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Abstract: In response to the global challenge of climate change and the shift away from fossil fuels,
the accurate prediction of wind power generation is crucial for optimizing grid operations and
managing energy storage. This study introduces a novel approach by integrating the proportional–
integral–derivative (PID) control theory into wind power forecasting, employing a three-dimensional
gated neural (TGN) unit designed to enhance error feedback mechanisms. The proposed empirical
mode decomposition (EMD)–convolutional neural network (CNN)–three-dimensional gated neural
network (TGNN) framework starts with the pre-processing of wind data using EMD, followed by
feature extraction via a CNN, and time series forecasting using the TGN unit. This setup leverages
proportional, integral, and differential control within its architecture to improve adaptability and
response to dynamic wind patterns. The experimental results show significant improvements
in forecasting accuracy; the EMD–CNN–TGNN model outperforms both traditional models like
autoregressive integrated moving average (ARIMA) and support vector regression (SVR), and similar
neural network approaches, such as EMD–CNN–GRU and EMD–CNN–LSTM, across several metrics
including mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE),
and coefficient of determination (R2). These advancements substantiate the model’s effectiveness
in enhancing the precision of wind power predictions, offering substantial implications for future
renewable energy management and storage solutions.

Keywords: neural networks; wind power; time series prediction; PID

1. Introduction

In the global context of actively addressing climate change and gradually reducing
the dependence on fossil fuels [1], wind energy has emerged as a core element of energy
diversification due to its cleanliness and sustainability. Accurate wind power prediction
is crucial for grid operators, as it aids in the efficient management of power supply and
demand, reduces energy waste, and significantly enhances the economic benefits of wind
energy [2]. However, wind power prediction faces many challenges due to uncertainties
such as the operational status of wind turbines and climatic conditions, exhibiting high
non-linearity in wind power time series data [3,4], posing challenges to accurate forecasting.

Since Rumelhart introduced back-propagation in 1986, the development of neural
networks has gone through several stages. In 1990, the Elman network enabled RNNs to
handle time series, although it struggled with long-term dependencies. In 1997, the ability
of the LSTM of meteorological factors to achieve satisfactory results with hybrid models
remained a significant challenge.This study, based on the development trends of recur-
rent neural network units and hybrid models, experimentally integrates PID theory into
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recurrent neural units, effectively improving the accuracy of wind power prediction [5–7].
In recent years, researchers have primarily focused on integrating traditional algorithms
with other methodologies in time series forecasting models [8]. For instance, the LSTM
technique has also made significant progress in the field of wind power forecasting. In 2021,
Shahid et al. [9] introduced a GLSTM model that combines LSTM with the genetic al-
gorithm (GA), using the GA to optimize parameters in the model, focusing on feature
learning and global optimization of non-linear sequential data, particularly optimizing
the window size and number of neurons in the LSTM layers, which improved the wind
power prediction performance by an average of 6% to 30%. In 2022, Xiang et al. [10]
combined the self-attention temporal convolutional network (SATCN) with LSTM to create
the SATCN–LSTM model. Here, the SATCN captures local features in time series data
through convolutional layers, while the self-attention mechanism addresses long-range
dependencies, thereby enhancing the model’s capacity to understand dynamic changes
in time series data and increasing the accuracy of wind power forecasts, reducing the
root mean square error by 17.56%. In 2023, Houran et al. combined LSTM with swarm
intelligence (SI) optimization algorithms to develop a framework for short-term offshore
wind power output estimation, wherein SI effectively searches the global space for optimal
solutions to optimize LSTM model parameters, demonstrating excellent predictive perfor-
mance in experiments. Also in 2023, Cui et al. [11] employed an improved dynamic sliding
door algorithm (ImDSDA), Fuzzy C-Means (FCM), and a similarity matching mechanism in
conjunction with an LSTM model to predict wind power ramp events, wherein ImDSDA dy-
namically adjusts gating parameters, FCM addresses overlapping data categories, and the
similarity matching mechanism enhances the predictive capabilities under specific con-
ditions, showing a performance superior to the existing methods in three mountainous
wind farms in central China. Meanwhile, the application of a gated recurrent unit (GRU) in
time series forecasting models continues to rise, particularly in the realm of wind power
forecasting. For instance, in 2021, Kisvari et al. [12] introduced a GRU neural network
method that integrates data pre-processing, resampling, anomaly detection and handling,
feature engineering, and hyper-parameter tuning. This method displayed a clear advantage
over traditional LSTM models in terms of prediction accuracy, training speed, and noise
sensitivity, with a training speed increase of 38%. That same year, Liu et al. [13] developed
a KK–CNN–GRU model guided by K-shape and K-means clustering, further expanding
GRU’s application scope. “KK” in the KK–CNN–GRU method stands for K-shape and
K-means clustering, used to extract patterns, denoise, and optimize input data, enhancing
the model’s accuracy in wind power prediction. In Experiment A, KK–CNN–GRU achieved
an RMSE of 83.6–224 kW and a MAPE of 4.36–18.7%; in Experiment B, the RMSE was in
the range of 228–368 kW and the MAPE was in the range of 18.3–34.4%, showing high pre-
dictive accuracy. In 2023, Xiao et al. [14] introduced feature weighted principal component
analysis (WPCA) and particle swarm optimization (PSO) algorithms to optimize the hyper-
parameters of the GRU model. This method demonstrated significant advantages in actual
wind power forecasting compared to other machine learning models, with reductions in
the MAE and RMSE of 5.3–16% and 10–16%, respectively, and an increase in R2 of 2.1–3.1%.
Although these methods incorporate other algorithms to create hybrid models that mitigate
the non-linearity and complexity of wind power forecasting, due to the non-stationary na-
ture of meteorological factors, achieving satisfactory wind power forecasting results using
hybrid models remains a significant challenge. Thus, this study builds upon the trends in
recurrent neural network (RNN) units and hybrid models, experimentally incorporating
PID theory into RNN units, effectively enhancing the accuracy of wind power prediction.

To provide a comprehensive performance comparison framework, this research will
also employ traditional machine learning algorithms such as the autoregressive inte-
grated moving average (ARIMA) model and support vector regression (SVR) as baseline
models [15]. The ARIMA model is widely used in electricity demand and price forecasting
due to its ability to handle the non-stationarity of time series data [16]. Meanwhile, SVR,
as a powerful regression tool, has been proven to deliver satisfactory results in forecasting
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tasks with highly non-linear characteristics. By comparing with these traditional models,
the aim is to demonstrate the accuracy of the EMD–CNN–TGNN model in predicting
wind power.

In order to fully exploit the predictive capabilities of neural units for wind power time
series data and enhance the accuracy of wind power prediction models, this study has
undertaken the following tasks: (1) By integrating PID control theory and neural network
technology, a three-dimensional gated neural (TGN) unit was designed based on error prop-
agation. (2) Combined with the three-dimensional gated neural unit, the empirical mode
decomposition (EMD)–convolutional neural network (CNN)–three-dimensional gated neu-
ral network (TGNN) was proposed. (3) The network model was experimentally validated
using actual data from three wind farms, demonstrating its robust predictive capability.

Section 1 of this study provides a detailed background and highlights the cutting-edge
achievements in the related literature. Section 2 supplies real operational data from three
wind farms, providing an empirical basis for the research. Section 3 first describes the
proposed EMD–CNN–TGNN model in detail, including the empirical mode decomposition
(EMD) technique, the method of feature extraction through a convolutional neural network
(CNN), and the foundational theory and prediction process of the three-dimensional
gated neural network (TGNN). Section 4 presents the performance of the proposed model
and other comparative models in experiments, validating its predictive efficacy. Finally,
Section 5 offers conclusions and discussions.

2. Data and Evaluation Method
2.1. Wind Farm Data

To validate the predictive accuracy of our model, this study employed real data from
two wind farms located in Xingtai, Hebei Province, and one in Dezhou, Shandong Province,
China. The specific locations of these wind farms are illustrated in Figure 1, and the data
include historical wind power generation data from each site with a temporal resolution of
10 min. All data underwent rigorous quality control procedures including the removal of
erroneous data and the imputation of missing values. Detailed descriptions of these three
wind farms are provided in Table 1.

Figure 1. Geographic locations of wind farms.
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Table 1. Introduction to wind farm data.

Wind Farm Terrain Elevation (m) Time Span

Wind Farm A Plain 26–30.1 6 March 2021–5 March 2024
Wind Farm B Plain 18.5 31 March 2021–29 February 2024
Wind Farm C Plain 28–36 1 January 2022–31 December 2023

2.2. Data

Real data collected through SCADA systems provide a more accurate reflection of
the operational conditions at wind farms. The SCADA system records data in 10-minute
intervals, and the raw turbine data from the three wind farms are provided in “.csv”
format [17]. Data from nine wind turbines across these farms are used to validate the
model’s predictive accuracy.

Upon analyzing the wind data from the three wind farms (Tables 2–4), it was noted
that the maximum outputs of all turbines are closely ranged between 2200 and 2336.7 kW,
with a minimum output of 0 kW, indicating a definite lower output limit. Notably, turbine 1
of Wind Farm C exhibited higher wind power outputs in terms of average (752.98 kW) and
median (419.49 kW) compared to turbine 3 of Wind Farm B, which had a lower average
(594.64 kW) and median (277.6 kW). This variance highlights performance differences
between turbines. All turbines exhibit significant volatility in wind power output, as in-
dicated by the variance and standard deviation values, such as turbine 1 of Wind Farm
C with a variance of 676,617.35 and a standard deviation of 822.57. The data distribution
analysis shows a positive skewness across all turbines, indicating a rightward skew, while
the negative kurtosis values suggest a relatively flat distribution.

Table 2. Wind farm A data.

Turbine Max (kW) Min (kW) Median (kW) Mean (kW) Variance (kW) Standard
Deviation (kW) Skewness (kW) Kurtosis (kW)

A1 2336.60 0.00 382.28 702.70 584,459.00 764.50 0.97 0.44
A2 2335.97 0.00 405.64 734.90 622,922.48 789.25 0.90 0.61
A3 2336.70 0.00 411.91 740.92 626,814.16 791.72 0.89 0.63

The first uppercase letter represents the wind farm, and the second Arabic numeral indicates the wind turbine
number. For example, “A1” refers to turbine number 1 of wind farm A.

Table 3. Wind farm B data.

Turbine Max (kW) Min (kW) Median (kW) Mean (kW) Variance (kW) Standard
Deviation (kW) Skewness (kW) Kurtosis (kW)

B1 2200.10 0.00 321.90 634.51 513,606.25 716.66 0.99 0.44
B2 2200.10 0.00 289.00 609.82 507,952.22 712.71 1.06 0.30
B3 2200.10 0.00 277.60 594.64 495,569.65 703.97 1.10 0.20

The first uppercase letter represents the wind farm, and the second Arabic numeral indicates the wind turbine
number. For example, “B1” refers to turbine number 1 of wind farm B.

Table 4. Wind farm C data.

Turbine Max (kW) Min (kW) Median (kW) Mean (kW) Variance (kW) Standard
Deviation (kW) Skewness (kW) Kurtosis (kW)

C1 2248.59 0.00 419.49 752.98 676,617.35 822.57 0.76 0.96
C2 2249.91 0.00 387.54 728.84 677,555.42 823.14 0.83 0.84
C3 2244.22 0.00 341.04 687.23 640,244.73 800.15 0.91 0.66

The first uppercase letter represents the wind farm, and the second Arabic numeral indicates the wind turbine
number. For example, “C1” refers to turbine number 1 of wind farm C.

These key data points allow us to conclude that, despite performance differences,
all turbines show significant output fluctuations, which poses challenges for wind power
prediction. For instance, the turbines in Wind Farm C generally perform better in terms of
average and median wind power, but they also experience greater fluctuations, particularly
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turbine 1. Conversely, turbine 3 of Wind Farm B, while showing lower average wind
power output, displays a more balanced data distribution, exhibiting the most significant
data skew.

2.3. Evaluation Method

In the performance evaluation of regression models, four core metrics are employed:
MAE (mean absolute error), MSE (mean squared error), RMSE (root mean squared error),
and R2 (coefficient of determination). These metrics evaluate the discrepancy between the
model’s predictions and actual values, and the model’s explanatory power from various
perspectives [8,18].

2.3.1. Core Metrics

• MAE (Mean Absolute Error) reflects the average deviation between predicted and
actual values. It is robust against outliers and is defined as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (1)

where yi is the actual value for the ith sample, ŷi is the model’s predicted value, and n
is the total number of samples.

• MSE (Mean Squared Error) is the average of the squared differences between observed
and predicted values, emphasizing larger errors:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

• RMSE (Root Mean Squared Error) provides a standard measure of error magnitude in
the same units as the data:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (3)

• R2 (Coefficient of Determination) indicates the proportion of variance in the dependent
variable predictable from the independent variables:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (4)

where ȳ is the mean of the actual values.

2.3.2. Performance Improvement Metric

To quantify performance differences between two models, the performance improve-
ment (PI) metric is used:

PI =
(

Pi − Pi+1

Pi+1

)
× 100% (5)

where Pi and Pi+1 are the performance metrics for the respective models.

3. Methods
3.1. Construction of EMD–CNN–TGNN

This research introduces a neural network architecture known as EMD–CNN–TGNN,
which is based on error feedback. As depicted in Figure 2, the EMD-CNN–TGNN architecture
initially utilizes empirical mode decomposition (EMD) to unfold the time series information.
The resultant intrinsic mode functions (IMFs) are then compiled into a multi-resolution matrix,
which is fed into a convolutional neural network (CNN) for feature extraction. Ultimately,
the predictions are made using the three-dimensional gated neural network (TGNN).
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Figure 2. EMD –CNN–TGNN structure diagram.

3.1.1. EMD

Empirical mode decomposition (EMD) is an adaptive method used to analyze and pro-
cess the non-linear and non-stationary characteristics of wind power. Each IMF component
reflects the inherent oscillatory modes of wind power at different time scales, effectively
identifying and predicting power fluctuation trends [19,20].

The core steps of EMD include:

• Extraction of Local Extrema: Identify all local extrema p1, p2, . . . , pN in the given
signal x(t).

• Envelope Extraction: For each pair of adjacent local extrema pi and pi+1, perform
linear interpolation to derive the upper emax(t) and lower emin(t) envelopes:

emax(t) =
pi+1 − pi
ti+1 − ti

× (t − ti) + pi (6)

emin(t) =
pi+1 − pi
ti+1 − ti

× (t − ti) + pi (7)

• Extraction of IMFs: Subtract the mean envelope eavg(t) from the signal x(t) to obtain
the first-order IMF c1(t). Repeat this process until c1(t) meets the stopping criteria to
become the first IMF. Continue similarly until all IMFs are extracted.

Using the empirical mode decomposition method, 2048 wind power time series data
points were decomposed into seven different IMFs. These IMFs were then assembled into a
matrix of size 2048 × 7, shown in Figure 3, to serve as input for the CNN.

Figure 3. EMDestablishment matrix diagram.
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3.1.2. Construction of CNN

The convolutional neural network (CNN) is a robust deep learning model, instru-
mental in extracting hierarchical features from data through its layers of convolutions and
pooling. In the realm of wind power data, the CNN adeptly learns characteristic patterns at
various temporal resolutions, capturing both short-term and long-term trends. Wind power
data, known for their complexity, often elude traditional feature extraction techniques,
which the CNN circumvents by learning directly from raw data in an end-to-end manner.
This method significantly simplifies the otherwise complex task of manual feature design.

The CNN architecture developed in this study comprises multiple convolutional
layers, pooling layers, and a fully connected layer, as detailed in Table 5. Designed to
extract meaningful features from the intrinsic mode functions (IMFs) matrix, these features
are then transformed into a vector of size 128 × 1. This vector is utilized by subsequent
layers of the three-dimensional gated neural (TGN) unit. Specifically, the initial layer of
the model is a convolutional layer, which utilizes 32 filters of size 5 × 1 to process the
input matrix, employing the ReLU activation function to enhance the model’s capability to
handle non-linearities. This is followed by a max pooling layer that uses a 2 × 1 window to
down-sample the feature map, thereby reducing computational demand while increasing
the model’s abstraction capacity.

Table 5. CNN model parameters.

Layer Type Output Size Kernel Size Number of Filters Activation Function Remark

Input layer 2048 × 7 × 1 - - - Input shape is 2048 × 7, 1 channel
Convolutional layer 1 2044 × 7 × 32 5 × 1 32 ReLU Kernel stride is 1

Pooling layer 1 1022 × 7 × 32 2 × 1 - - Max pooling
Convolutional layer 2 1018 × 7 × 64 5 × 1 64 ReLU Kernel stride is 1

Pooling layer 2 509 × 7 × 64 2 × 1 - - Max pooling
Flatten 227136 × 1 - - - -

Fully connected layer 128 × 1 - - ReLU -

Subsequent convolutional and pooling layers deepen the learning process. The num-
ber of filters is increased to 64 to capture more complex features, maintaining the same
kernel size and pooling strategy. This design not only bolsters the model’s feature extrac-
tion capabilities but also efficiently reduces the dimensionality of the features, laying a
foundational framework for feature vector generation.

After two cycles of convolution and pooling, the feature map is flattened into a one-
dimensional vector and processed through a fully connected layer. This layer, containing
128 neurons and utilizing the ReLU activation function, outputs a vector of size 128 × 1.
This vector, enriched with crucial information from the original time series data, represents
a meticulously refined feature representation, providing robust support for the subsequent
predictive tasks. The schematic of this layer structure is illustrated in Figure 4.

Figure 4. TGNN layer structure diagram.
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3.1.3. Construction of the Three-Dimensional Gated Neural (TGN) Unit

While LSTM and GRU units have been effective in managing complex and dynamic
time series data, they have not fully addressed the nuances in temporal intervals between
data points and the rate of increase in wind power output [21]. Considering the capabilities
of PID control theory in handling time series data, a novel neural network unit based on
error feedback has been proposed, where the initial error is set to zero. The network utilizes
proportional and differential controls, employing the tanh function to manage the flow
proportion of error to the model’s output at time t, denoted as ht, and introduces an interval
∆t to calculate the rate of error change, thereby adjusting the impact at the current moment.

To address long-term dependencies, an integral gate mechanism is incorporated, which
combines previous integration results with proportional control coefficients. The integration
control coefficient at the current moment is calculated using the ReLU function, which helps
in preventing gradient vanishing or explosion. Moreover, the error bias term bt in the model
output ht is replaced by a three-dimensional gate, facilitating the transfer and predictive
functionality of error information. The structure of the TGN is illustrated in Figure 5.

Figure 5. TGNE diagram (three-dimensional gated neural elements diagram).

The mathematical representation of the TGN unit includes several key equations:

e0 = 0 (8)

et = yt − ŷt (9)

pt = tanh(wpt · et + bpt) (10)

it = ReLU(wit · pt + it−1 + bit) (11)

dt = tanh(wdt · (et − et−1)/∆t + bdt) (12)

ht = σ(wh · ht−1 + wx · x + b + pt + it + dt) (13)

Here, e0 represents the initial error, assumed to be zero, indicating no error at the
start. et calculates the error at time step t, with yt being the actual observed value and
ŷt the model’s predicted value. The prediction component pt utilizes the tanh activation
function. The internal state it at time t is computed using the ReLU function, with it−1 as
the internal state from the previous time step. dt calculates the differential term with tanh
as the activation function, and ∆t represents the time step length. Finally, ht represents the
output of the model at time t, where σ denotes the activation function, and wh, wx are the
weight matrices, with x as the input.

3.2. Implementation Steps

All models were implemented on a personal computer equipped with the Windows
11 operating system, an Intel(R) Core(TM) i5-12490F processor (3.0 GHz), and Fury 3200
MHz, 16 GB RAM. The processor was manufactured by Intel Corporation, located in Santa
Clara, CA, USA. The RAM was produced by Kingston Technology Corporation, based in
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Fountain Valley, CA, USA.The deep learning models were developed using the Python
3.8 programming language, with Anaconda IDE and PyCharm as development tools.
The TensorFlow deep learning framework was utilized for predictive studies. To mitigate
the impact of random initial weights on prediction results, each model was run three times.
The specific implementation steps are illustrated in Figure 6.

Figure 6. Flowchart of implementation steps.

Step 1: Data Pre-processing.
Data from three wind farms (A, B, and C) were analyzed, selecting active power data

from three wind turbines at each site, with each dataset containing 150,000 data points.
Missing data within the datasets were filled using the K-nearest neighbors algorithm [22],
ensuring the integrity of the data. Additionally, Z-score normalization [23] was applied to
eliminate the influence of varying data magnitudes. The first 149,872 data points of each
dataset were designated as the training set, with a window of 2048 data points used to
divide the data into training and testing sets.

Step 2: EMD Decomposition.
The pre-processed time-series data were decomposed using the empirical mode de-

composition (EMD) method. The Python library PyEMD was utilized to perform the EMD
decomposition, and the first seven intrinsic mode functions (IMFs) were selected as the
basis for further analysis.

Step 3: Construction of IMFs Matrix and CNN–TGNN Model Training.
Based on the results of the EMD decomposition, the first seven selected IMFs were

compiled into a matrix of size 2048 × 7. This matrix served as the input for the subse-
quent CNN. Each IMF represents a specific frequency component of the original data,
effectively capturing the complex features of the data while retaining their temporal in-
formation. Utilizing the constructed IMFs matrix, the CNN extracted key features from
the time series data and output a vector of size 128 × 1. This vector was then input into
the three-dimensional gated neural network (TGNN) layer for final predictive analysis.
During the training phase, the first 149,872 data points served as the training set, with data
incrementally supplied to the model using a sliding window approach. The initial learning
rate was set at 0.001 and was decreased by 10% every 10 epochs to adjust, with a batch
size of 32 used to balance computational efficiency and memory usage. Training strategies
included gradually reducing the learning rate and employing the Adam optimizer to meet
the model’s needs. To prevent overfitting, L2 regularization was applied with a coefficient
of 0.001 to limit weight sizes and reduce the risk of overfitting.
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3.3. Comparison Models

In the model comparison segment of this study, hybrid models were employed, specifi-
cally including EMD–CNN–LSTM and EMD–CNN–GRU models for analysis. The training
methodologies for these models were similar to those used for the EMD–CNN–TGNN
model. These hybrid models were compared with traditional models employing autoregres-
sive integrated moving average (ARIMA) and support vector regression (SVR) to highlight
their performance differences and applicability in handling complex datasets with temporal
and spatial dependencies [15,16,24,25].

4. Results and Analysis

This experiment utilized datasets from two wind farms in Xingtai, Hebei (Wind Farms
A and B), and one in Dezhou, Shandong (Wind Farm C), selecting three wind turbines from
each wind farm for analysis. To demonstrate the predictive performance of the EMD–CNN–
TGNN model, it was compared with two structurally similar models, EMD–CNN–LSTM
and EMD–CNN–GRU, as well as two traditional models, ARIMA and SVR.

Significant findings from the experimental analysis, based on Figures 7–12 and
Tables 6 and 7, include the following:

• In Wind Farm A, the TGNN model (EMD–CNN–TGNN) demonstrated higher predic-
tive accuracy for turbines A1, A2, and A3, especially in capturing rapid fluctuations in
the data more closely. Compared to EMD–CNN–LSTM and EMD–CNN–GRU, which
exhibited varying degrees of deviation, ARIMA and SVR performed the poorest, un-
derscoring the TGNN model’s superior ability to capture complex patterns and trends
in the data.

• Against EMD–CNN–LSTM, the TGNN model showed improvements of 7.88% in
MAE, 26.09% in MSE, 14.03% in RMSE, and an increase of 3.30% in R2. Compared to
EMD–CNN–GRU and particularly SVR, the differences were even more pronounced,
with an up to 56.67% improvement in R2 with SVR, highlighting the TGNN model’s
significant advantages in prediction accuracy and data fitting.

• In the data for turbines A2 and A3, the TGNN model continued to show higher
performance enhancements, notably against ARIMA in turbine A2 data, where the
improvement in R2 reached an impressive 66.67%, further proving the TGNN model’s
excellence in complex data settings.

• In Wind Farm B, the performance of the five models varied across turbines B1, B2,
and B3. Notably, in turbine B1 data, the EMD–CNN–LSTM improved and approached
the actual data more closely. However, the EMD–CNN–TGNN maintained consis-
tency and stability overall, especially in turbine B2 data, where its predictive path
highly aligned with the actual wind power outputs. The TGNN model also exhibited
superior performance, particularly in turbine B2 data compared to SVR, with a 59.68%
improvement in R2 and a 3.26% increase over the well-performing EMD–CNN–LSTM
in turbine B1 data, indicating the TGNN model’s enhanced accuracy and reliability
across different turbine data scenarios.

• In Wind Farm C, the EMD–CNN–TGNN maintained good performance in capturing
rapid changes, while the EMD–CNN–GRU showed weaker performance in sudden
shifts, and ARIMA and SVR lagged significantly behind the other three models.
The performance of EMD–CNN–TGNN in Wind Farm C emphasizes its robustness
against disturbances during abrupt events. Compared to other models, especially
in turbine C2 data against SVR, the increase in R2 reached 61.67%, demonstrating
its strong capability in capturing data trends and fluctuations. In turbine C1 data,
the TGNN model increased R2 by 45.00% compared to ARIMA, further highlighting
its accuracy across different wind power data scenarios.
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Figure 7. Comparison of model predictions with actual values for three turbines at Wind Farm A.
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Figure 8. Comparison of model predictions with actual values for three turbines at Wind Farm B.
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Figure 9. Comparison of model predictions with actual values for three turbines at Wind Farm C.
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Figure 10. Violin plot of prediction errors for various models at Wind Farm A.

Figure 11. Violin plot of prediction errors for various models at Wind Farm B.

Figure 12. Violin plot of prediction errors for various models at Wind Farm C.
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Table 6. Performance comparison of various models across wind farms.

Scenario MAE (kW) MSE (kW) RMSE (kW) R2

A1 EMD–CNN–TGNN 93.46 35,482.13 188.37 0.94
A1 EMD–CNN–LSTM 101.45 48,006.73 219.10 0.91
A1 EMD–CNN–GRU 108.21 66,943.16 258.73 0.88
A1 ARIMA 304.21 137,700.8 371.08 0.75
A1 SVR 384.97 220,236 469.29 0.60
A2 EMD–CNN–TGNN 111.52 21,929.61 148.09 0.95
A2 EMD–CNN–LSTM 139.13 30,815.16 175.54 0.93
A2 EMD–CNN–GRU 133.44 62,025.05 249.05 0.86
A2 ARIMA 375.60 191,603 437.72 0.57
A2 SVR 347.53 169,374.6 411.55 0.62
A3 EMD–CNN–TGNN 90.64 45,111.26 212.39 0.91
A3 EMD–CNN–LSTM 162.25 57,743.46 240.30 0.89
A3 EMD–CNN–GRU 156.17 72,656.62 269.55 0.86
A3 ARIMA 338.55 191,558.9 437.67 0.63
A3 SVR 365.31 190,006.8 435.90 0.63

B1 EMD–CNN–TGNN 65.31 8332.26 91.28 0.95
B1 EMD–CNN–LSTM 94.70 13,425.87 115.87 0.92
B1 EMD–CNN–GRU 105.93 23,210.08 152.35 0.86
B1 ARIMA 201.43 62,710.59 250.42 0.61
B1 SVR 205.71 55,748.36 236.11 0.65
B2 EMD–CNN–TGNN 44.36 4159.19 64.49 0.99
B2 EMD–CNN–LSTM 96.85 14,164.19 119.01 0.96
B2 EMD–CNN–GRU 80.30 22,863.93 151.21 0.93
B2 ARIMA 213.81 106,353 326.12 0.67
B2 SVR 308.83 122,435.1 349.91 0.62
B3 EMD–CNN–TGNN 132.74 37,778.82 194.37 0.95
B3 EMD–CNN–LSTM 215.70 62,981.02 250.96 0.91
B3 EMD–CNN–GRU 203.78 81,130.46 284.83 0.88
B3 ARIMA 395.75 264,475.7 514.27 0.62
B3 SVR 442.85 251,979.5 501.98 0.64

C1 EMD–CNN–TGNN 25.88 2696.61 51.93 0.87
C1 EMD–CNN–LSTM 28.04 3167.82 56.28 0.84
C1 EMD–CNN–GRU 30.54 3597.08 59.98 0.82
C1 ARIMA 70.96 7938.54 89.10 0.60
C1 SVR 65.60 6375.56 79.85 0.68
C2 EMD–CNN–TGNN 75.57 16,574.71 128.74 0.97
C2 EMD–CNN–LSTM 76.92 22,429.54 149.76 0.96
C2 EMD–CNN–GRU 103.14 47,321.60 217.54 0.91
C2 ARIMA 373.86 197,084.5 443.94 0.63
C2 SVR 364.17 212,188.1 460.64 0.60
C3 EMD–CNN–TGNN 61.86 7675.15 87.61 0.91
C3 EMD–CNN–LSTM 67.43 9047.17 95.12 0.89
C3 EMD–CNN–GRU 69.26 9455.52 97.24 0.89
C3 ARIMA 153.35 28,552.06 168.97 0.66
C3 SVR 160.29 31,230.06 176.72 0.63

Tables 8–13 are employed to evaluate the comprehensive predictive performance of
the EMD–CNN–TGNN model across all datasets and compare it with other models in-
cluding EMD–CNN–LSTM, EMD–CNN–GRU, ARIMA, and SVR. The EMD–CNN–TGNN
model showcases leading performance across all major metrics, achieving the lowest mean
absolute error (MAE = 77.93), mean squared error (MSE = 19,971.08), root mean squared
error (RMSE = 129.70), and the highest coefficient of determination (R2 = 0.94). These
results demonstrate the superiority of EMD–CNN–TGNN in both prediction accuracy and
data fit over the competing models.



Sustainability 2024, 16, 3474 16 of 19

Table 7. Comparison of model prediction performance.

Scenario Model Comparison MAE (%) MSE (%) RMSE (%) R2 (%)

A1 EMD–CNN–TGNN vs. EMD–CNN–LSTM 7.88 26.09 14.03 3.30
A1 EMD–CNN–TGNN vs. EMD–CNN–GRU 13.63 47.00 27.19 6.82
A1 EMD–CNN–TGNN vs. ARIMA 69.28 74.23 49.24 25.33
A1 EMD–CNN–TGNN vs. SVR 75.72 83.89 59.86 56.67
A2 EMD–CNN–TGNN vs. EMD–CNN–LSTM 19.84 28.83 15.64 2.15
A2 EMD–CNN–TGNN vs. EMD–CNN–GRU 16.43 64.64 40.54 10.47
A2 EMD–CNN–TGNN vs. ARIMA 70.31 88.55 66.17 66.67
A2 EMD–CNN–TGNN vs. SVR 67.91 87.05 64.02 53.23
A3 EMD–CNN–TGNN vs. EMD–CNN–LSTM 44.14 21.88 11.61 2.25
A3 EMD–CNN–TGNN vs. EMD–CNN–GRU 41.96 37.91 21.21 5.81
A3 EMD–CNN–TGNN vs. ARIMA 73.23 76.45 51.47 41.27
A3 EMD–CNN–TGNN vs. SVR 75.19 76.26 51.28 44.44

B1 EMD–CNN–TGNN vs. EMD–CNN–LSTM 31.03 37.94 21.22 3.26
B1 EMD–CNN–TGNN vs. EMD–CNN–GRU 38.35 64.10 40.09 10.47
B1 EMD–CNN–TGNN vs. ARIMA 67.58 86.71 63.55 55.74
B1 EMD–CNN–TGNN vs. SVR 68.25 85.05 61.34 46.15
B2 EMD–CNN–TGNN vs. EMD–CNN–LSTM 54.20 70.64 45.81 3.13
B2 EMD–CNN–TGNN vs. EMD–CNN–GRU 44.76 81.81 57.35 6.45
B2 EMD–CNN–TGNN vs. ARIMA 79.25 96.09 80.23 47.76
B2 EMD–CNN–TGNN vs. SVR 85.64 96.60 81.57 59.68
B3 EMD–CNN–TGNN vs. EMD–CNN–LSTM 38.46 40.02 22.55 4.40
B3 EMD–CNN–TGNN vs. EMD–CNN–GRU 34.86 53.43 31.76 7.95
B3 EMD–CNN–TGNN vs. ARIMA 66.46 85.72 62.20 53.23
B3 EMD–CNN–TGNN vs. SVR 70.03 85.01 61.28 48.44

C1 EMD–CNN–TGNN vs. EMD–CNN–LSTM 7.70 14.87 7.73 3.57
C1 EMD–CNN–TGNN vs. EMD–CNN–GRU 15.26 25.03 13.42 6.10
C1 EMD–CNN–TGNN vs. ARIMA 63.53 66.03 41.72 45.00
C1 EMD–CNN–TGNN vs. SVR 60.55 57.70 34.97 27.94
C2 EMD–CNN–TGNN vs. EMD–CNN–LSTM 1.76 26.10 14.04 1.04
C2 EMD–CNN–TGNN vs. EMD–CNN–GRU 26.73 64.97 40.82 6.59
C2 EMD–CNN–TGNN vs. ARIMA 79.79 91.59 71.00 53.97
C2 EMD–CNN–TGNN vs. SVR 79.25 92.19 72.05 61.67
C3 EMD–CNN–TGNN vs. EMD–CNN–LSTM 8.26 15.17 7.90 2.25
C3 EMD–CNN–TGNN vs. EMD–CNN–GRU 10.68 18.83 9.90 2.25
C3 EMD–CNN–TGNN vs. ARIMA 59.66 73.12 48.15 37.88
C3 EMD–CNN–TGNN vs. SVR 61.41 75.42 50.42 44.44

Table 8. Average model prediction performance at Wind Farm A.

Model MAE (kw) MSE (kw) RMSE (kw) R2

EMD–CNN–TGNN 98.54 34,174.33 182.95 0.93
EMD–CNN–LSTM 134.28 45,521.78 211.65 0.91
EMD–CNN–GRU 132.61 67,208.28 259.11 0.87

ARIMA 339.45 173,620.88 415.49 0.65
SVR 365.94 193,205.82 438.91 0.62

Table 9. Average model prediction performance at Wind Farm B.

Model MAE (kw) MSE (kw) RMSE (kw) R2

EMD–CNN–TGNN 80.80 16,756.76 116.71 0.96
EMD–CNN–LSTM 135.75 30,190.36 161.95 0.93
EMD–CNN–GRU 130.00 42,401.49 196.13 0.89

ARIMA 270.33 144,513.07 363.60 0.63
SVR 319.13 143,387.66 362.67 0.64

Table 10. Average model prediction performance at Wind Farm C.

Model MAE (kw) MSE (kw) RMSE (kw) R2

EMD–CNN–TGNN 54.44 8982.16 89.43 0.92
EMD–CNN–LSTM 57.46 11,548.18 100.39 0.90
EMD–CNN–GRU 67.65 20,124.73 124.92 0.87

ARIMA 199.39 77,858.37 234.00 0.63
SVR 196.69 83,264.56 239.07 0.64
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Table 11. EMD–CNN–TGNN average performance improvement at Wind Farm A.

Comparison MAE (%) MSE (%) RMSE (%) R2 (%)

EMD–CNN–TGNN vs. EMD–CNN–LSTM 23.95 25.60 13.76 2.56
EMD–CNN–TGNN vs. EMD–CNN–GRU 24.01 49.85 29.65 7.70

EMD–CNN–TGNN vs. ARIMA 70.94 79.75 55.63 44.42
EMD–CNN–TGNN vs. SVR 72.94 82.40 58.38 51.45

Table 12. EMD–CNN–TGNN average performance improvement at Wind Farm B.

Comparison MAE (%) MSE (%) RMSE (%) R2 (%)

EMD–CNN–TGNN vs. EMD–CNN–LSTM 41.23 49.53 29.86 3.59
EMD–CNN–TGNN vs. EMD–CNN–GRU 39.32 66.45 43.07 8.29

EMD–CNN–TGNN vs. ARIMA 71.10 89.51 68.66 52.24
EMD–CNN–TGNN vs. SVR 74.64 88.89 68.06 51.42

Table 13. EMD–CNN–TGNN average performance improvement at Wind Farm C.

Comparison MAE (%) MSE (%) RMSE (%) R2 (%)

EMD–CNN–TGNN vs. EMD–CNN–LSTM 5.91 18.71 9.89 2.29
EMD–CNN–TGNN vs. EMD–CNN–GRU 17.56 36.28 21.38 4.98

EMD–CNN–TGNN vs. ARIMA 67.66 76.91 53.62 45.62
EMD–CNN–TGNN vs. SVR 67.07 75.11 52.48 44.68

The EMD–CNN–LSTM and EMD–CNN–GRU models, while superior to ARIMA and
SVR, do not match the performance of EMD–CNN–TGNN. Specifically, the R2 values
for EMD–CNN–LSTM and EMD–CNN–GRU are 0.91 and 0.88, respectively, indicating
a lesser ability to explain variability in the data. ARIMA and SVR significantly under-
perform across all metrics, particularly in MSE and RMSE, reflecting their limitations in
handling wind power prediction tasks. Their respective R2 values of 0.64 and 0.63 highlight
substantial disparities in data fitting.

Relative to EMD–CNN–LSTM, EMD–CNN–TGNN exhibits performance improvements
of 23.70% in MAE, 31.28% in MSE, and 17.84% in RMSE, with a 2.82% increase in R2. These
enhancements emphasize the significant accuracy gains provided by EMD–CNN–TGNN.
Against EMD–CNN–GRU, the improvements are even more pronounced, especially in MSE
and RMSE, the values of which are higher by 50.86% and 31.36%, respectively, with a 6.99%
increase in R2.

Compared with ARIMA and SVR, EMD–CNN–TGNN not only shows substantial
improvements in MAE, MSE, and RMSE (exceeding 69.90% and 71.55%, respectively), but
also demonstrates remarkable increases in R2 of 47.43% and 49.18%, respectively. These
comparisons highlight the exceptional ability of EMD–CNN–TGNN to predict wind power
time series data with high data fitting accuracy.

Based on the comprehensive performance comparison facilitated by Tables 14 and 15,
and a detailed analysis of performance enhancements, it is observed that the EMD–CNN–
TGNN model achieved significant improvements in key metrics such as MAE, MSE, RMSE,
and R2. Specifically, compared to the EMD–CNN–GRU and EMD–CNN–LSTM models,
EMD–CNN–TGNN exhibited an average performance enhancement of 23.68% in MAE,
28.85% in MSE, 17.83% in RMSE, and 2.81% in R2. Moreover, when compared against
the EMD–CNN–LSTM model, there were further increases of 28.49%, 65.66%, 34.84%,
and 6.89%, respectively. The performance uplift was even more pronounced when con-
trasted with traditional models such as ARIMA and SVR, which showed improvements of
69.90%, 82.06%, 59.30%, 47.43%, and 71.55%, 82.13%, 59.64%, 49.18%, respectively.

These performance metrics not only validate the significant advantages of the EMD–
CNN–TGNN model over existing models but also provide vital references and foundations
for future research directions and applications. The following sections outline the implica-
tions of these findings and suggest areas for further investigation.
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Table 14. Overall average performance of each model.

Model MAE (kw) MSE (kw) RMSE (kw) R2

EMD–CNN–TGNN 77.93 19,971.08 129.70 0.94
EMD–CNN–LSTM 109.16 29,086.77 157.99 0.91
EMD–CNN–GRU 110.09 43,244.83 193.39 0.88

ARIMA 269.72 131,997.44 337.70 0.64
SVR 293.92 139,952.68 346.88 0.63

Table 15. Average performance improvement of EMD–CNN–TGNN across all datasets.

Comparison (Model 1 vs. Model) MAE (%) MSE (%) RMSE (%) R2 (%)

EMD–CNN–TGNN vs. EMD–CNN–LSTM 23.70 31.28 17.84 2.82
EMD–CNN–TGNN vs. EMD–CNN–GRU 26.96 50.86 31.36 6.99

EMD–CNN–TGNN vs. ARIMA 69.90 82.06 59.30 47.43
EMD–CNN–TGNN vs. SVR 71.55 82.13 59.64 49.18

5. Conclusions and Discussions

In summary, a novel hybrid model named EMD–CNN–TGNN has been proposed to
enhance the accuracy of short-term wind power forecasting. Within this hybrid model,
the empirical mode decomposition (EMD) algorithm effectively reduces the volatility of
wind speed series, the convolutional neural network (CNN) efficiently extracts features
from wind power data, and the three-dimensional gated neural network (TGNN) utilizes
its tri-gate characteristics to effectively predict based on these features. The EMD–CNN–
TGNN model demonstrates superior average performance with an MAE of 54.44, MSE of
8982.16, RMSE of 89.43, and R2 of 0.92, surpassing the other two hybrid models and two
traditional models.

Considering the enhanced accuracy of the proposed EMD–CNN–TGNN model, it
implies significant benefits for wind farm operational management. More accurate power
output predictions can optimize electricity dispatch and energy management strategies,
thereby reducing economic losses due to forecasting errors. Additionally, this model could
be applied to the energy storage systems of wind farms, providing forecast data to the
control systems of PEM electrolyzers to adjust their efficiency curves and improve the
utilization rate of wind energy.

Despite the high performance demonstrated by the TGNN in experiments, its struc-
tural complexity and the need for parameter tuning may pose challenges in practical
deployments. Balancing the improvement in prediction accuracy with the simplification
of model complexity is a critical consideration for future research. Further studies could
explore more efficient training techniques, such as knowledge distillation or model pruning,
and the use of lightweight network architectures to reduce computational resource con-
sumption. These techniques will be explored in subsequent research to provide guidance
for the practical deployment of the model.
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