m Natural break
SPI ALOSPALSAR DEM 12.5 m Natural break

Distance to streams ALOSPALSAR DEM 12.5 m Natural break
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Table 1. Cont.

Landslide Inventory Field Data and
Satellite Images Scale Polygons and Points

Drainage density ALOSPALSAR DEM 12.5 m Natural break
Distance to roads Topographic map 1:50,000 Natural break

NDVI Sentinel 2 10 m Natural break
NDWI Sentinel 2 10 m Natural break

Land-use, land-cover Sentinel 2 10 m Natural break
Distance from faults Geological map 1:50,000 Natural break

Rainfall (mm) GPM 30 m Natural break

3.1. Data Preparation

For mapping the susceptibility to landslides, a variety of geomorphological, geologi-
cal, hydrological, proximity, and triggering elements were coupled with other landslide
causative components. Slope aspect, slope gradient, profile curvature, elevation, plan
curvature, general curvature, land-use, land-cover, and TRI were included as geomorpho-
logical factors. The surface geology of the study area was incorporated as a geological factor.
The hydrological parameters included drainage density, SPI, and rainfall. Distance from
streams, roads, and fault lines were utilized as proximity factors while NDVI and NDWI
were also included (Table 1). The criteria for including these factors was based on the past
landslide information and their contribution to the likelihood of landslide occurrences in
future. All these various causative factor maps were organized in the raster format with a
cell size of 12.5 × 12.5 m.

The methodology of this research study started from past landslide inventory. Field sur-
veys, Google Earth, and sentinel satellite images were used to prepare the historical landslide
inventory. A total of 89 landslides were mapped in the Alpuri Valley and 368 landslides were
mapped in the Neelum Valley (Figure 2). These landslides were digitized in the ArcGIS applica-
tion and overlaid on the sentinel images to evaluate the accuracy of landslide areas/location.
Detailed field surveys were carried out to verify the accuracy of the landslide inventory. These
landslides were converted to raster format with 12.5 by 12.5 m spatial resolution. The landslide
inventory was divided in two parts for the validation process of the model: a 70% ratio for
training data and a 30% ratio testing data.
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3.2. Geomorphological Factors
3.2.1. Slope Gradient

Slope gradient is one of the direct influencing factors of landslides, and has a close
relationship with the landslides. The density of landslides increases with an increase in
slope angle [14]. It has been identified that the frequency of landslides increases with
changing the slope gradient from low to high. However, there is a higher concentration
of landslides at the medium slope gradients as compared to gentle and high slope gra-
dients [15]. Characteristics of slope define the relief characteristics and terrain stability.
Many studies indicate that the slope factor has a great impact on landslide susceptibility
analysis [16,17]. In this study, the ALOSPALSAR DEM has been utilized for extracting the
slope gradient of study regions (Figures 3a and 4a). Slope gradient maps were classified
into five classes using the natural break technique.
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3.2.2. Slope Aspect

The slope aspect consists of 8 directions of slope with respect to landslide occurrence.
These directions are north, northeast, east, southeast, south, southwest, west, and northwest.
These directions are based on 0–360 degrees in a clockwise direction. It is an important
factor in landslide susceptibility mapping [18] as every slope aspect has obvious impact
on landslide occurrences. It plays a passive role in topographic factors and has an indirect
impact on the landslide events. ALOSPALSAR DEM was utilized to extract the slope aspect
factor for landslide susceptibility assessment (Figures 3b and 4b).

3.2.3. Elevation

Elevation is the height of a point above mean sea level, and is a direct influencing factor
of landslide events. Rock weathering processes are carried out on the basis of elevation [19].
Higher elevation increases weathering processes, which represent weak geological units,
and, hence, a high tendency for landslides is found [20]. ALOSPALSAR DEM was utilized
to prepare elevation factor and elevation of the study regions was classified into five classes
(Figures 3c and 4c).

3.2.4. Terrain Roughness Index (TRI)

Terrain roughness index (TRI) is the calculation of difference between the maximum
point and minimum point of local terrain [21]. It represents the elevation difference of a
point with respect to its surrounding area, and works as a significant morphological factor
in landslide occurrence and landslide susceptibility mapping [22]. It also determines the
changes in relief and degree of erosion. The following Equation (1) is used to calculate
the TRI:

TRI =
√
|x|

(
max2 − min2

)
(1)

TRI is the terrain roughness index, max is the maximum point, and min is the minimum
point [23]. Raster calculator tool in ArcGIS 10.7 software was utilized to calculate the terrain
roughness index (Figures 3d and 4d).

3.2.5. General Curvature

Curvature is the morphological factor of landslide occurrence. In previous studies, it
was utilized for landslide susceptibility assessment. It defines the change in slope gradient
with respect to the morphology of the ground surface [24,25]. Mathematically, it is defined
as the rate of change in slope degree with the parallel of the small arc of the curve [26]. It
determines the effect of slope material and water flow [27,28]. There are an infinite number
of curvature values that exist in a hill slope region. There are three curvature sides used
in hillslope and landslide analysis. General curvature data were also derived from the
ALOSPALSAR DEM, and classified into five classes (Figures 3e and 4e).

3.2.6. Profile Curvature

Profile curvature is the curvature along with the vertical position of topography and slope
orientation. It divides the hillslope into concave, convex, and flat (neutral) classes. The concave
class is a region where the water flow converges [29,30], whereas the convex class contains the
water flow divergence [29]. It is the inverse of plan curvature. Every sub-region is identified
according to its values. A concave area has negative values and a high possibility of landslide
occurrence, whereas a convex area has positive values and a flat area has zero values. Profile
curvature influences the pressure and force within the landslide toward the direction of motion.
ALOSPALSAR DEM was utilized to extract profile curvature and was classified into five classes
using the natural break (Figures 3f and 4f).

3.2.7. Plan Curvature

Plan curvature is the line of curvature along the horizontal plane of topography
and perpendicular to the slope direction. It controls both convergence and divergence of
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landslide materials and water flow in landslide orientation [31]. Concave, convex, and flat
are the sub-regions of hillslope of plane curvature. The concave area has positive values
and the convex region has negative values. The flat area has zero values. ALOSPALSAR
DEM was used to extract the plan curvature factor (Figures 3g and 4g).

3.2.8. Land-Use Land-Cover (LULC)

Land-use land-cover (LULC) is another potential factor of landslide susceptibility,
which shows the natural process as well as the anthropogenic process. Vegetation is a
significant class of LULC with a strong and extensive rooting system, which increase the
slope stability through its effect on the soil’s hydrological and mechanical attributes [32,33].
In this study, various classes of LULC were extracted from the Sentinel-2 land-use land-
cover image and reclassified into eight classes (Figures 3h and 4h). These classes included
crops, bare land, clouds, snow/ice, rangeland, built area, water, and trees.

3.3. Geological Factor (Surface Geology)

Surface geology has strong connectivity with landslide events and landslide suscep-
tibility mapping [32]. Weak and undeveloped geological structures act as an effective
factor of geology for more landslide-prone areas. Characteristics of slope materials such as
permeability, strength, rock types, and weathering activities are responsible factors for slope
failure. Geology of the northern mountainous region started at the time of the collision of
the Indo-Australian plate with the Eurasian Plate. The mountainous region of Pakistan is
the youngest mountain system, initiated in the Cretaceous to Mio-Pliocene age [34]. The ge-
ological information of study areas was derived from geological maps of northern Pakistan
(Figures 3i and 4i). Geologically, these valleys are fragile and have immature mountainous
regions and mostly sedimentary rock, which makes them more susceptible to landslides.
Lithology units of the Alpuri Valley are Kamila amphibolite complex (Ka), Swat granites
(Swg), Indus suture mélange (Ism), Karora group (Pr), Cambrian Manglaur formation (Cb),
Alpuri group–Alpuri schist (Ms), and the Besham formation (A). The lithological units of
the Neelum Valley are eclogites (ec), Shengus gneiss (Sg), Manshera granites (Mg), glacier
(Gi), Surgun group-C (Pz), Sugun group-B (Ms), Surgun group-A (Cb), and the Salkhala
group (Pr).

3.4. Hydrological Factors
3.4.1. Drainage Density

Drainage density is defined as the ratio of total stream length to the total area of a
drainage basin. It depends on flow of water in streams at the surface. Landslides arise as a
result of erosion processes brought on by runoff water and eroded material flow in streams
in mountainous areas [35]. Drainage density is the quantitative value that expresses that a
higher value indicates a low infiltration rate and high rate of runoff. Equation (2) is utilized
for drainage density [36]:

DD = (
LS
AD

) (2)

where DD is the drainage density, LS is the total length of streams, and AD is the total
area of the drainage basin of the study area. Drainage density map was classified into five
classes of the study areas (Figures 3j and 4j).

3.4.2. Stream Power Index (SPI)

Stream power index is a hydrological factor used to measure the erosion power ability
of water, based on the theory that discharge is directly proportional to catchment area [37].
It represents the direct relation between the erosion power of water and slope. Stream
power index was calculated using Equation (3);

SPI = A tanβ/b (3)
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where A is the catchment area and b is the degree of slope. Higher value of SPI represents
the high possibility of erosion power [38].

Stream power index was prepared using the ALOS PALSAR DEM and was classified
into five classes (Figures 3k and 4k). Every class of factor has its effect on landslide
occurrence. According to the relative effect model, a positive value represents the high
possibility of landslide events and a negative value determines a low or no possibility of
landslide occurrence.

3.5. Proximity Factors
3.5.1. Distance from Roads

Roads are also an important anthropogenic parameter in landslide occurrence in
mountainous areas [39,40]. Roads play a role in the changing of slope gradient [41,42]. In
hilly areas, the roads are mostly constructed at the toe part of the hill and a few meters
above the river. Road construction, its expansion, and heavy vehicles may affect the slope
stability and force the landslide occurrences [43]. The roads were considered as potential
triggering factor and associated with a probability of landslide occurrence. Topographic
sheets of the study areas were utilized to digitize the road networks of the study areas.
Multiple buffer tool with 200 m intervals was used to prepare the distance from the roads
and classified into five buffer classes from 0 to >800 (Figures 3l and 4l).

3.5.2. Distance from River

Rivers change the topography of the land and contribute to erosion through the
fluvial cycle [44]. Runoff water from the river regularly causes erosion and undercutting,
which enhances the power of devastation by raising the slope gradient and increasing the
likelihood of landslides around the river. The power of the erosion process is high near the
river, which indicates a high possibility of landslide events [45]. The area around the river
was classified into five classes with an interval of 200 m (Figures 3m and 4m).

3.5.3. Distance from Fault Line

The primary factor leading to slope instability is the movement along faults, which
triggers new landslides and reactivates the older ones [46,47]. Some studies suggest that a
reduction in distance to faults raises the probability of landslide occurrence [48]. Proximity
to faults plays a crucial role in shaping mass movements by impacting surface structures.
The proximity to tectonic structures increases the likelihood of landslide occurrences, as
erosion processes and water flow along a fissure may take place. In the study areas, fault
lines were identified on the geological map and various distance zones were prepared
with intervals of 200 m, resulting in the division of the area into five distinct classes.
(Figures 3n and 4n). Chakersar fault zone, main mantle thrust, Makhad thrust, Alpuri fault,
Puran fault, Karshut fault, Pir sar fault, Besham fault, and Babai thrust belong to the Alpuri
Valley. The main central thrust, Shikar fault, structural dome, Richmori fault, Punjal thrust,
main boundary thrust, Ganja dome, Gumot shear zone, and Chathic wall fault are located
in the Neelum Valley.

3.6. Triggering Factor (Rainfall Data)

Rainfall is an external and temporal triggering factor that plays a significant role in
landslide occurrence. In case extreme rainfall events, the slope moves downward as a result
of an increase in the pressure of pore water. Rainfall distribution has an impact on soil
moisture content and overland flow volume. In this study, the global precipitation mea-
surement (GPM) mission rainfall data were used. Rainfall was spatially distributed based
on its mean annual values. Rainfall was reclassified into five classes (Figures 3o and 4o).
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3.7. Other Factors
3.7.1. Normalize Difference Vegetation Index (NDVI)

Normalize difference vegetation index is utilized for calculating the presence and
absence of vegetation in an area. The index is based on the near-infrared and red wavelength
bands of satellite images. The presence of dense vegetation determines the high cohesion
power in soil, which decreases the soil erosion process and, hence, landslides occurrence is
low. If the concentration of vegetation is low, then the concentration of landslide occurrence
is high due to the high rate of soil erosion processes and low cohesion power in soil. This
index formulates as Equation (4):

NDVI =
NIR − RED
NIR + RED

(4)

where NDVI shows normalized difference vegetation index, NIR is the near infra-red band,
and RED is a red band of the satellite image. The scale of NDVI is between −1 to +1.
The −1 value represents an absence of vegetation and the +1 value represents very dense
vegetation. In the Alpuri and Neelum Valleys, the Sentinel-2 satellite images with 10 m
spatial resolution were used to prepare the NDVI maps (Figures 3p and 4p). These maps
were classified into five classes.

3.7.2. Normalize Difference Water Index (NDWI)

McFeeters introduced the normalize difference water index in 1996. Water bodies are
identified that are associated with wetlands [49]. This index is calculated through the green
wavelength band and near-infrared wavelength band of the satellite image. Equation (5)
was employed, as given below:

NDWI =
(GREEN − NIR)
(GREEN + NIR)

(5)

If the value of NDWI is greater than zero, it identifies water bodies and if NDWI value
is less than zero, it represents non-water bodies. NDWI map was also prepared from the
Sentinel 2 satellite image and classified into five classes (Figures 3q and 4q). Each class of
NDWI calculates the relative effect value. These values determined the ratio of landslide
occurrence in each class.

3.8. Application of Relative Effect Method

Relative effect model is a logarithmic-based statistical model (Equation (6)) that is
utilized to find out the correlation of each landslide causative factor with distribution of
landslides in the study areas. It is introducing a function called relative function (RF).
These spatial correlations indicate the effect of landslides in each class of individual factors.
Equation (7) shows the ratio of landslide area (sld) in the unit area as per total area of
landslide (SLD) and in Equation (8), ‘a’ shows the ratio of unit area in the entire area of the
study (A) for every unit.

RE = Log
(

SR
AR

+ ϵ

)
(6)

SR =
sld

SLD
(7)

AR =
a
A

(8)

RE shows the relative effect, ‘SLD’ indicates the total number of landslide pixels in the
unit area, ‘sld’ indicates the total number of landslide pixels in each unit, ‘a’ represents the
total number of pixels in a unit, and ‘A’ indicates the total number of pixels in a unit area.
Epsilon (ε) shows a very small floating value near zero.



Sustainability 2024, 16, 3556 15 of 31

In the relationship’s analysis, three cases listed below are used for calculating the
relative effect of each class depending on its RE values.

The first case shows the positive effect, meaning if the value is greater than zero, this
means the landslide ratio is greater than its unit ratio. This case shows the increasing effect
of landslide susceptibility.

The second case shows the negative effect when the value is less than zero, which
means the landslide ratio is less than the unit ratio. This case shows the decreasing effect of
landslide susceptibility.

The third case shows the zero effect, when the value is equal to zero, which means the
landslide ratio is equal to the unit ratio, which represents no effect of landslide susceptibility.

Finally, the landslide susceptibility index (LSI) is calculated using Equation (9):

LSI = ∑ RE (9)

All of the 17 selected factors maps were integrated using the values of relative effect to
predict the landslide susceptibility index. This index was finally developed in the landslide
susceptibility zonation maps, which were classified into four zones. Every zone describes
the level of landslide susceptibility.

4. Results

Landslides are severe problems in mountainous regions of the world. Pakistan is prone
to earthquakes and landslides, as a major part of the country is comprised of mountains.
Weak, fragile, and immature geological structures in these mountains cause landslides.
Proper planning and management are essential to mitigate the effects and intensity of
landslides, and prevent the area from experiencing landslides in future. Landslide sus-
ceptibility mapping is the primary step for this purpose. A relative effect model was
utilized to generate the landslide susceptibility map. This logarithmic model indicated the
landslide-affected areas and determined the relationship between causative factors and
landslide distribution.

4.1. Landslide Inventory

A total of 368 and 89 landslides were identified and mapped in an area of 7.283 km2

and 0.465 km2 to reflect the landslide inventory of the Neelum and Alpuri Valleys (Table 2
and Figure 5). The majority of the landslides were slides but debris flows covered a
larger area than the slides. In the study areas, slides were found to be the dominant type
of landslide (Table 2 and Figure 5). The total number of slides were 240 (65.22%) and
57 (64.05%) in the Neelum and Alpuri Valleys, respectively. The largest mapped slide in
the areas has an area of 0.326 and 0.023 km2 while the smallest has an area of 0.0002 and
0.0001 km2. Most of them were observed along the roads and streams of the study areas.

Table 2. Landslide inventories in the study areas.

Landslides in Alpuri Valley Landslides in Neelum Valley

LS Types Total LS LS (%) LS Area (Km2) LS Area (%) LS Types Total LS LS (%) LS Area
(Km2) LS Area (%)

Slide 57 64.05 0.224 48.17 Slide 240 65.22 3.47 47.7
Debris flow 31 34.83 0.011 49.46 Debris flow 124 33.70 3.76 51.65

Rock fall 1 1.12 0.230 2.37 Rock fall 4 1.08 0.05 0.68
Total 89 100 0.465 100 Total 368 100 7.28 100

Debris flows are the second most frequently occurring phenomenon in the areas with
an area of 3.76 km2 (51.65%) and 0.011 km2 (49.46%) in the Neelum and Alpuri Valleys,
respectively. The total number of observed debris flows were 124 (Neelum Valley) and
31 (Alpuri Valley). In case of the debris flows, the largest mapped landslide in the area was
observed with areas of 0.223 km2 and 0.281 km2 while the smallest mapped landslides
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had areas of 0.001 km2 and 0.0004 km2 in the Neelum and Alpuri Valleys, respectively.
During the field surveys, it was noted that debris flow occurred mostly in the vicinity of
minor streams and in areas experiencing heavy rainfall. In the study areas, there are four
(1.08%) and one (1.12%) rock-fall-type of landslides having an area of 0.05 km2 (0.68%) and
0.23 km2 (2.37%) among the total mapped landslides in the Neelum and Alpuri Valleys,
respectively. The rock falls were found near the roads in the study areas.
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4.2. Modelling Results of Relative Effect Model

The relative effect model was used to calculate the RE value of the landslide causative
factors to understand the landslide causative factors for evolving the susceptibility map
of the study areas. As shown in Table 3, the relationship between the landslide causative
factors and landslide is evaluated to find out the landslide causative factors RE values by
using Equation (6). Figure 6 (Alpuri Valley) and Figure 7 (Neelum Valley) represent the
relationship of landslides with the causative factors and relative effect values in a graphical
form, in order to clarify the effect of causative factors.

Table 3. Alpuri Valley and Neelum Valley, Relative effect values of the landslide causative factors.

Alpuri Valley Neelum Vally

Classes % of Pixels
in a Class

% of
Landslide
Pixels in a

Class

RE Classes % of Pixels
in a Class

% of
Landslide
Pixels in a

Class

RE

Geology Geology
A (Archean–Besham

group) 20 28.59 0.16 Cb (Surgun group A) 1.78 6.34 0.55

Cb (Cambrian
Manglaur) 2.52 2.84 0.05 Ec (eclogites) 35.92 34.53 −0.02

Ism (Indus Suture
mélange) 20.07 22.19 0.04 Gl (glacier) 4.08 0 0

Ka (Kamila amphibolite
complex) 25.14 30.01 0.08 Mg (Manshera granites) 11.39 20.29 0.25

Ms (Alpuri schist) 11.56 7.4 −0.19 Ms (Surgun group B) 19.24 2.81 −0.84
Pr (Karor group) 18.13 8.82 −0.31 Pr (Salkhala group) 18.34 31.69 0.24

Swg (Swat granites) 2.58 0.14 −1.26 Pz (Surgun group C) 3.38 4.35 0.11
Nil Nil Nil Nil Sg (Shengus gneiss) 5.87 0 0

Slope Gradient Slope Gradient
0–18 11.31 9.06 −0.096 0–17 12.32 8.26 −0.17

18–28 23.47 18.97 −0.093 17–28 24.81 22.6 −0.04
28–36 30.89 33.29 0.032 28–38 31.21 33.09 0.03
36–46 24.99 27.88 0.047 38–48 22.78 25.99 0.06
46–78 9.34 10.81 0.064 48–84 8.89 10.05 0.05
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Table 3. Cont.

Alpuri Valley Neelum Vally

Classes % of Pixels
in a Class

% of
Landslide
Pixels in a

Class

RE Classes % of Pixels
in a Class

% of
Landslide
Pixels in a

Class

RE

Slope Aspect Slope Aspect
North 10.24 8.38 −0.17 North 9.93 14.19 0.31

Northeast 11.05 13.44 0.09 Northeast 10.61 11.77 0.05
East 14.45 19.03 0.12 East 12.4 10.96 −0.05

Southeast 15.84 18.84 0.08 Southeast 15.46 15.21 −0.01
South 12.23 16.14 0.12 South 14.87 15.97 0.03

Southwest 13.05 9.42 −0.14 Southwest 14.71 13.52 −0.04
West 12.38 7.86 −0.2 West 11.94 7.63 −0.19

Northwest 10.74 6.72 −0.2 Northwest 10.07 10.74 0.03
Distance from Road Distance from Road

0–200 8.22 20.63 0.4 0–200 2.3 8.71 0.58
200–400 7.06 7.4 0.02 200–400 2.17 7 0.51
400–600 6.52 3.18 −0.31 400–600 2.08 5.64 0.43
600–800 6.13 2.09 −0.47 600–800 2.03 4.33 0.33

>800 72.07 66.71 −0.03 >800 91.43 74.32 −0.09
Distance from River Distance from River

0–200 5.17 20.72 0.60 0–200 3.72 16.81 0.65
200–400 5 3.41 −0.17 200–400 3.63 8.13 0.35
400–600 4.89 5.97 0.09 400–600 3.53 7.77 0.34
600–800 4.79 2.89 −0.22 600–800 3.51 7.36 0.32

>800 80.16 67 −0.08 >800 85.61 59.93 −0.15
General Curvature General Curvature

−73.6–−4.96 2.02 2.18 0.03 −54.64–−4.48 3.04 5.35 0.25
−4.96–−1.77 17.61 23.47 0.12 −4.48–−1.28 25.87 33.17 0.11
−1.77–0.89 50.3 51.45 0.01 −1.28–0.65 42.65 37.7 −0.05
0.89–4.61 28.07 20.39 −0.14 0.65–3.85 25.26 20.62 −0.09
4.61–6.08 2 2.51 0.1 3.85–106 3.19 3.16 0

Elevation Elevation
535–1459 15.42 21.57 0.15 980–2219 10.65 31.06 0.46

1459–1973 30.07 22.9 −0.12 2219–2881 20.46 51.23 0.4
1973–2482 30.96 29.45 −0.02 2881–3493 22.92 17.18 −0.13
2482–3158 16 25.65 0.21 3493–4075 26.22 0.53 −1.7
3158–4400 7.56 0.43 −1.25 4075–6128 19.75 0 0

Plan Curvature Plan Curvature
−32–2.06 4.23 5.17 0.09 −38.9–−2.83 1.69 2.9 0.23

−2.06–−0.7 20.02 24.56 0.09 −2.83–−1.04 13.2 18.83 0.15
−0.7–0.39 39.77 41.01 0.01 −1.04–0.03 38.27 37.85 0
0.39–1.75 29.19 23.38 −0.1 0.03–1.45 38.17 32.74 −0.07

1.75–37.40 6.8 5.88 −0.06 1.45–52.18 8.66 7.69 −0.05
Profile Curvature Profile Curvature

−25.84–−2.57 3.1 3.18 0.01 −57.98–−3.34 1.75 1.98 0.05
−2.57–−0.72 21.82 16.64 −0.12 −3.34–−1.07 14.09 13.11 −0.03
−0.72–0.6 44.82 43.24 −0.02 −1.07–0.43 49.16 42.11 −0.07
0.60–2.45 26.52 32.48 0.09 0.43–2.7 32.04 37.59 0.07

2.45–41.60 3.74 4.46 0.08 2.7–38.12 2.96 5.22 0.25
Terrain Roughness Index Terrain Roughness Index

0.10–0.38 6.62 13.04 0.29 0.08–0.38 6.48 13.94 0.33
0.38–0.46 22.13 22.76 0.01 0.38–0.45 20.8 24.46 0.07
0.46–0.52 35.74 42.58 0.08 0.45–0.51 36.91 33.1 −0.05
0.52–0.59 26.6 16.17 −0.22 0.51–0.59 27.07 22.72 −0.08
0.59–0.95 8.91 5.45 −0.21 0.59–0.90 8.74 5.77 −0.18

NDVI NDVI
−0.4–0.18 2.63 11.66 0.65 −1–0.10 17.93 8.58 −0.32
0.18–0.39 7.1 44.71 0.8 0.10–0.27 12.2 31.79 0.42
0.39–0.53 18.84 24.23 0.11 0.27–0.42 18.72 29.6 0.2
0.53–0.62 35.38 13.13 −0.43 0.42–0.56 27.47 20.54 −0.13
0.62–0.86 36.04 6.26 −0.76 0.56–0.87 23.69 9.5 −0.4
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Table 3. Cont.

Alpuri Valley Neelum Vally

Classes % of Pixels
in a Class

% of
Landslide
Pixels in a

Class

RE Classes % of Pixels
in a Class

% of
Landslide
Pixels in a

Class

RE

Stream Power Index Stream Power Index
0–17,346,033 99.93 99.53 0 0–162,747,343 99.97 99.96 −0.00002

17,346,033–69,384,135 0.05 0.33 0.81 162,747,343–623,864,818 0.02 0.01 −0.4

69,384,135–160,450,813 0.01 0.14 0.99 623,864,818–
1,329,103,309 0.01 0.01 0.2

160,450,813–307,892,102 0 0 0 1,329,103,309–
2,875,203,075 0 0.02 0.8

307,892,102–55,904,832 0 0 0 2,875,203,075–
6,916,762,112 0 0 0

NDWI NDWI
−0.74–−0.52 26.57 4.98 −0.73 −0.78–−0.48 27.28 7.12 −0.58
−0.52–0.44 38.76 14.46 −0.43 −0.48–−0.34 32.81 33.89 0.01
0.44–0.33 23.11 27.5 0.08 −0.34–−0.17 17.21 41.5 0.38
0.33–0.17 8.37 41.68 0.7 −0.17–0.02 20.25 16.29 −0.09
0.17–0.51 3.19 11.38 0.55 0.02–1 2.44 1.2 −0.31

Drainage Density Drainage Density
0–0.56 81.57 68.14 −0.08 0–0.34 72.59 48.21 −0.18

0.56–1.12 8.73 10.05 0.06 0.34–0.68 13.03 26.11 0.3
1.12–1.68 7.2 7.11 −0.01 0.68–1.02 9.54 20.75 0.34
1.68–2.24 2.13 8.2 0.59 1.02–1.36 4.38 4.74 0.04
2.24–2.8 0.36 6.5 1.00 1.36–1.7 0.46 0.2 −0.38

Land-use Land-cover Land-use Land-cover
Bare Land 0.75 1.70 0.35 Bare Land 8.90 10.83 0.08
Built Area 18.98 18.97 −0.0002 Built Area 0.24 0.33 0.13

Clouds 0.0002 0 0 Clouds 0.0005 0 0
Crops 0.28 0 0 Crops 0.16 1.07 0.81

Rangeland 37.74 59.69 0.19 Rangeland 45.35 49.54 0.04
Snow/Ice 2.68 0 0 Snow/Ice 15.62 0.66 −1.37

Trees 39.35 18.73 −0.32 Trees 29.02 34.45 0.07
Water 0.21 0.90 0.62 Water 0.70 3.10 0.64

Rainfall Rainfall
96.73–101.88 10.21 16.83 0.21 61.19–71.43 41.30 29.62 −0.14
101.89–105.67 18.75 24.37 0.11 71.44–82.43 20.25 15.29 −0.12
105.68–109.21 26.97 26.22 −0.01 82.44–95.93 13.88 3.98 −0.54
109.22–112.43 25.45 20.19 −0.10 95.94–108.68 11.09 13.7 0.09
112.44–117.26 18.61 12.37 −0.17 108.69–124.92 13.46 37.40 0.44

Distance from Fault lines Distance from Fault lines
0–200 11.57 17.21 0.17 0–200 2.01 0.51 −0.59

200–400 10.94 13.94 0.10 200–400 2.01 2.63 0.11
400–600 10.14 9.00 −0.05 400–600 1.99 1.32 −0.17
600–800 9.23 8.25 −0.05 600–800 1.94 0.83 −0.37

>800 58.12 51.60 −0.05 >800 92.04 94.70 0.01
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4.3. Relationship of Landslides Occurrence with Causative Factors

In the Alpuri Valley, the resultant map of the slope gradient determines that slopes
above 36 degree have a high concentration of landslide events, whereas in the Neelum
Valley, the slopes above 38 degrees exhibit a high tendency for landslide events. The class
with a slope gradient between 46–78 degrees showed highest relative effect value of 0.064
followed by the class 36–46 degrees (with RF of 0.047) in the Alpuri Valley, whereas the
class with a slope gradient of 38–48 degrees represented highest relative effect value of
0.06 followed by the class 48–84 degrees (RF = 0.05) in the Neelum Valley. The gentle
slope showed negative relative effect weights, and, hence, a lower possibility of landslide
occurrence (Figures 6a and 7a, and Table 3).

Slope aspect factor, which depends on the duration of solar intensity and precipitation,
describes the dimension of slopes. The highest relative effect value of slope aspect was
found in the east and southward aspects, having a value of 0.12, and revealed high corre-
lation with landslide occurrence in the Alpuri Valley. In the Neelum Valley, the highest
relative effect value was observed in the north direction with a value of 0.31, showing a
high impact on landslide events (Figures 6b and 7b, and Table 3).
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Figure 7. Relationship of landslides with the causative factors and relative effect values of the Neelum
Valley: (a) slope gradient; (b) slope aspect; (c) elevation; (d) terrain roughness index; (e) general
curvature; (f) profile curvature; (g) plan curvature; (h) land-use land-cover; (i) geology; (j) drainage
density; (k) stream power index; (l) distance to road; (m) distance to river; (n) distance from fault
lines; (o) rainfall data; (p) NDVI; (q) NDWI.

The elevation factor indicates that the class 2482–3158 m in the Alpuri Valley shows
the highest relative affect value of 0.21, whereas, the in Neelum Valley, class 980–2219 m
exhibits the highest relative effect value, equal to 0.46. These two classes of elevation reveal
a high possibility of landslide occurrence in the study areas. The negative RE values have
no influence on the landslide events (Figures 6c and 7c, and Table 3).

In the case of TRI factor, Table 3 and Figures 6d and 7d show that in the Alpuri
Valley, the first (0.10–0.38) and third (0.46–0.52) classes, while in the Neelum Valley, the first
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(0.08–0.38) and second (0.38–0.45) classes reveal that landslide events have a significant
influence on these classes of TRI factor. It indicates that the erosion process is modifying
the slope degree of the terrain.

General curvature contains three regions that are convex, concave, and flat. Every
region has its impact and relation to landslide occurrence. In the Alpuri region, the concave
region shows a high effect of landslide occurrence with a relative effect value of 0.12,
observed in the class −4.96 to −1.77. The convex region also represents a high landslide
influence in the class 4.61 to 6.08 with a relative effect value of 0.1. In the Neelum Valley,
concave landforms show a high relative effect value in the class −54.64 to −4.48 (RE = 0.25)
followed by the class −4.48 to −1.28 (RE = 0.11), and exhibit a high impact of landslide
hazard (Table 3, Figures 6e and 7e).

In the case of profile curvature for the Alpuri region, the concave region has a high
relative effect value, representing a high concentration of landslide occurrence, especially
in class 2.45–41.60 and 0.60–2.45 with relative effect values of 0.08 and 0.09, respectively
(Table 3, Figures 6f and 7f). For the Neelum Valley, the concave region in the class 2.7–38.12
has a relative effect value of 0.25, representing a high relative effect value. The flat region
demonstrated no effect of landslide. The comparative analysis of the valleys indicates that
the concave landforms have a high probability of landslide occurrence compared to the
convex and flat landforms.

In case of plan curvature, the concave region exhibits a high relative effect of 0.09 in
the class −32 to −2.06 and the class −2.06 to −0.7, with a high volume in these curvature
classes of the Alpuri area. In the Neelum Valley, the concave region also reveals high
relative effect values of 0.23 and 0.15 in the class −38.9 to −2.83 and the class −2.83 to
1.04, respectively. These concave regions have a high concentration of landslide events as
compared to the flat and convex regions of the study areas (Table 3, Figures 6g and 7g).

The land-use land-cover (LULC) factor also plays an important role in slope instability.
The study regions’ likelihood of experiencing landslides is indicated by eight distinct
classes with varying landslide concentrations and relative effect values. Positive relative
effect values were observed in the LULC classes of bare land, rangeland, and water of the
Alpuri region, while in the Neelum region, LULC classes such as bare land, built area,
crops, rangeland, and water exhibited positive relative effect values, indicating a strong
correlation with landslide occurrence (Table 3, Figures 6h and 7h).

The lithological units in the Alpuri region such as Kamila amphibolite complex (Ka),
Archean (A), Cambrian Manglaur (Cb), and Indus suture mélange (Ism), and the lithological
units in the Neelum Valley, for instance, Mansehra granite (Mg) and Salkhala group (Pr), exhibit
positive relative effect values (Table 3, Figures 6i and 7i). These units are brittle and immature
with sand and silt in the soil that contribute tremendously towards landslide occurrences.

In general, an increase in landslide events with a decrease in the distance to the
streams indicates a direct relationship between the occurrences of landslides in the vicinity
of streams. According to relative effect values of drainage density, the fifth class (2.24 to
2.8) determined a high influence of landslide occurrence in the Alpuri Valley, while the
third class (0.68 to 1.02) identified the high influence of landslide events in the Neelum
region. Table 3 and Figures 6j and 7j show an overall correlation between drainage density,
landslide occurrences, and relative effect value.

Stream power index (SPI) is used to determine the erosion power of water. Comparing
the results of both valleys, the third class of SPI in the Alpuri region shows a high relative effect
value of 0.99, whereas the fourth class of SPI reveals a high relative effect value of 0.8 in the
Neelum Valley. These values represent a high probability of landslide events in areas with
these classes, owing to the high probability of erosion power (Table 3, Figures 6k and 7k).

The tendency of landslide events is observed to be high near the roads, and tendency is
gradually decreased away from the roads. The class with 0–200 m has the highest relative effect
values of 0.4 in the Alpuri Valley, and 0.58 in the Neelum Valley (Table 3, Figures 6l and 7l),
indicating more chances of landslide events near the roads.
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The Alpuri Valley and the Neelum Valley exhibit similar results for 0–200 m distance
class from rivers. It shows a high probability of landslide occurrence near the rivers. For
this distance to road class, a highest value of 0.60 was observed in the Alpuri region, while
0.65 was observed in the Neelum Valley (Table 3, Figures 6m and 7m).

The distance to fault line class of 0 and 400 m in the Alpuri region exhibits a high
concentration of landslides and, hence, exhibits high relative effect values, indicating a zone
highly affected by landslides. However, their effectiveness is decreased for locations more
distant from the fault line. The class 400 to >800 m represented a low concentration of
landslides due to negative relative effect values. In case of the Neelum Valley, the distance
to fault line class of 200–400 m and class >800 m indicates high relative effect values with a
high concentration of landslides representing a high correlation with landslide occurrence
(Table 3, Figures 6n and 7n). This behavior reveals that distance from fault line is less effective
for landslide occurrences in the Neelum Valley as compared to other responsible factors.

Rainfall is one of the triggering factors to enhance slope instability. According to
the rainfall data, the Alpuri Valley’s low rainfall area (96.73 to 105.67 mm) constituted
an area with a high occurrence of landslides. On the other hand, the high rainfall area
showed a negative relative effect value, indicating that it was less affected by landslides.
The relative effect curve showed a gradual decrease from low to high concentrations of
rainfall. High rainfall regions in the Neelum Valley, with rainfall ranging from 95.95 to
124.92 mm, exhibited higher relative effect values as compared to other classes (Table 3,
Figures 6o and 7o).

NDVI represents the difference between green vegetation and the non-vegetation area.
According to the results of the NDVI factor, landslides are less common in areas with high
concentrations of vegetation (NDVI = 0.56–0.87), whereas landslides are more common
in areas with low concentrations of vegetation (NDVI = 0.10–0.27). In the instance of the
Alpuri region, the relative effect model indicates that NDVI class of 0.18–0.39 demonstrates
a high concentration of landslide occurrences owing to a low concentration of vegetation,
whereas NDVI class of 0.62–0.86 shows no influence of landslide due to a high concentration
of vegetation (Table 3, Figures 6p and 7p).

NDWI factor represents the presence of water bodies in the respective study areas.
In the Alpuri Valley, the NDWI class of 0.33–0.17, with a relative effect value of 0.7, was
found to be highly prone to landslides, while the NDWI class −0.74 to −0.52 has a low
relative effect value equivalent to −0.73, indicating a low concentration of landslides. For
the Neelum valley, the NDWI class of −0.34 to −0.17 indicates a high landslide occurrence
(Table 3, Figures 6q and 7q).

4.4. Landslide Susceptibility Mapping and Zonation

Landslides affect the natural and socioeconomic environments in the Neelum and
Alpuri Valleys. Landslide susceptibility zonation is an appropriate way for better planning
and mitigation in landslide-prone areas. Based on the contributing factors, landslide-
prone zones are categorized into low, moderate, high, and extremely high zones. The GIS
environment was used to overlay all of these themes in order to create the study area’s
landslide zonation map. The relative effect model, which is a quantitative approach, is
utilized to assess the significance of each class in each factor map. Using the landslide
susceptibility index (Equation (9)), all themes were summed up to create the landslide
susceptibility zonation map.

In the Neelum Valley, the landslide susceptibility index was in the range from −8.37 to
5.88 in the Neelum region, whereas in the Alpuri Valley, it ranged between −5.30 and 5.65.
The landslide susceptibility index maps were categorized into four zones (Figure 8), namely,
very high, high, moderate, and low. The percent area of extremely high class in the Alpuri and
Neelum regions were observed to be 7.55% and 18.14%, respectively (Table 4 and Figure 9). Parts
of the study areas in proximity to the roads and rivers have higher percentages of high class,
which are 25.33% (Alpuri) and 34.04% (Neelum). The entire high landslide susceptibility zones
were found to be 52.18% in the Neelum Valley and 32.88% in the Alpuri Valley. Comparing the
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results from both study sites, the Neelum Valley (the Himalaya) was found to be more prone to
landslide hazards than the Alpuri Valley (the Hindukush).
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Table 4. Landslide susceptibility zone of Alpuri Valley.

Zones Low Moderate High Very High

Alpuri Valley 27.31 39.81 25.33 7.55
Neelum Valley 17.56 30.26 34.04 18.14
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4.5. Model Validation

In order to develop and validate the landslide susceptibility map, the landslides
inventory was divided into two sets, comprising a 70% training dataset and a 30% validation
dataset. A total of 70% of the landslide inventory was used for the modelling, and 30%
of the landslide inventory was used for the validation of the model results. The accuracy
and performance of the landslide susceptibility maps developed by relative effect (RE)
model were verified by receiver operating characteristics (ROC). Area under the ROC
curve (AUC) was used to evaluate the capacity of the model to predict the occurrence
and non-occurrence of landslide events. The success rate curve was prepared using the
70% landslide inventory with landslide susceptibility maps. The prediction rate curve
was prepared using 30% of the remaining landslide inventory with landslide susceptibility
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maps to check the performance and validation of the model in the study regions. Above
the value of 80% of the AUC, the index exhibited an excellent classification model [50].

In this study, the model comparison and validation using the 70% training data and
30% testing data were carried out in study areas with different spatial coverage. A total of
17 similar causative factors were used in the Alpuri Valley and the Neelum Valley to prepare
the landslide susceptibility maps, and evaluate the ability of relative effect model in these
valleys. Figure 10 shows a success rate curve of 74.75% and 82.15% for the Alpuri Valley
and the Neelum Valley, respectively. The prediction accuracy in the Alpuri and Neelum
Valleys was calculated at 87.87% and 82.73%, respectively. Plausible results for the Neelum
Valley are indicated by the success rate curve and AUC value. However, the prediction
rate curve and AUC value show that the relative effect model has excellent accuracy in the
Alpuri Valley, once the model’s appropriateness and validation are evaluated. As a result,
it is suggested that the model employed here, for mapping the susceptibility of landslides,
is suitable for both local and regional scales.
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5. Discussion

Landslide susceptibility assessment is an important tool that gives valuable infor-
mation for the areas that are affected by slope failure. Several approaches to landslide
susceptibility have been studied and suggested by various researchers to study landslides-
prone areas [51–53]. In this study, the relative effect model was used to assess landslide
susceptibility by evaluating the relationship of various causative factors with landslides. In
most of the approaches, the landslide susceptibility mapping process is similar where land-
slide causative parameters and landslide inventory maps are incorporated to categorize
the study area into different susceptibility zones [54–56]. Selection of suitable and critical
causative factors is imperative for the accuracy of landslide susceptibility [18,57]. Never-
theless, selection of causative factors can vary and is highly dependent on the topographic
and hydro-meteorological characteristics of the study area. There is no universal standard
for the selection of causative factors.

This study prepared a detailed landslide inventory that divided it into three types of
landslides, such as slide, debris flow, and rock fall. These types were observed at the time
of the field survey. The number of slides is higher in both study areas than debris flow and
rock fall. With respect to area coverage, debris flow has covered a larger area than slides
and rock falls. Debris flow is caused by heavy rainfall during the rainy seasons. The debris
flow travels long distances due to high elevation and steep surfaces.

The landslides inventory and integration of specific landslide causative elements
constitute the model database. The weightage result of influencing factors that have a
high likelihood and a high relative effect value determines the probability of a landslide
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occurrence. The relative effect model is able to identify the different components that
cause/trigger landslides in an objective manner. These various causative factors are
integrated into the GIS environment to generate the final susceptibility map.

In this study, among the causative factors, the relative effect model is applied to
observe the significance of various causative factors. Plan curvature, rainfall, profile
curvature, distance from fault lines, distance from streams, LULC, slope aspect, drainage
density, stream power index, NDVI, and NDWI contribute to landslide occurrences in the
Alpuri Valley, while in the Neelum Valley, terrain roughness index, drainage density, plan
curvature, profile curvature, general curvature, geology, land-use land-cover, stream power
index, and distance from streams and roads have a significant influence on the spatial
distribution of landslides.

The most susceptible geological/lithological units to landslides are the Besham group
and the Kamila amphibolite complex in the Alpuri Valley, whereas Surgun group A,
Mansehra granites, and the Salkhala group are more susceptible to landslides in the Neelum
Valley. Spatial coverage of the Besham group and Kamila amphibolite complex is 28.59%
and 30.01%, respectively, in the Alpuri region. The spatial coverage of Surgun group A,
Mansehra granites, and the Salkhala group are 6.34%, 20.29%, and 31.69%, respectively, in
the Neelum Valley.

With respect to slope gradient, in both study regions, slope gradient >29 degrees
indicated a positive relationship with landslide occurrences. The spatial coverage of slope
gradient >29 is 71.98% in the Alpuri region, whereas it is 69.13% in the Neelum Valley. The
results of slope gradient of both valleys demonstrate that an increase in the slope gradient
results in an increase in the landslide ratio.

The northeast and south aspects of the Alpuri Valley and the northeast and south
aspects of the Neelum Valley are more susceptible to landslides and exhibit a positive
correlation with landslide occurrences.

Elevation factor shows that elevation between 2482–3158 m has a high correlation with
the landslide events in the Alpuri Valley, while the elevation class of 980–2887 m is more
susceptible to landslide occurrence in the Neelum Valley.

Regarding the terrain roughness index, the most susceptible index was 0.10 to 0.52
in the Alpuri Valley compared to 0.08 to 0.45 in Neelum valley. These indices indicate the
erosion process with respect to a change in the terrain slope.

General curvature determines the impact of flat, concave, and convex curves on
terrain slope leading to landslide. Slopes with concave curvature are more susceptible
to landslides in the Alpuri Valley and the Neelum Valley. For plan curvature, the same
results were found in the Alpuri and Neelum Valleys, where concave curvature showed a
positive correlation with landslide events and, hence, meant they were more susceptible to
landslide occurrence.

Among LULC classes, bare land, water bodies, and rangeland showed a positive
correlation with landslides occurrence due to no cohesive forces in soil particles, low
infiltration rate, and no vegetation.

The stream power index (SPI) shows the erosion power of water. The high flow of
water indicates that a high erosion process in the streams leads to landslides along the
riversides. In the Alpuri Valley, the second and third classes of SPI were found to be more
susceptible to landslide occurrence, while the third and fourth SPI classes exhibited a high
probability of landslides with positive correlation in the Neelum Valley.

The impact of moisture content on the material present on the slopes, toe-cutting
process and drainage density favors landslides and reduces the slope stability. The result of
drainage density shows that the high drainage density class of 1.68–2.8 in the Alpuri Valley
and the 0.34 to 1.36 drainage density class in the Neelum Valley are more susceptible to
landslide occurrence.

In the case of distance from roads and rivers, 200 m in the Alpuri Valley and 800 m
in the Neelum Valley show a positive correlation with landslide events. Both study areas
are seismically and tectonically active. In the Alpuri Valley, the distance from fault line
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ranging from 0 to 400 m shows the highest landslide concentration, whereas the 200–400 m
class exhibits a high probability of landslide. Class 0–400 m (distance from roads) exhibits
a high probability of landslides due to high RE values in the Alpuri Valley. Distance to
roads ranging from 200 to 400 m shows a high correlation with landslide occurrence in the
Neelum Valley.

Intensive rainfall is the major triggering force for landslides in the study areas. Dur-
ing the rainy season, old landslides are reactivated along with new landslides. It was
observed that 96.73 mm to 105.67 mean monthly rainfall indicated a positive correlation
with landslide occurrences in the Alpuri Valley. Mean monthly rainfall ranging from 108.69
to 124.92 mm showed a high probability of landslides in the Neelum Valley.

With respect to NDVI, the no-vegetation classes in the study area were observed to
be more susceptible classes and, hence, showed the highest RE values. The vegetation
cover class is least prone to landslide. Among the NDWI, the class ranging from 0.17 to
0.51 reveals the presence of a water body and, hence, a positive correlation with landslide
occurrence in the Alpuri Valley, while the NDWI class ranging from −0.34 to 0.17 is found
to be more susceptible to landslide occurrence in the Neelum Valley.

Accuracy and validity of the susceptibility maps of study areas shows that RE model
results are proven to be more accurate in the Alpuri Valley than in the Neelum Valley. The
success rate curves in the Alpuri Valley are 74.75%, while those in the Neelum Valley are
81.15%. The prediction power of the RE model was determined using the prediction rate
curve. In the Alpuri and Neelum Valleys, the prediction accuracy for the RE model is
87.87% and 82.73%, respectively.

6. Conclusions

A relative effect model, a bivariate model, was used for conducting a landslide sus-
ceptibility assessment in two mountainous regions located in Hindukush (Alpuri Valley)
and Himalaya (Neelum Valley), being landslide-prone areas in northern Pakistan. The
main objective of this research was to evaluate the suitability, accuracy, and performance of
the relative effect model for landslide susceptibility mapping. The Alpuri Valley is three
times smaller than the Neelum Valley in size. The initial step was to identify and map
past landslides using GIS software. There have been 89 and 368 landslides in the Alpuri
Valley and Neelum Valley, respectively, in the past. These landslides included slides, debris
flow, and rock fall. Among the mapped landslides, slides are the most dominant type of
landslides in both study areas. A total of 17 causative factors were developed and correlated
with landslide inventory through the relative effect model for the preparation of a landslide
susceptibility map to determine landslide-vulnerable regions for the future, using remotely
sensed and departmental data in GIS. The final map of the study areas shows four landslide
susceptibility classes, including low, moderate, high, and very high. Regarding the model
validation, the success curve result of the study areas indicated 74.75% in the Alpuri Valley
and 82.15% in the Neelum Valley, while the prediction curve showed 87.87% in the Alpuri
Valley and 82.73% in the Neelum Valley. Prior to this research, different techniques were
employed to compare the performance of different techniques in a single region; however,
no comparison of a single technique was provided with two regions with differences in
terms of size of the valley. This paper considered two study areas with the same causative
factors and identified the performance and suitability of the method employed. This novel
idea made a new step to evaluate the applicability of an existing technique and created
interest for relevant researchers worldwide. From the comparison of model results, it has
been concluded that the applicability, suitability, and performance of the RE model better
suits a small area for landslide susceptibility mapping. The outcomes of this study from
these two valleys can be applied for landslide hazard and risk assessment and further
research in the study areas. Furthermore, it will support landslide mitigation plans and
landslide hazard risk assessment in other areas vulnerable to landslides.
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