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Abstract: Spatial interpolation is a crucial aspect of soil toxic element pollution research, serving as a
vital foundation for pollution assessment, treatment, and sustainability efforts. The selection and
adjustment of interpolation methods directly influences the accuracy of spatial distribution maps
and data results, thereby indirectly impacting related research. This paper conducts a comparative
study of different interpolation methods and analyses the sources of soil toxic elements in the
study area of Cangxi County, aiming to provide a scientific foundation for future soil management,
remediation, and enhanced local sustainability. The spatial correlation of As, Cd, Hg, Mn, Pb, and
Mo in 228 surface soil samples in the study area of Cangxi County is analyzed. The interpolation
results, spatial distribution of OK (ordinary Kriging), IDW (inverse distance weighting), RBF (radial
basis function) and the changes of pollution area after interpolation are compared. The smoothing
effect is assessed based on the comparison results, interpolation accuracy, and impact on pollution
assessment of OK, IDW, and RBF. The interpolation method most suitable for each metal in the study
area is selected. It can be concluded that the optimal interpolation method for As, Hg, and Mn is IDW;
for Cd and Mo, it is RBF; and for Pb, it is OK. After the correlation analysis of toxic elements in the
soil of the study area, the PMF (positive matrix factorization) model and hotspot analysis is applied
to analyzing the source of toxic elements. The analysis indicates that the predominant sources of
pollution are anthropogenic, categorized into industrial activities (30.8%), atmospheric deposition
caused by coal combustion and traffic exhaust (21.5%) and agricultural activities (19.5%). Natural
sources, such as soil parent material, contribute to 28.2% of the pollution on average.

Keywords: spatial interpolation; OK (ordinary kriging); IDW (inverse distance weighting); RBF
(radial basis function); interpolation accuracy; smoothing effect; pollution source analysis; PMF model

1. Introduction

Soil plays a critical role in sustainability, impacting agricultural, economic, and human
health aspects. Moreover, soil pollution by toxic elements is a significant environmental
concern worldwide [1], garnering considerable attention [2]. The latest soil pollution survey
in China revealed that 16.1% of samples surpassed the environmental quality standards
set by the Ministry of Environmental Protection, with toxic elements constituting 82.4% of
the pollutants [3]. Pollution from toxic elements differs from organic pollution; it is non-
biodegradable [4], and can readily accumulate in the bodies of humans and animals through
the food chain, posing health risks [5,6]. Soil pollution by toxic elements negatively affects
local sustainability, contaminating farm crops, undermining the agricultural economy, and
increasing health risks for local residents.
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Spatial interpolation, a process that estimates the value of a certain attribute at a
given position based on values sampled at adjacent points, plays a crucial role in research-
ing soil toxic element pollution and in environmental management and conservation [7].
Obtaining a spatial distribution map with high accuracy of soil toxic elements by spa-
tial interpolation is essential for early warning of soil pollution and further enhancing
local sustainability [8]. Common spatial interpolation methods in geostatistics, such as
Kriging [9], IDW (inverse distance weight) [10], RBF (radial basis function) [11], and LPI
(local polynomial) [12], are widely used in soil pollution research and soil pollution spatial
distribution mapping [13–15]. At the same time, related studies have been conducted to
compare the outcomes of various spatial interpolation methods, aiming to identify the most
accurate and suitable method for specific study areas. Fu et al. (2014) applied four spatial
interpolation methods to interpolate soil toxic elements in Lishui District, Nanjing City,
China. The smoothing effect was evaluated by comparing the interpolation results, and then
the optimal interpolation parameters and methods were selected [16]. Sheng et al. (2020)
employed IDW and RBF to interpolate the Cd elements sampled at different soil depths in
the lower reaches of the Fujiang River, China, and determined the optimal interpolation
method suitable for soil samples at different depths by assessing interpolation accuracy and
spatial distribution maps [17]. Chen et al. (2022) used OK, IDW, RBF, and LPI to interpolate
As, Cu, and Mn in the soil of Chongqing, China with the optimal parameters, and assessed
the interpolation results for spatial heterogeneity analysis and source analysis of soil toxic
elements in Chongqing, which made great contributions to local soil sustainability [18].
In summary, selecting appropriate interpolation methods and optimizing parameters are
crucial for achieving high-accuracy interpolations in related research, thereby fostering
sustainable development.

Meanwhile, analyzing the sources of toxic element pollution is crucial for soil protec-
tion and remediation [19]. This analysis serves as a vital reminder to control soil pollution
at its source, significantly contributing to enhancing local soil sustainability. It is generally
believed that soil toxic elements originate from two main sources: natural and anthro-
pogenic. Natural sources, often minor and primarily resulting from the weathering of
parent rocks, contrast with the larger and more complex anthropogenic sources. These
man-made sources, fueled by various human activities, significantly contribute to increased
pollution levels [20]. The sources of soil toxic elements are primarily analyzed using
receptor models, including the following: PMF (positive matrix factorization method),
Unmix model, APCS-MLR (absolute factor score-multiple linear regression method), and
so on [21–23]. Among these models, the PMF (positive matrix factorization) has been
highlighted for its convenience and efficiency. Additionally, its analysis results are noted
for their accuracy [22,24–26].

The study area is the key planting area of red kiwifruit and walnut planned by
the Cangxi government. In the past, the researches on soil toxic element pollution in
Cangxi County were limited to pollution evaluation [27], and there was no discussion on
the selection of spatial interpolation methods and source analysis. Therefore, this study
employs OK, IDW, and RBF methods to interpolate the presence of As, Cd, Hg, Mn, Pb,
and Mo in soil of the study area, with optimal parameters. The results of this interpolation
were evaluated based on their accuracy, result statistics, spatial distribution, and impact on
pollution assessment, leading to the selection of the best interpolation method for each soil
toxic element included. Concurrently, the PMF model was utilized to analyze the source of
the toxic element pollution, providing a scientific foundation for future pollution control
and soil remediation efforts. These findings will enhance local agricultural, economic, and
human sustainability in the study area.
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2. Materials and Methods
2.1. Overview of the Study Area

The study area (31◦51′ N~32◦55′ N, 105◦57′ E~106◦02′ E) is at the junction of Sanchuan
Town, Baihe Town, and Shimen Town in Cangxi County, Guangyuan City, and Sichuan
Province, with an acreage of 14.88 km2 (Figure 1). The study area is a purple hilly area,
the terrain is tilted from northwest to southeast, and the slope is gentle. The study area
soil is dominated by purple soil, which accounts for 70% of the total area, while paddy soil
accounts for 30%. The main crop is kiwifruit. Cangxi County belongs to the subtropical
humid monsoon climate zone. The average annual temperature is 16.9 ◦C, the average
temperature in January is 6 ◦C, and in July it is 27 ◦C. The extreme minimum temperature
is −4.6 ◦C, while the maximum temperature is 39.3 ◦C. The diurnal amplitude is 3~7 ◦C.
The annual frost-free period lasts for 288 days, and the average annual rainfall is about
1100 mm.
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Figure 1. Study area location and surface soil sampling point diagram.

2.2. Sample Collection and Analysis

A total of 228 topsoil (cultivated layer) samples at an average density of 16 pieces/km2

were collected. GPS was used to navigate to the pre-set sampling point and measure its
geographical coordinates. Each sampling point was marked, numbered, and documented
with corresponding landscape photographs. The sampling tool used was a stainless-steel
dredge shovel. The sampling medium was the soil column of 0~20 cm on the surface, and
the soil column combination of 3~5 points (radial) was collected within the radius of 50 m
around the sampling point as a sample. Efforts were made to minimize soil disruption to
ensure that the samples were not secondary polluted during collection. The samples were
stored in designated sample bags and isolated using a polyester bag.

In this study, the soil sample analysis was undertaken by the Chengdu Mineral Re-
sources Supervision and Inspection Center of the Ministry of Land and Resources. The
analysis unit strictly adheres to the “Technical standard of geological survey of China
Geological Survey (DD2005-01~DD2005-03)” published by China Geological Survey in
October 2005 and rigorously monitors the analysis quality of various samples through the
use of standard samples, internal laboratory inspections, cryptographic inspections, and
external sampling inspections. The detection center selected the full amount of soil sample
elements. After being received by the detection center, air-dried, and gravel and plant
debris were removed, the sample was divided into two parts. One part was ground with
agate mortar, passed through a soil sieve with a diameter of 2 mm, and then ground all
through a 100-mesh sieve. Different spectroscopic analysis methods were used to determine
the toxic element concentration of samples. The spectroscopic analysis methods, analytical
equipment and method detection limits (MDL) of each toxic element were measured are
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shown in Table 1. The X series II American thermoelectric plasma mass spectrometer
and Perform’ X4200 X-ray fluorescence spectrometer is manufactured by Thermo Feld in
the US. The AFS-2998 atomic fluorescence photometer and AFS-2999 atomic fluorescence
photometer are produced by Beijing Beifang Rayleigh Analytical Instruments (Group) Co.,
LTD in China (Beijing, China). The standards for the selection of determination methods are
based on the following: “Soil and sediment-Determination of mercury, arsenic, selenium,
bismuth, antimony-Microwave dissolution/Atomic Fluorescence Spectrometry (HJ-680
2013)” published by Ministry of Environmental Protection (China) on 21 November 2013,
for As and Hg determination using AFS; “Soil and sediment-Determination of inorganic
element-Wavelength dispersive X-ray fluorescence spectrometry (HJ-780 2013)” published
by Ministry of Environmental Protection (China) on 21 November 2013, for Mn and Pb
determination using XRF; and “Soil and sediment-Determination of aqua regia extracts
of 12 metal elements-Inductively coupled plasma mass spectrometry (HJ-803 2016)” pub-
lished by Ministry of Environmental Protection (China) on 24 June 2016, for Cd and Mo
determination using ICP-MS. Another part of the sample was for pH determination and
direct sunlight, acid, alkali, other gases, and dust pollution were avoided. At the same
time, another spare part of the sample was extracted by quartering method, the debris
other than soil was removed, and the test screen with 0.84 mm aperture was used to filter.
Potentiometry was used to determine pH value.

Table 1. Spectroscopic analysis used to determine the total content of each toxic element in soil and
their respective method detection limits (MDL).

Element Spectroscopic
Analysis Analytical Equipment Method Detection Limits

(MDL, mg·kg−1)

As AFS AFS-2999 atomic fluorescence photometer 0.5
Cd ICP-MS X series II American thermoelectric plasma mass spectrometer 0.05
Hg AFS AFS-2998 atomic fluorescence photometer 0.003
Mn XRF Perform’ X4200 X-ray fluorescence spectrometer 10
Mo ICP-MS X series II American thermoelectric plasma mass spectrometer 0.25
Pb XRF Perform’ X4200 X-ray fluorescence spectrometer 2

2.3. Analysis Methods

Microsoft Excel 2013 and SPSS (Statistical Package for the Social Sciences) 27.0 was
used to analyze the data. ArcGIS 10.7 was used to proceed geological statistical analysis.
OK, IDW, and RBF interpolation were also conducted with ArcGIS. PMF was analyzed us-
ing EPA PMF 5.0. The methods and formulas employed in the data analysis are as follows:

The coefficient of variation (CV) is an index that assesses the dispersion degree of
a single factor in spatial distribution [28,29]. The higher the CV, the stronger the inter-
ference from human activities or the greater the degree of pollution [30–33]. The coeffi-
cient of variation can be categorized into weak variation (CV < 15%), moderate variation
(15% ≤ CV ≤ 36%) and strong variation (CV > 36%) [34].

Kriging, widely used in geostatistics, is the most usual interpolation method [35]. It
is an unbiased, optimal estimation method for regionalized variables in a confined area,
based on variogram theory and structural analysis [36,37]. Its main advantages include
not only predictive results but also error estimation and the spatial autocorrelation of soil
characteristics, interpolated from known to estimated points. It exhibits excellent intrinsic
correlation attributes and accuracy, beneficial for evaluating the uncertainty of prediction
results [35,37]. Ordinary Kriging (OK) was used in this study.

Inverse distance weighting (IDW) is an interpolation method related to spatial dis-
tance [22]. It operates on the principle of similarity that the closer two objects are, the more
similar they are likely to be; conversely, the greater the distance between them, the less sim-
ilar they are. IDW uses the distance between the interpolation point and the sample point
as a weight, assigning greater weight to sample points that are closer to the interpolation
point [16].
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The radial basis function method (RBF) is a variation function model. It calculates
a set of weight coefficients of the nodes to be estimated by the base function and adjusts
the smoothing factor in the base function to control the smoothness of the interpolation
surface and the estimation accuracy, so as to achieve smooth interpolation. This method is
suitable for interpolation of surfaces with gentle surface changes, which is susceptible to
the influence of maximum and minimum values, and can predict the values of unknown
points higher or lower than the sample points [35].

To compare interpolation methods, it is essential to minimize the original data’s
error, and an effective strategy for error reduction is to optimize parameters during the
interpolation process for optimal results [38]. Analyzing the interpolation outcomes for
various toxic elements with different parameters in ArcGIS reveals that using a combination
of parameters which yields the least inaccuracy is beneficial. By adjusting the range of each
toxic element in the interpolation process to ensure it is sufficiently large, and by keeping
the nugget coefficient (Co/(Co + C)) small, interpolation can achieve a broader spatial
autocorrelation range and stronger spatial autocorrelation, thereby enhancing accuracy [39].

In cross validation, performing linear regression analysis helps achieve the algorithm’s
goal of unbiased mean value prediction. The measured values of sampling points were
used as independent variables, and the predicted values of cross-validation were used as
dependent variables. Before the intersection of the linear model and the 1:1 straight line,
the predicted value is greater than the measured value, while the result is opposite after
the intersection [40,41].

The commonly used evaluation indexes for cross-validation include RMSE (Root Mean
Square Error) and ME (Mean Error), among others. RMSE serves as a metric for assessing
the accuracy of predictions. A smaller RMSE value indicates a higher level of precision
in the interpolation. ME is the measure of prediction accuracy. ME serves as a metric for
assessing the impartiality of predictions, with values closer to 0 indicating a higher degree
of unbiasedness in the interpolation [39]. Their expressions are as follows:

RMSE =

√
1
n ∑n

i=1 V2
i (1)

ME =
1
n ∑n

i=1 V2
i (2)

where Vi is the error between the measured value and the predicted value.
IP (Imprecision) is the variation of prediction error. The smaller the IP is, the more

accurate the interpolation result is [30]. Its expression is as follows:

IP2 = RMSE2 − ME2 (3)

RI (the potential ecological risk index) is widely used to assess the degree of soil
toxic element pollution. It introduces the toxicity coefficient of toxic elements, links the
environmental ecology with the toxicological effects of toxic elements, and considers
various factors for analysis [31]. Its expression is as follows:

Ci
f= Ci/Ci

n (4)

Ei
r= Ti

r × Ci
f (5)

RI = ∑ Ei
r ∑ Ti

r × Ci
f (6)

where Ci
f is the i-th toxic element’s enrichment coefficient; Ci is the i-th toxic element’s

measured concentration; and Ci
n is the i-th toxic element’s assessment standard, which is

the i-th toxic element’s soil background value of Chengdu. Ti
r is the i-th toxic element’s

toxicity coefficient. Toxicity coefficients (Tr) of the examined elements are shown in Table 2.
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RI is the potential ecological risk index of multi-element environment in soil; Ei
r is the i-th

toxic element’s potential ecological risk index [42,43].

Table 2. Toxicity coefficients (Tr) of the examined elements [42].

Element As Cd Hg Mn Pb Mo

Toxicity coefficient 10 30 40 1 5 15

The potential ecological risk index Ei
r, RI classification and its corresponding pollution

degree are shown in Table 3.

Table 3. Potential ecological risk classification standard [44].

Ei
r

Single Factor Ecological Risk
Pollution Degree RI Total Potential Ecological

Risk Pollution Degree

Ei
r < 40 Light RI < 150 Light

40 ≤ Ei
r < 80 Moderate 150 ≤ RI < 300 Moderate

80 ≤ Ei
r < 160 Strong 300 ≤ RI < 600 Strong

160 ≤ Ei
r < 320 Very strong

RI ≥ 600 Extremely strong
Ei

r ≥ 320 Extremely strong

The positive matrix factor analysis (PMF) is a method for quantitative analysis of
multivariate factors of pollution sources by using sample composition or fingerprints
through the mathematical method of receptor model [45]. The operation principle of PMF
model is as follows:

Xij = ∑P
k=1 gik fki + eij (7)

where i is the number of samples; j is the number of elements; Xij is the j-th toxic element
concentration in the i-th sample; gik is the relative contribution of source k to sample i; fki is
the content of element j on the source; and eij is the residual matrix.

The optimal matrices G and F are obtained by decomposing the original matrix X
of the PMF model, so that the objective function Q is minimized. The calculation of the
objective function Q is as follows:

Q = ∑n
i ∑m

j=1 (Eij/Uij)
2 (8)

where Uij is the uncertainty of the content of the j-th element in the i-th sample. The model
can weight each individual data point and give each data point the appropriate uncer-
tainty. When the concentration of the element is lower than or equal to the corresponding
method detection limit (MDL), the uncertainty is calculated as Formula (9), otherwise the
uncertainty is calculated as Formula (10).

Uij = ∂/10 + MDL/3 (9)

Uij =

√
(δ × ∂)2 + MDL2 (10)

where δ is the relative standard deviation; and ∂ is the concentration of chemical ele-
ments [46]. The method detection limit (MDL) of toxic element elements involved in this
study is shown in Table 1.

3. Results
3.1. Descriptive Statistics of Soil Toxic Element Content

The experimental results of this study are presented in Table 4. The soil pH value was
between 5.26 and 8.56. The CV of Hg in the study area is 46.545%, suggesting a strong level
of variation, which implies that Hg pollution is more likely related to human activities. The
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CV of Pb is 12.523%, indicating a weak variation and suggesting that Pb pollution is less
likely to be related to human activities. Other toxic elements are moderately variable and
related to human activities.

Table 4. Statistical results of soil toxic elements contents and reference soil background values for
China and Chengdu area.

Element As Cd Hg Mn Mo Pb pH

Max (mg·kg−1) 20.200 0.589 0.142 861.000 1.240 33.300 8.56
Min (mg·kg−1) 3.100 0.058 0.012 211.000 0.272 11.500 5.26

Median (mg·kg−1) 9.305 0.228 0.041 486.500 0.508 24.900 7.33
Mean (mg·kg−1) 9.735 0.223 0.043 494.798 0.554 24.756 7.26

SD 2.330 0.066 0.020 121.866 0.176 3.100 0.92
CV (%) 23.931 29.485 46.545 24.629 31.783 12.523 12.76

Chinese soil background value [47] 11.200 0.097 0.065 583.000 2.000 26.000 —
Chengdu soil background value [48] 13.000 0.130 0.047 852.000 0.600 23.000 —

Soil Environmental
Quality Standard 1

pH ≤ 5.5 40 0.3 1.3 — — 70 —
5.5 < pH ≤ 6.5 40 0.3 1.8 — — 90 —
6.5 < pH ≤ 7.5 30 0.3 2.4 — — 120 —

pH > 7.5 25 0.6 3.4 — — 170 —
1 The data comes from “Soil environmental quality Risk control standard for soil contamination of agricultural
land (GB 15618-2018) [49]” published by the Ministry of Ecology and Environment (China) on 22 June 2018.

3.2. Assessment of Toxic Element Pollution in Soil

The results of the potential ecological risk index method are shown in Table 5. From
the average value of Ei

r, the potential ecological risk of the surface layer in the study
area, from light to moderate, is as follows: Mn (0.581) < Pb (5.382) < As (7.489) < Mo
(13.848) < Hg (36.827) < Cd (51.454). According to the classification criteria in Table 3, Cd
in the surface soil reaches moderate pollution, and As, Hg, Mn, Pb, and Mo are all lightly
polluted in the study area. From the RI value, the soil of the study area is generally at a
light pollution level.

Table 5. Statistical analysis of soil toxic element content.

Ei
r As Cd Hg Mn Pb Mo RI

Max 15.538 135.923 120.851 1.011 7.239 31.000 222.650
Min 2.385 13.385 10.213 0.248 2.500 6.800 57.087

Median 7.158 52.500 34.468 0.571 5.413 12.700 114.751
Mean 7.489 51.454 36.827 0.581 5.382 13.848 115.581

To further analyze the pollution status of each toxic element, the frequency distribution
of Ei

r and RI was calculated and counted. The results are shown in Table 6. For all soil
samples, As, Mn, Pb, and Mo are entirely at a light potential ecological risk level; For Cd,
21.93% of the sampling points are at light pollution level, 75.44% of the sampling points are
at moderate pollution level, and 2.63% of the sampling points are at strong pollution level.
For Hg, 58.77% of the sampling points are at light pollution level, 39.04% of the sampling
sites are at moderate pollution level, and 2.19% of the sampling sites are at strong pollution
level. From RI, 92.54% of the sampling points are at light pollution level, and 7.46% of the
sampling points are at moderate pollution level.
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Table 6. Frequency distribution of Ei
r and RI in soil.

Ecological Risk Pollution Degree As Cd Hg Mn Pb Mo RI

light 100.00 21.93 58.77 100.00 100.00 100.00 92.54
moderate 0.00 75.44 39.04 0.00 0.00 0.00 7.46

Strong 0.00 2.63 2.19 0.00 0.00 0.00 0.00
Very strong 0.00 0.00 0.00 0.00 0.00 0.00

0.00Extremely strong 0.00 0.00 0.00 0.00 0.00 0.00

3.3. Parameter Optimization of Different Interpolation Methods for Soil Toxic Elements

Through experiments, the optimal parameters of the variogram theoretical model of
OK method are shown in Table 7. The optimal theoretical model for As, Mn, Pb, and Mo is
exponential. Spherical is the optimal theoretical model for Cd. Gaussian is optimal for Hg.

Table 7. The theoretical model of variation function of soil toxic element elements and its
related parameters.

Element Theoretical Model Nugget (Co) Sill (Co + C) Range (m) Co/(Co + C) R2 RSS

As Exponential 4.390 466.279 9.300 0.009 0.385 −4.70 × 10−15

Cd Spherical 0.003 0.198 0.940 0.016 0.554 1.05 × 10−16

Hg Gaussian 0.000 0.000 0.002 2.580 0.648 −2.16 × 10−17

Mn Exponential 13,981.034 409,876.614 18.000 0.034 0.166 5.81 × 10−14

Pb Exponential 8.283 671.014 16.330 0.012 0.317 −6.79 × 10−15

Mo Exponential 0.028 1.520 38.290 0.019 0.265 −1.79 × 10−16

The optimal parameters of IDW and RBF are presented in Table 8. Through experi-
ments, it is found that when the power value in the interpolation process of each element is
1, the inaccuracy is relatively minimal. In the RBF experiment, As, Hg, Mn, and Pb were
interpolated using the inverse multiquadric function, while the Cd and Mo elements were
interpolated using the spline with tension function.

Table 8. The optimal parameters of IDW and RBF for soil toxic element elements.

Interpolation
Method Parameter As Cd Hg Mn Pb Mo

IDW Power 1 1 1 1 1 1

RBF
Kernel

function
Inverse

Multiquadric
Spline with

Tension
Inverse

Multiquadric
Inverse

Multiquadric
Inverse

Multiquadric
Spline with

Tension
Parameter 1.36 × 10−5 48,660.323 2.42 × 10−5 1.18 × 10−38 6.40 × 10−5 48,660.323

3.4. Accuracy Comparison of Different Interpolation Methods for Soil Toxic Elements

The cross-validation method was used to assess the accuracy of the interpolation
method. The regression line intersected with the 1:1 straight line, as shown in Figure 2.
The correlation coefficient between the predicted and the measured values of As and Hg
by IDW is the largest, followed by RBF and OK. The correlation coefficient of Cd, Pb, and
Mo by OK is the smallest, significantly lower than the similar coefficients with IDW and
RBF. The correlation coefficient of Mn is highest using IDW, and with RBF it is slightly
lower than with OK. The correlation coefficient using OK ranges from 0.1170 to 0.3997. The
correlation coefficient using IDW ranges from 0.8030 to 0.8388. The correlation coefficient
by RBF ranges from 0.0992 to 0.8388. In general, the fitting degree of OK is significantly
lower than that of IDW and RBF, and its correlation coefficient is also generally smaller
than that of the other two methods.

The RMSE, ME, and IP values were computed to assess the accuracy of the three interpolation
methods. The results are presented in Table 9. For As interpolation, OK yields an ME
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closest to 0 and has the smallest IP, whereas RBF achieves the smallest RMSE. For Cd
interpolation, RBF’s ME is closest to 0, with OK and IDW showing similar results, and
relatively low RMSE and IP values. When OK is used to interpolate Hg, it results in an ME
closest to 0, with its RMSE and IP values being slightly smaller than those achieved by RBF and
IDW. For Mn interpolation, IDW’s ME is closest to 0, with the smallest RMSE and IP observed
when using OK method. Pb interpolation conducted by OK is remarkably accurate, with ME
near 0 and the lowest RMSE and IP values. OK’s ME for Mo interpolation approaches 0, while
RBF and IDW present similar and relatively low RMSE and IP. On average, the ME generated
by IDW is relatively close to 0, and the RMSE and IP produced by OK are comparatively small.

Table 9. RMSE, ME, and IP of three interpolation methods for soil toxic elements.

OK IDW RBF

ME RMSE IP ME RMSE IP ME RMSE IP

As −0.012 2.208 2.208 0.013 2.259 2.259 0.027 2.188 2.188
Cd 4.11 × 10−4 0.067 0.067 2.50 × 10−4 0.067 0.067 3.10 × 10−6 0.068 0.068
Hg −5.16 × 10−5 0.021 0.021 6.90 × 10−4 0.020 0.020 9.90 × 10−4 0.020 0.020
Mn −4.125 120.945 120.875 −2.865 125.237 125.204 −4.025 122.966 122.900
Pb 0.038 2.891 2.891 0.071 2.956 2.955 0.082 2.933 2.932
Mo 3.65 × 10−4 0.163 0.163 2.85 × 10−3 0.162 0.162 1.52 × 10−3 0.162 0.162

Mean −0.683 21.049 21.037 −0.463 21.784 21.778 −0.652 21.390 21.378
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3.5. Comparison of Interpolation Results’ Statistics and Spatial Distribution of Different
Interpolation Methods for Soil Toxic Elements

The maximum, minimum, mean value, SD (standard deviation) and CV (coefficient
of variation) of the results by the three interpolation methods were statistically analyzed
and compared with the relevant data of the sampling points. The results are presented in
Table 10. The smoothing effect of the three interpolation methods impacts the measured
concentration range of toxic elements and the intensity of the smoothing effect can be
explained by the impact amplitude. In general, the smoothing effects of IDW and RBF are
significantly weaker than that of OK. The concentration range of toxic elements showed
different degrees of reduction after interpolation, OK had the largest reduction, followed
by RBF, while IDW had the smallest reduction. The mean values of the six toxic element
elements after different interpolation methods did not change significantly. The average
value increased for all elements except Cd after IDW interpolation, while the average
values of the other elements decreased by varying degrees after different interpolation
methods were applied. Except for Cd and Mo interpolated by IDW, which are closest to
the measured values, the mean values of other elements obtained by RBF are the closest
to the sampling points, followed by IDW, with OK showing the largest discrepancy. After
interpolation, both SD and CV significantly reduced, a result of the smoothing effect. The
SD and CV of Cd and Hg are the closest to the sampling point after OK interpolation. For
As, Mn, and Pb, the smallest SD and CV values occur after IDW interpolation, while those
for Mo are closest to the sampling point after RBF interpolation.

The content distribution maps of different toxic element elements were generated
using various spatial interpolation methods in ArcGIS, and the results are presented in
Figure 3. The soil content of As is higher in the northern part of the study area and at the
junction of Baihe Township and Shimen Township in the central part. When comparing
the three methods for the prediction of low concentration (3.100~8.762 mg·kg−1) of the
As element, it is found that OK is rougher, while IDW provides more detail for a higher
concentration range (9.657~20.200 mg·kg−1). The Cd soil content in the study area is
higher in the northern Sanchuan Town and the central and southern Baihe Township. All
three interpolation methods have a “bull’s eye” phenomenon near the sampling points
with higher content, potentially indicating point source pollution and a small contaminated
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area due to concentrations near the relevant sampling points exceeding standards. The
prediction of OK for higher concentrations (0.235~0.589 mg·kg−1) is significantly rougher,
whereas the prediction of RBF for both higher and lower concentrations is relatively more
accurate. The Hg content is higher at the junction of Baihe Township and Shimen Township
in the central part of the study area. The results of RBF interpolation are significantly
rougher than the other two methods, while OK provides better predictions than IDW. The
Mn content is mainly concentrated in the soil at the junction of Baihe Township and Shimen
Township in the south of the study area, in Baihe Township to the east, and in Sanchuan
Township to the north. For predicting Mn, IDW performs significantly better than the other
two methods for both higher and lower concentration ranges. The soil Pb content at the
junction of Baihe Township and Shimen Township in the middle of the study area and Baihe
Township in the north is relatively high. For the prediction of Pb, the three methods yield
similar results, with the OK method slightly outperforming the other two from a detailed
perspective. The soil content of Mo is mainly concentrated along the border between Baihe
Township and Shimen Township in the middle of the study area and in Baihe Township to
the north. Although the prediction of OK for lower concentration (0.272~0.467 mg·kg−1) is
more detailed, compared to the other two methods, its prediction for medium and high
concentration (0.534~1.240 mg·kg−1) is less accurate, with RBF being the best for predicting
medium and high concentrations.
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Table 10. Statistics of interpolation results of different interpolation methods for toxic elements in soil.

Element Method Min (mg·kg−1) Max (mg·kg−1) Mean (mg·kg−1) SD CV (%)

As

Sampling point 3.100 20.200 9.735 2.330 23.931
OK 7.505 12.721 9.476 0.851 8.977

IDW 4.319 17.491 9.523 0.904 9.495
RBF 7.241 12.855 9.552 0.812 8.503

Cd

Sampling point 0.058 0.589 0.223 0.066 29.462
OK 0.088 0.340 0.219 0.034 15.482

IDW 0.094 0.489 0.224 0.024 10.703
RBF 0.095 0.483 0.222 0.026 11.912

Hg

Sampling point 0.012 0.142 0.043 0.020 46.420
OK 0.020 0.078 0.039 0.010 24.715

IDW 0.014 0.124 0.041 0.008 19.090
RBF 0.019 0.104 0.041 0.007 16.828

Mn

Sampling point 211.000 861.000 494.798 121.866 24.629
OK 384.795 620.448 505.262 38.888 7.697

IDW 278.110 783.120 502.477 42.466 8.451
RBF 362.467 601.000 500.514 36.693 7.331

Pb

Sampling point 11.500 33.300 24.756 3.100 12.523
OK 21.236 28.069 24.377 1.163 4.771

IDW 13.710 32.727 24.513 1.271 5.187
RBF 14.644 32.891 24.564 1.163 4.734

Mo

Sampling point 0.272 1.240 0.554 0.176 31.775
OK 0.411 0.788 0.533 0.070 13.204

IDW 0.321 1.103 0.536 0.081 15.082
RBF 0.319 1.085 0.534 0.084 15.795
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3.6. Effects of Different Interpolation Methods on the Assessment Results of Soil Toxic
Element Pollution

The data obtained through various interpolation methods were evaluated using the
potential ecological risk index method, and the proportion of polluted area was calculated.
Concurrently, these results were compared and analyzed alongside those in Table 6. The
results are presented in Table 11, and the distribution map of polluted area formed in
ArcGIS is shown in Figure 4. All sampling points for As, Mn, Pb, and Mo elements are
classified at a light pollution level, and the three interpolation methods do not significantly
influence the pollution assessment of these elements.

Table 11. Comparison of pollution assessment results of different interpolation methods for toxic
elements in soil.

Element Method Light (%) Moderate (%) Strong (%) Very Strong (%) Extremely Strong (%)

As

Sampling point 100.000 0.000 0.000 0.000 0.000
OK 100.000 0.000 0.000 0.000 0.000

IDW 100.000 0.000 0.000 0.000 0.000
RBF 100.000 0.000 0.000 0.000 0.000

Cd

Sampling point 21.930 75.440 2.630 0.000 0.000
OK 9.474 90.526 0.000 0.000 0.000

IDW 0.827 99.138 0.035 0.000 0.000
RBF 4.675 95.273 0.052 0.000 0.000

Hg

Sampling point 58.770 39.040 2.190 0.000 0.000
OK 79.706 20.294 0.000 0.000 0.000

IDW 77.874 22.118 0.008 0.000 0.000
RBF 77.056 22.942 0.002 0.000 0.000

Mn

Sampling point 100.000 0.000 0.000 0.000 0.000
OK 100.000 0.000 0.000 0.000 0.000

IDW 100.000 0.000 0.000 0.000 0.000
RBF 100.000 0.000 0.000 0.000 0.000

Pb

Sampling point 100.000 0.000 0.000 0.000 0.000
OK 100.000 0.000 0.000 0.000 0.000

IDW 100.000 0.000 0.000 0.000 0.000
RBF 100.000 0.000 0.000 0.000 0.000

Mo

Sampling point 100.000 0.000 0.000 0.000 0.000
OK 100.000 0.000 0.000 0.000 0.000

IDW 100.000 0.000 0.000 0.000 0.000
RBF 100.000 0.000 0.000 0.000 0.000
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Figure 4. Distribution of potential ecological risk pollution areas of toxic elements in soil after
interpolation by three interpolation methods.

For Cd, the three interpolation methods all increased the acreage of moderate pollution
area (40 ≤ Ei

Cd < 80) and reduced the proportion of light pollution area (Ei
Cd < 40) and

strong pollution area (80 ≤ Ei
Cd < 160). The order of decrement in the proportion of light

pollution is IDW (21.103%) > RBF (17.255%) > OK (12.456%). It can be observed in the
spatial distribution map that the OK method eliminates the area of strong pollution due
to its smoothing effect, which significantly impacts the pollution assessment. For the
acreage of light pollution areas, OK is comparable to RBF and the predicted pollution areas
interpolated by the two methods is larger than IDW.

For Hg, all three methods increased the proportion of light pollution area (Ei
Hg < 40)

and reduced the proportion of moderate pollution area (40 ≤ Ei
Hg < 80) and strong pollution

area (80 ≤ Ei
Hg < 160). The order of amplification for light pollution is OK (20.936%) > IDW

(19.104%) > RBF (18.286%), and the order of decrement for moderate pollution was OK
(18.746%) > IDW (16.922%) > RBF (16.089%). OK also does not present the prediction of
strong pollution area. For the light and moderate pollution area, the predictions of the
three methods are similar.

In general, all three methods exhibit the phenomenon of increasing the acreage of the
pollution area with larger proportion, and the increases in the three methods are similar.
This phenomenon of data concentration and accuracy decline, caused by the decrease in
data discreteness, is also a manifestation of the smoothing effect. The greater the increase
or decrease, the more pronounced the smoothing effect.

3.7. Correlation and Source Analysis of Toxic Elements in Soil

The results of the correlation analysis, including the correlation coefficient matrix and
the Pearson correlation coefficient for toxic elements, are presented in Figure 5. The results
showed that the correlations between As and Mo (r = 0.66), As and Pb (r = 0.54), Mo and Pb
(r = 0.54) are high. The correlations between As and Hg (r = 0.21), As and Mn (r = 0.015), Cd
and Hg (r = 0.28), Cd and Mn (r = 0.13), Cd and Pb (r = 0.078), Hg and Mo (r = 0.44), Hg and
Pb (r = 0.43) are general. There is a negative correlation between As and Cd (r = −0.25), Cd
and Mo (r = −0.23), Hg and Mn (r = −0.16), Mn and Mo (r = −0.15), Mn and Pb (r = −0.23).

The positive matrix factorization (PMF) model was used to analyze the pollution
sources of soil toxic elements in the study area. The PMF’s input data comprised concen-
tration data and corresponding uncertainty data. The studied elements were classified
as “strong” based on their signal-to-noise ratio (S/N). Upon inputting four source fac-
tors into the program, the Q value stabilized, indicating the model’s applicability [50].
Concurrently, the fitting degree (R2) for As, Cd, Hg, Mn, Pb, and Mo reached 0.862,0.700,
0.924, 0.977, 0.997, and 0.632, respectively, indicating its applicability and reliability of
the results [50]. The contribution rates and average contribution rates of each factor are
shown in Table 12 and Figure 6. It can be found that the major toxic elements contributed
by factor 1 are Cd and Hg, with contribution rates of 45.8% and 71.9%, respectively. The
main toxic elements contributed by factor 2 are Mn and As, with contribution rates reaching
49.9% and 37.6%. The major toxic elements contributed by factor 3 are As, Pb, and Mo,
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with contribution rates of 50.6%, 40.0%, and 50.5%, respectively. The major toxic element
contributed by factor 4 is Cd, with a contribution rate of 54.2%.
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Table 12. Contribution rates of soil toxic element pollution factors in the study area.

Element
Factor Contribution Rate (%)

Factor 1 Factor 2 Factor 3 Factor 4

As 11.7 37.6 50.6 0.1
Cd 45.8 — — 54.2
Hg 71.9 — 28.1 —
Mn 15.7 49.9 — 34.4
Pb 18.2 13.5 40.0 28.2
Mo 21.6 27.8 50.5 0.1
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soil toxic elements in the study area.

3.8. Spatial Distribution of Hotspots of Toxic Elements in Soil

Based on the source analysis of the soil toxic elements, the contribution rate of each
source factor was calculated to further explore the relationship between the main source
factor of each toxic element and its spatial distribution. Using the contribution values
of the main source factors from the PMF model for the toxic elements of 228 sampling
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points, the spatial distribution of hotspots of soil toxic elements was analyzed. The results
are presented in Figure 7. It can be observed that the spatial distributions of As, Mo,
and Pb hotspots are very similar, suggesting a possible common source for these three
elements. The high hotspots (99%, 95%, and 90% confidence intervals) are concentrated
in the construction land and cultivated land in the central and northern parts of the study
area (Figure 7a,e,f). The high hotspots (99%, 95%, and 90% confidence intervals) of Cd are
mainly concentrated in cultivated land and forest land in the eastern and southern parts of
the study area (Figure 7b). The high hotspots (99%, 95%, and 90% confidence intervals) of
Hg are mainly concentrated in the construction land in the middle of the study area, and a
small number of high hotspots are distributed in the northeast and northwest of the study
area (Figure 7c). The high hotspots (99%, 95%, and 90% confidence intervals) of Mn are
less, mainly distributed in woodland and cultivated land in the northern part of the study
area (Figure 7d).
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Figure 7. (a) The spatial distribution of As hotspots under the influence of factor 3; (b) the spatial
distribution of Cd hotspots under the influence of factor 4; (c) the spatial distribution of Hg hotspots
under the influence of factor 1; (d) the spatial distribution of Mn hotspots under the influence of
factor 2; (e) the spatial distribution of Mo hotspots under the influence of factor 3; and (f) the spatial
distribution of Pb hotspots under the influence of factor 3.
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4. Discussion
4.1. Comparative Analysis of Toxic Element Concentration and Pollution Status in Soil

Considering the Chinese and Chengdu soil background values as benchmarks, the soil
toxic element pollution in the study area was relatively moderate. Only the mean concen-
tration of Cd simultaneously exceeded the Chinese soil background value by 2.299 times
and the Chengdu soil background value by 1.715 times, while the mean concentration of
Pb exceeded 7.635% of the Chengdu soil background value. Compared to other parts of
China (as shown in Table 13), our study area has a relatively high concentration of As. From
the perspective of pollution assessment, the mean Ei

r of As is relatively low and does not
reach the level of moderate pollution (Table 3). The mean concentration of Cd in this study
area is higher than that of many other study areas, with an Ei

r higher than those recorded
in Lanzhou [51], and Shuozhou [52], suggesting a need for long-term local monitoring.
Compared to other selected study areas, the mean concentration of Hg in this study area
is relatively high. Although the average Ei

r dose not reach the moderate pollution level
(Table 3), it still needs long-term monitoring. The average soil concentration and Ei

r of Mn
in this study area are similar to those in other study areas [51,53,54], indicating almost no
ecological risk (Table 3). The average concentration of Pb in this study area is relatively high,
with the exception of the Luoyang study area [55], which records a significantly higher
average concentration. However, its average potential ecological risk index is similar to
those of other study areas, suggesting a mild pollution level (Table 3). The data on Mo are
relatively limited, with this study area recording a low concentration indicative of light
pollution (Table 3). In general, the RI in this study area is lower than that in many other
study areas, suggesting a light pollution level (Table 3). This implies that the soil toxic
element pollution in this study area is not severe.

Table 13. Comparison of toxic element concentration and pollution status in the study area of Cangxi
and other research reports.

Item

As Cd Hg Mn Pb Mo

RI ReferenceMean
(mg/kg−1) Ei

r
Mean

(mg/kg−1) Ei
r

Mean
(mg/kg−1) Ei

r
Mean

(mg/kg−1) Ei
r

Mean
(mg/kg−1) Ei

r
Mean

(mg/kg−1) Ei
r

Cangxi,
Guangyuan, China 9.735 7.489 0.223 51.454 0.043 36.827 494.798 0.581 24.756 5.382 0.554 13.848 115.581 This study

Luoyang, China — — 5.870 293.270 — — — — 155.070 4.560 — — 309.310 Hui et al.
[55]

The Xingqing Park
in Xi’an, China 5.760 5.200 — — — — 574.390 1.000 56.970 13.300 — — 179.100 Guo et al.

[53]
Lanzhou,

Northwestern
China

4.860 1.940 0.150 7.450 — — 534.650 8.190 16.700 0.490 0.540 — 25.610 Zeng et al.
[51]

Songnen-Plain,
Northeastern

China
7.160 — 0.080 — 0.020 — 439.150 — 24.700 — 0.970 — 106.000 Sun et al.

[54]

Shuozhou, China 9.269 11.880 0.117 31.270 0.030 71.280 — — 21.328 7.720 — — 124.270 Yan et al.
[52]

the Xiaohe River
Irrigation Area

of the Loess
Plateau, China

13.080 12.69 0.410 138.660 0.260 698.140 — — 37.210 12.680 — — 882.12 Meng et al.
[56]

Orchard Soils s in
Shaanxi Province,
Northwest China

11.400 — 0.290 — 0.050 — — — 23.4 00 — — — — Dong et al.
[57]

4.2. The Comparison of Spatial Interpolation Methods

Diverse impacts on the spatial dispersion of soil toxic elements are produced by differ-
ent interpolation methods. As shown in Table 9, with optimal parameters, the interpolation
accuracy of OK, IDW, and RBF for each toxic element can be observed. Generally, the ME,
RMSE, and IP values of the same toxic element after interpolation using different methods
are similar, whereas the accuracy of the same interpolation method can vary greatly with
different toxic elements. Overall, the accuracy of OK is relatively high. For the prediction of
As, Mn, and Pb, OK has obvious advantages in accuracy, because it produces the smallest
IP. While the ME, RMSE, and IP values for Cd and Hg obtained using the OK, IDW, and
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RBF methods are similar, the IDW method exhibits relatively higher accuracy despite the
slight differences. The interpolation of Mo using the RBF method results in an ME value
closer to 0 and smaller RMSE and IP values, making it a relatively optimal choice.

The statistics of the interpolation results across the three methods reveal a common
trend: the range, standard deviation (SD), and coefficient of variation (CV) decrease,
while the mean value changes compared to the original sampling point data. This can be
attributed to the inherent smoothing effect of these interpolation methods. The influence
of smoothing effect on interpolation results can be evaluated by the variation range of
each value. As indicated in Table 10, the OK method has the most pronounced smoothing
effect, with IDW and RBF showing similar effects. This may be because both IDW and
RBF methods are types of deterministic interpolation and aim to retain the actual value
of the sampling point data [18]. The three interpolation methods exhibit distinct spatial
distribution effects, as evidenced by the generated spatial distribution map. As shown in
Figure 3, the OK method provides the best prediction for spatial distribution of Hg, with
a more detailed depiction of varying concentration ranges. The spatial distribution for
As, Mn, and Pb predicted by IDW is the best. RBF has the best spatial distribution for the
prediction of Cd and Mo. Studies have shown that OK can show a significant smoothing
effect in areas with great changes in element content and poor spatial autocorrelation [58].
Therefore, the smoothing effect of OK on the spatial distribution of As, Cd, Mn, Pb, and
Mo in this study is stronger than that of the other two methods, while OK can predict the
spatial distribution of Hg in detail, which may be because of the high Moran’s index and
high spatial autocorrelation of As, Cd, Mn, Pb, and Mo (Table 14) [59]. The variation system
(46.545%) of Hg sampling points was higher, which means that the content of Hg in this
study changed greatly. At the same time, the nugget coefficient (Co/(Co + C)) was higher
(2.580) and Moran’s index (0.056) was lower, indicating that the spatial autocorrelation of
Hg was poor (Table 14) [39,59].

Table 14. Spatial autocorrelation parameters of soil toxic elements.

Element Moran’s Index z-Score p-Value

As 0.148 3.669 0.000
Cd 0.076 1.935 0.053
Hg 0.056 1.456 0.145
Mn 0.065 1.658 0.097
Pb 0.221 5.414 0.000
Mo 0.240 5.865 0.000

Given that the pollution assessment of most soil toxic elements indicates a light
pollution level, this study focuses on Cd and Hg, two elements with a higher pollution
degree, to illustrate the impact of OK, IDW, and RBF on the pollution assessment results.
The smoothing effect of OK results in the disappearance of strongly polluted areas with the
smallest acreage, leading to inaccurate predictions of more severe pollution zones, which
negatively impacts local environmental protection and management. Ultimately, RBF has
a minimal impact on the pollution assessment of Cd, and similarly, IDW’s influence on
the assessment of soil Hg pollution is negligible. It is apparent that OK, despite having
lower RMSE and IP values, does not predict polluted areas more accurately than the other
two methods. This suggests that RMSE and IP, as measures of prediction accuracy, fail to
capture the estimation error of local extremes. Furthermore, this study finds that a lower IP
value corresponds to a more pronounced smoothing effect. These findings align with the
results of a study conducted by Xie et al. (2011) [60].

4.3. Analysis of Influencing Factors and Sources

In this study, the PMF model was applied to analyze the sources of toxic element
pollution. The analytical findings are presented in Figure 6. The primary sources of
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pollution comprise four main factors. The average contribution rates of factors 1, 2, 3, and
4 are 30.8%, 21.5%, 28.2%, and 19.5%, respectively.

According to Table 12, the main toxic elements in factor 1 are Cd (45.8%) and Hg
(71.9%). Studies have shown that industrial activities such as mining, smelting, and
urban solid waste are the main sources of Cd in soil [61–64]. Hg pollutants in soil in
China are mainly derived from man-made industrial activities such as non-ferrous metal
smelting, coal combustion, coal mining, and slag activities [65,66]. According to the spatial
distribution of Hg hotspots under the influence of factor 1 (Figure 7c), the high hotspot
values are mainly concentrated in construction land, which mainly includes rural settlement
and industrial and mining land. Simultaneously, considering the significant changes in Hg
content and its poor spatial correlation, factor 1 could potentially represent the source from
industrial activities.

The main toxic elements in factor 2 are Mn (49.9%) and As (37.6%). However, the
Pearson correlation between As and Mn is not high, which suggests As and Mn may
not have the same source. The concentration values of Mn in most sampling points are
lower than the soil background value of Chengdu. Simultaneously, Mn, being a loading
element, is likely to be derived from soil parent material [50,67–69]. Considering the spatial
distribution of Mn hotspots influenced by factor 2 (Figure 7d), the high hotspots of Mn
are sporadic and far away from the construction land. Additionally, the Moran’s index of
Mn is relatively low (0.065), which means the spatial autocorrelation is poor. The source
may be from the natural environment, thus, factor 2 may represent the source of soil
parent material.

The main toxic elements in factor 3 are As (50.6%), Pb (40.0%), and Mo (50.5%). In
the correlation analysis, the Pearson correlation coefficient of these three toxic elements is
also high, which may indicate that As, Mo, and Pb have a similar pollution level or are
released from the same pollution source [70,71]. Additionally, they are mainly affected
by the same factor, which also confirms the possibility for same source of As, Pb, and
Mo. According to the spatial distribution of As, Pb, and Mo hotspots under the influence
of factor 3 (Figure 7a,e,f), the spatial distribution of the hotspots of the three elements
is similar, and the high hotspot values are concentrated in the construction land of the
study area. Meanwhile, As and Pb pollution in soil may come from coal combustion and
atmospheric deposition of industrial by-products [63,72]. Coal combustion in the rural
settlement, incorporated into the construction land, may be the primary source of As and
Pb in the soil of the study area. Additionally, one of the main sources of soil Pb and Mo
pollution is traffic exhaust [73,74]. The high hotspot area of Pb and Mo contains several
crucial local traffic roads, suggesting that soil Pb and Mo may result from the deposition of
traffic exhaust. In summary, factor 3 may represent the source of atmospheric deposition
caused by coal burning and automobile exhaust.

The main toxic element in factor 4 is Cd (54.2%). In addition to industrial activities, Cd
is a significant element in pesticides, phosphate fertilizers, and animal manure [63,75,76].
Simultaneously, according to the spatial distribution of Cd hotspots under the influence
of factor 4 (Figure 7b), high hotspot values are concentrated in woodland and cultivated
land near the construction land. The main source of pollution may include pesticides and
fertilizers. Therefore, factor 4 may represent the source of agricultural activity.

5. Conclusions

In this study, the toxic element content of soil surface was measured at 228 sam-
pling points in Cangxi County, Guangyuan City. According to the measurement results,
three different spatial interpolation methods were used. The results revealed significant
errors following the use of the three types of interpolation. Compared with the measured
values, the overall interpolation error was significant, but the difference between OK, IDW,
and RBF for the same toxic element was relatively minor. These results may be associated
with human activities and changes in environmental spatial distribution. Comparing
RMSE, ME, and IP of OK, IDW, and RBF, it can be found that OK is more accurate in
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interpolation, followed by RBF and IDW. Simultaneously, the three interpolation methods
have varying degrees of smoothing effects that influence the prediction of the maximum
and minimum values, spatial distribution maps and the pollution assessment. In general,
the smoothing effect of OK is more convenient than the other two methods, while IDW and
RBF are similar. OK has the most significant impact on the prediction of maximum and
minimum values, and the impact of IDW is slightly more pronounced than that of RBF. The
three interpolation methods indicate similar spatial distribution characteristics. However,
due to the differences in predicted values at the same position, the shape and acreage of
different content intervals vary. Regarding the impact on pollution assessment, all three
methods show a trend of increasing the acreage of the pollution area proportionately, with
each method causing a different rate of increase. Based on the accuracy of interpolation, the
interpolation results, the spatial distribution maps and the impact on pollution assessment,
the most suitable method for each toxic element in soil can be determined. The optimal
interpolation method for As, Hg, and Mn is IDW; for Cd and Mo, it is RBF; and for Pb, it
is OK. Therefore, it is necessary to select the most suitable interpolation parameters and
method according to the environmental factors such as soil characteristics and human
factors in the study area.

In analyzing the source of soil toxic elements in the study area, we used correlation
analysis, PMF model, and hotspot analysis. The analysis findings show that the main
source is human activities, further subdivided into industrial activities (30.8%), potentially
a significant source of soil Cd and Hg pollution, atmospheric deposition caused by coal
burning and traffic exhaust (21.5%) which may be a major source of soil As, Pb, and
Mo pollution and agricultural activities (19.5%) which may be a major source of soil Cd
pollution. However, the soil parent material, as a natural source, which may be a major
source of soil Mn pollution, only contributes 28.2% of the average contribution rate. In the
future, due to the strong impact of human activities, there may be a continuous increase
in the concentration of soil toxic elements in the study area. The goal of this study is to
provide a scientific foundation for local soil remediation, environmental management, and
conservation, aiming to enhance local sustainability.
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