
Citation: Peng, L.; Liang, J.; Wang, K.;

Xiao, W.; Zou, J.; Hong, Y.; Ding, R.

Exploring Spatial-Temporal Coupling

and Its Driving Factors of Green and

Low-Carbon Urban Land Use

Efficiency and High-Quality

Economic Development in China.

Sustainability 2024, 16, 3455.

https://doi.org/10.3390/su16083455

Academic Editors: Kaifeng Duan,

Jiajia Li, Jianing Zhou and Lei Chen

Received: 8 March 2024

Revised: 15 April 2024

Accepted: 17 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Exploring Spatial-Temporal Coupling and Its Driving Factors of
Green and Low-Carbon Urban Land Use Efficiency and
High-Quality Economic Development in China
Lina Peng 1,2,3,4, Juan Liang 1,2, Kexin Wang 1,2, Wenqian Xiao 1,3, Jian Zou 1,3, Yuxuan Hong 1,4

and Rui Ding 1,2,3,4,*

1 College of Big Data Application and Economics (Guiyang College of Big Data Finance), Guizhou University
of Finance and Economics, Guiyang 550025, China; 15215244950@mail.gufe.edu.cn (L.P.);
liangjuan@mail.gufe.edu.cn (J.L.); 844135652@mail.gufe.edu.cn (K.W.);
xiaowenqian2000@mail.gufe.edu.cn (W.X.); 20221172111003@mail.gufe.edu.cn (J.Z.);
20221272111075@mail.gufe.edu.cn (Y.H.)

2 Guizhou Collaborative Innovation Center of Green Finance and Ecological Environment Protection, Guizhou
University of Finance and Economics, Guiyang 550025, China

3 Artificial Intelligence and Digital Finance Lab, Guizhou University of Finance and Economics,
Guiyang 550025, China

4 Guizhou University of Finance and Economics Regional Economic High-Quality Development Research
Provincial Innovation Team, Guiyang 550025, China

* Correspondence: 201801162@mail.gufe.edu.cn; Tel.: +86-186-2883-7118

Abstract: Green and low-carbon use of urban land (GLUUL) and high-quality economic development
(HED) are two closely linked and mutually reinforcing systems, and their coordinated development
is of great theoretical and practical significance to the realization of green and sustainable urban
development. Based on theoretical analysis, this paper used data from 2005 to 2020 to measure
GLUUL efficiency and HED level and their coupling coordination degree (CCD) successively of
282 cities in China, and then analyzed in-depth the main factors affecting CCD and its spatial–
temporal heterogeneity using the GTWR model. This study found that (1) GLUUL efficiency and
HED levels are increasing with different trends, and the development is unbalanced. High-value cities
in the two systems show a staggered distribution pattern. (2) The CCD of the two was dominated by
primary and intermediate coordination types, and the overall became increasingly coordinated, with
the “intermediate coordination—advanced development” type having the highest representation.
(3) There is a gradual convergence of CCD spatial differences, showing an overall spatial distribution
pattern that is “high in the northwest and southeast, low in the central area”. (4) The influence
degree and direction of different factors on CCD are distinguishing. The positive impact of industrial
structure upgrading (Isu) is obviously greater than other factors, which has the strongest effect on
the industrial corridor along the Yangtze River and the Beijing–Tianjin–Hebei region. The findings
can offer insightful recommendations for promoting sustainable development in China and similar
developing countries and regions.

Keywords: green and low-carbon land use; urbanization; high-quality economic development;
coupling coordination; influencing factors; spatial–temporal heterogeneity

1. Introduction

In 2007, the 13th Conference of the Parties of the United Nations Framework Conven-
tion on Climate Change adopted the “Bali Action Plan”, which proposed the concepts of a
“low-carbon economy” and “clean energy” and called on all countries to take measures to
address global climate change. Since then, more and more attention has been placed on how
to achieve green and low-carbon transformation of land utilization and raise the efficiency
of resource use [1]. Urbanization is an irresistible trend in the 21st century, and most of
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the urban expansion will take place in developing countries in the next few decades [2,3].
China, being the most populous developing nation globally, has witnessed an unprece-
dented urbanization process since the 1980s. In 1987, the rate of China’s urbanization was
only 17.9%. However, by 2021, it reached 64.72%, with an annual growth rate of over 1% [4].
This exceeds the world average for the same period. The rapid urbanization evolution
created augmented pressure on land resources, environmental pollution, climate change,
and other problems, posing severe challenges to regional sustainable development. To
this end, China has put forward the strategy of “new-type urbanization” and the five
development concepts of “innovation, coordination, green, openness and sharing” to fur-
ther promote GLUUL (green and low-carbon use of urban land) and HED (high-quality
economic development). GLUUL can increase the utilization efficiency and ecological
benefit of urban land resources and reduce the adverse effects on the environment, while
HED needs more high-quality land resources to facilitate the adjustment and upgrading of
the industrial constitution to create innovation-driven cities and other aspects. Therefore,
in the process of urbanization, it has important practical significance to coordinate GLUUL
and HED.

GLUUL means that social, economic, and ecological gains should be as large as possi-
ble, while the environmental losses should be as small as possible in urban land systems
under certain resource inputs. Specifically, GLUUL emphasizes that the balance and sta-
bility of the ecosystem should be fully considered in the process of land use, avoiding the
destruction of urban wetlands, forests, and grasslands. Secondly, GLUUL focuses on reduc-
ing environmental pollution. By reducing the emission of pollutants such as wastewater,
exhaust gas, and solid waste produced during land use, it reduces the pollution of soil,
water bodies, and the atmospheric environment. In addition, it also stresses the lowering
of greenhouse gas emissions through rational planning of land use layout, construction of
low-carbon transport systems, use of clean energy, etc., to reduce CO2 emissions from urban
social production and living. Relevant studies predominantly focused on three aspects:
first, urban planning and design. Urban land use efficiency can be effectively improved by
appropriating urban form and pursuing optimal city size. Some studies have examined
urban forms using landscape indicators to quantify sprawl, complexity, and agglomeration,
and found that irregular urban forms have a negative impact on urban land use efficiency,
while compact and agglomerated urban forms can improve it [5]. The same evidence comes
from remote sensing data, which found that an urban form characterized by high patch
density and large area, although conducive to improving land use efficiency in large cities,
is not conducive to improving land use efficiency in small cities [6]. The second aspect is
industrial transformation and agglomeration. It can improve the input–output efficiency
of urban land resources by upgrading the industrial structure and optimizing the spatial
layout of industries. Studies have shown that there is a synergistic effect of interactive
growth between urban land use efficiency and industrial transformation [7]. Industrial
specialized agglomeration has an inverted U-shaped relationship with urban green space
use efficiency, while industrial diversified agglomeration has a positive effect [8]. Third, the
establishment of low-carbon cities and communities [9]. The construction of low-carbon
cities and green communities promotes the coordination of economic development and
green land use in urban areas. When examining the effectiveness of China’s low-carbon
city pilot policy, a study found that the policy promoted land green use efficiency in the
eastern and western regions, as well as in growing resource-based cities [10]. Similarly,
smart city construction can significantly improve urban land green use efficiency through
the development of the information industry and regional innovation capacity. This impact
is more pronounced in mega and above cities [11]. Urban land use efficiency is evalu-
ated mainly through DEA (Data Envelopment Analysis) and SBM (Slacks-Based Measure)
models [12,13]. These models comprehensively consider non-desired outputs, such as
urban wastewater and urban exhaust gas emissions, from the perspective of inputs and
outputs by establishing environmental constraints [14–16]. Indicator evaluation is another
representative method that includes both composite and single indicators. For example,
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Ustaoglu. E and Aydınoglu (2020) evaluated the suitability of urban construction sites
using various indicators, such as geographic quality, accessibility, built-up area conditions,
urban greenery, and amenities [17]. He et al. (2019) used the value added per square
kilometer of secondary and tertiary industries as an indicator of urban land use efficiency
from a sustainability perspective [6].

As the carrier of urban economic activities, the limited supply of land determines that
improving urban land use efficiency is an inherent requirement for sustainable economic
development. Urban land use efficiency is closely related to the level of economic develop-
ment [18,19]. Studies have shown that regional economic integration in metropolitan areas
can promote the optimal allocation of resources for improving urban land use efficiency
during the socioeconomic transformation process [20]. In turn, urban land use efficiency
can impact economic development through the economic scale effect, economic structure
optimization effect, and economic quality improvement effect [21]. With China’s eco-
nomic growth slowing down in recent years and resource and environmental constraints
tightening, the term “high-quality economic development” was first introduced at the
19th National Congress of the Communist Party of China (CPC) [22]. Compared with
the approach of rapid economic growth at the cost of resource consuming and environ-
mental contamination, the HED mode, which upholds the five concepts of innovation,
coordination, green, openness, and sharing, pays more attention to sustainability and
stability. Researchers have extensively studied the fundamental meaning, index system
construction, and development level measurement of HED [23,24]. Then, the regional
disparity and spatial–temporal differentiation are studied to point out the striking regional
development disparity [25,26], locate the high and low distribution of HED levels, and
propose coordinated development countermeasures. Further, the research focus turns
to the driver analysis of HED [27,28]. With the continuous practice of HED, research on
coordinated relationships between economic or social aspects and HED has been given
more attention, including scientific and technological innovation [29], digital economy [30],
green finance [31], ecological protection [32], etc.

The literature review indicates that research results on urban land use and HED are
very rich, but there is still some room for expansion. In terms of land use, few researchers
integrate both “environmentally friendly” and “low carbon” into urban land use systems,
while GLUUL is an inevitable requirement for sustainable development. From a research
perspective, few scholars pay attention to the coupling coordination of land and economic
systems during urbanization, while investigating the relationship between GLUUL and
HED has a realistic value in promoting the coordinated development of a “resource-
economy-environment”. In the aspect of measurement methods, previous studies mostly
used econometric models to analyze influencing factors, which failed to deeply explore their
spatial–temporal dynamic changes [33,34]. Considering this, this article aims to provide a
holistic perspective on GLUUL and HED and their coordination relationship and proposed
a systematic and coherent framework for in-depth analysis (Figure 1). Taking 282 cities in
China as research objects, this paper uses data from 2005 to 2020 to gradually study the
spatial–temporal evolution characteristics of GLUUL efficiency and HED level and their
coordination relationship and uses the GTWR model to reveal the dynamic evolution of
the main factors affecting CCD, and then, some valuable policy references are proposed.

The innovations and research value of this paper consist of the following. (I) In terms
of research perspective, urban land use efficiency is explored from the environmentally
friendly and low-carbon perspective. (II) In the aspect of theoretical innovation, GLUUL
and HED are incorporated into the coupling theory analysis, and the mutual promotion
logic between them is explained in detail. (III) In terms of path innovation, the GTWR model
is utilized to objectively examine the factors influencing CCD, and the effects of influencing
factors in different times and spaces are deeply analyzed, which can provide a spatially
dynamic outlook to facilitate coordinated development between GLUUL and HED.
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2. Theoretical Mechanism

Coupling theory is one of the theories widely used to explore the coordination rela-
tionship between systems in the process of sustainable development [35]. Coupling is the
description of the interaction between two or more systems [36]. GLUUL and HED, as two
complex systems that influence each other, can reach a harmonious state through mutual
promotion. Based on the interaction between GLUUL and HED, the coupling mechanism
analysis framework of GLUUL and HED was constructed in this paper.

On the one hand, HED has effects on GLUUL. The region with a higher HED level
tends to have a larger economic scale, higher technical level, and more reasonable industrial
structure. Thus, HED produces three effects on GLUUL. (I) Scale effect. Studies have shown
that the emergence of a scale economy has linked large-scale production factories and
industrial clusters to the reduction in input factor costs [37]. This economic model enhances
economic efficiency per unit of land, reduces the cost of resource input, and achieves greater
capacity scale, thus promoting GLUUL. (II) Technical effect. Areas with a greater level of
economic development possess greater capability and willingness to increase investment
in research and development. In the pro-environment field, technological innovation offers
the potential to enhance the financial gain from each plot of land, as well as to lessen
the amount of carbon emissions [38,39], thus motivating GLUUL. (III) Structural effect.
The transformation of the economic structure brings a transition from resource-intensive
industries to technology-intensive ones [40], forming several “low pollution and low energy
consumption” industries or enterprises [41], which tend to use land with the “low input,
high yield and low pollution” mode [7], thus enhancing GLUUL.

On the other hand, as the cornerstone of urban economic activity, the core of GLUUL
is that the social, economic, and ecological gains should be as large as possible, while the
environmental losses should be as small as possible in the urban land system under the
input of certain production factors [42]. HED, moreover, stresses more efficient and ecologi-
cal economic development. Therefore, GLUUL, promoted by optimizing input structure
and reducing environmental losses, can provide carrying space for HED, further influenc-
ing HED from three aspects as follows. (I) Social aspect. Firstly, in the economic spatial
layout, integrating urban land use can guide moderate population agglomeration, develop
the industrial clusters, and allocate urban resources rationally, which is a prerequisite for
HED [43]. Secondly, in the urban interior green space, the excessive expansion of urban
construction land will lead to a serious occupation of city green areas and the deterioration
of climate, temperature, and other living conditions [44], which is not conducive to the
urban ecological environment. Finally, the carbon emissions and environmental contami-
nation generated by the irrational use of urban land can significantly impact the physical
and mental health of citizens [45], ultimately reducing their quality of life and exacerbating
regional pollution. Moreover, it will affect the health of workers psychologically and physi-
cally, and it is detrimental to the promotion of a healthy and harmonious society. (II) Talent
aspect. The irrational use of land leads to the deterioration of the urban living environment,
which will not only increase the cost of public health but also increase the risk of net loss
of the social labor force [46]. In addition, as people with higher education have higher
requirements for life quality [47], it will also affect the introduction of high-quality talents
and retention of original high-tech talents. Thus, the accumulation of human capital, which
is one of the basic elements of a region’s economic development, will be further affected.
(III) Resource aspect. Natural resources and productive resources are the material guarantee
for development. GLUUL requires that the social, economic, and ecological output should
be maximized under a certain resource input. In other words, at a certain output, GLUUL
needs minor resource inputs. Thereby it can achieve the goal of saving resources and
provide more reliable material guarantees for social and economic development.

To sum up, HED can positively promote GLUUL through scale, technology, and
structure effects, while the improvement of GLUUL positively feeds back to HED through
the social effect, talent effect, and resource effect. In this cycle, the two systems can achieve
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a coupling and coordination state through mutual promotion, and finally, high levels of
GLUUL and HED can be reached.

3. Research Design
3.1. Index System Construction

This paper focuses on urban land, which comprises residential land, land for public
administration and public service facilities, land for commercial service facilities, industrial
land, land for logistics and warehousing, land for roads and transport facilities, land for
public utilities, and land for green areas and squares within the city. It is important to note
that rural and agricultural land within the city is not included in the scope of this study. In
accordance with the connotation of GLUUL proposed above and abiding by the essential
requirements of “reasonable input control, reduction of energy consumption, improvement
of green output, and reduction of pollution emission” in the land use process, a GLUUL
efficiency evaluation index system was constructed, which includes input, desirable output,
and undesirable output (Table 1). Its uniqueness lies in the comprehensive consideration of
economic, social, and ecological output indicators to quantitatively analyze and maximize
social, economic, and ecological output and minimize environmental loss in the urban land
use course.

Input index: we select the labor force element, land element, and capital element as the
input index. The total employment is chosen to represent the labor force element [48], the
urban built-up area is selected to stand for the land element [49], and the capital element is
represented by the total investment in urban fixed assets [48].

Desirable output: we select economic output, social output, and ecological output
as indicators. Economic output is represented by the added value of the secondary and
tertiary industries [11]. Social output is denoted by the average wage of urban workers [50].
Ecological output is defined as the total carbon sink of an urban green space [13], which is
mainly a dynamic procedure of urban green vegetation absorbing CO2 in the air through
photosynthesis. The formula is as follows:

CS = AS × fS (1)

In Equation (1), CS is the total amount of CO2 removed from the atmosphere by urban
green vegetation, AS is the urban vegetation cover, and fS is the carbon sink coefficient.
According to the relevant research [51,52], the value of fS is chosen to be 1.66.

Table 1. GLUUL efficiency evaluation index system.

First-Order Index Secondary Index Measure Index Unit Type References

Input

Labor force element Total employment 103 people + Han et al. [48]

Land element Urban b uilt-up area km2 + Koroso et al. [49]

Capital element Total investment in urban
fixed assets CNY 104 + Han et al. [48]

Desirable output

Economic output
The added value of the
secondary and tertiary

industries
CNY 104 + Wang et al. [11]

Social output The average wage of urban
workers CNY + Xie et al. [50]

Ecological output Total carbon sink of the
urban green space 103 tons + Tan et al. [13]

Undesirable
output

Carbon emission Carbon emissions of urban
construction land 103 tons - Shan et al. [53]

Environmental pollution
emissions

Industrial pollution
emissions 103 tons - Dong et al. [7]
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Undesirable output indicators: we mainly take carbon emissions and environmental
pollution emissions as indicators. Carbon emission output is measured by urban construc-
tion land, which is calculated by the energy consumption of social production and living
activities within the space range of urban built-up areas [53]. Urban carbon emissions come
from both direct and indirect energy consumption, like natural gas and LPG, as well as
electric energy and thermal energy consumption. The total of each city can be obtained
by the sum of the carbon released from the consumption of natural gas, LPG, electric en-
ergy, and thermal energy [7]. Environmental pollution emissions are gauged by industrial
pollution emissions, which include wastewater, SO2, soot, and nitrogen oxide [48].

HED is a development mode, which states that “innovation becomes the primary
engine, coordination becomes the endogenous feature, green becomes the universal form,
openness becomes the necessary route, and sharing becomes the fundamental goal”. By
referring to the relevant literature [26,31], an evaluation index system of HED level was
established, including five categories of indicators, namely, innovation, coordination, green,
openness, and sharing (Table 2).

Table 2. HED level evaluation index system.

First-Order Index Secondary Index Measure Index Unit Type

Innovation

Innovation input
R&D internal expenditure/GDP % +

R&D employees/total employees % +

Innovation output
Patent applications per 10,000 people piece +

Patents granted per 10,000 people piece +

Coordination

Urban–rural coordination Rural–urban disposable income ratio % -

Industrial coordination

The value added of secondary and tertiary
industries/GDP % -

The value added of tertiary industry/value added
of secondary industry % +

Regional coordination Regional GDP per capita/national GDP per capita % +

Green

Environmental pollution
Industrial wastewater discharge per unit of GDP ton -

Industrial waste gas discharge per unit of GDP ton -

Environmental protection
Domestic sewage treatment rate % +

Comprehensive utilization rate of industrial
solid waste % +

Openness

Foreign trade Total imports and exports of goods/GDP % +

Utilization of
foreign capital

Actual utilized foreign capital in that year/GDP % +

Number of foreign-invested enterprises person +

Sharing

Cultural and education
Number of college students per 10,000 people people +

Education expenditure/general public
budget expenditure % +

Medical and health care Number of beds in hospitals and health centers per
100 people sheet +

Social security Urban social insurance participation rate % +

3.2. Research Methods
3.2.1. Super-Efficient SBM Model Incorporating Unexpected Outputs

The difference and advantage of the super-efficiency SBM model from other efficiency
measurement models is that its evaluation dimension includes non-expected output. It
not only continues the performance of the SBM model but also has the advantages of the
super-efficient DEM model. On this basis, it can also effectively deal with the relative
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efficiency ranking problem of decision-making units and truly reflect the relative size of
GLUUL efficiency [13]. The mathematical expression is as follows:

ρ∗ = min
1 + 1

m ∑m
i=1

D−
i

xih

1 − 1
s1+s2

(
∑s1

r=1
Dg

r
yg

rh
+ ∑s2

k=1
Db

k
yb

kh

) (2)

s.t.



xik ≥
n
∑

j=1,j ̸=h
λjxij − D−

i , i = 1, . . . , m

yg
rh ≥

n
∑

j=1,j ̸=h
λjy

g
rj + Dg

r , r = 1, . . . , s1

yb
kh ≥

n
∑

j=1,j ̸=h
λjyb

kj − Db
k , k = 1, . . . , s2

1 − 1
s1+s2

( s1
∑

r=1

Dg
r

yg
rh
+

s2
∑

k=1

Db
k

yb
kh

)
> 0

D− ≥ 0, Dg ≥ 0, Db ≥ 0

(3)

In Equations (2) and (3), ρ∗ is GLUUL, n is the number of DMU, and each DMU consists
of m input, s1 the expected output, and s2 the unexpected output. X ϵ Rm, yg ϵ Rs1 , and
yb ϵ Rs2 are the input, expected output, and unexpected output vectors, respectively, and
λ represents the weight of the corresponding input or output element. The matrixes are
X = [x1, . . . , xn]ϵRm×n, Yg =

[
yg

1 , . . . , yg
n

]
ϵRs1×n, and Yb =

[
yb

1, . . . , yb
n

]
ϵRs2×n. D−, Dg,

and Db are the input, expected output, and unexpected output slack variables, respectively.

3.2.2. Entropy Method

To measure the level of HED through multiple dimensions, it is necessary to assign
weights to indicators of different dimensions. The entropy method constructs the optimal
weight by calculating the contribution of uncertain factors in the system. Compared with
the weights determined by the expert review method, the coefficient of variation method,
and the analytic hierarchy process, the entropy approach prevents human factors from
interfering and provides a more comprehensive and rational expression of the utility value
of information entropy. Therefore, the entropy method is used to evaluate the HED level in
this paper. The mathematical expression is as follows.

The following equation is example 1:

Dijt =


Xijt − min

(
Xijt

)
max

(
Xijt

)
− min

(
Xijt

) + d

max
(
Xijt

)
− Xijt

max
(
Xijt

)
− min

(
Xijt

) + d
(4)

Ej = −k
r

∑
t=1

m

∑
i=1

Pijtln
(

Pijt
)

(5)

Wj =
1 − Ej

n
∑

j=1

(
1 − Ej

) (6)

Cit =
n

∑
j=1

WjDijt (7)

In Equations (4)–(7), Xijt stand for the j index value of the region i in the year of t. The
min

(
Xijt

)
and max

(
Xijt

)
, respectively, represent the minimum and maximum value of the

index j. Dijt indicates the value of each index data after standardized processing. To ensure
that the subsequent calculation is meaningful, the standardized matrix is translated by d
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units. To reduce the impact of translation on data, the value of d is 10−5. Then, Ej is the
entropy value of the item j, where, k = 1/ln(r × m),Pijt = Dijt/∑r

t=1 ∑m
i=1 Dijt, Wj is the

weight of the item j, and Cit represents the HED level of the region i in the year t.

3.2.3. Coupling Coordination Degree (CCD)

The coupling degree is used to measure the level of interaction and mutual influence
between two or more systems in the development process frequently [54]. If the systems
cooperate with each other and are complementary, it is benignant coupling. On the contrary,
if the systems repel each other and are frictional, it is malignant coupling. Overall, more
coupling means a stronger extent of interaction between systems and a stronger the cou-
pling correlation, but it does not rule out the existence of the “unveracious high coupling”
phenomenon when all the levels are low. Therefore, coordination degree should be further
introduced to measure the size of benign coupling in the interaction between systems to
reflect the overall coordination and consistency of the system. The CCD model of GLUUL
and HED was constructed, and the mathematical expression is as follows:

C = 2
√

η1 + η2/(η1 + η2) (8)

T = αη1 + βη2 (9)

D =
√

C × T (10)

where ηi(i = 1, 2) represents GLUUL efficiency and HED level, respectively. C is the
coupling degree of GLUUL and HED. T is the comprehensive coordination index, and α
and β are undetermined coefficients. In the urbanization process, improving GLUUL is
equally as important as promoting HED, so α = β = 0.5 [55]. D is the coupling coordination
degree, and 0 ≤ D ≤ 1. The closer D is to 0, the worse the coupling and coordination
development of GLUUL and HED system is. When D is close to 1, it indicates that GLUUL
and HED in this region are in a highly coordinated development level. According to present
research results and actual conditions [56], the value of D is divided into eight intervals
(see Table 3), representing different coupling levels and coordination degrees.

Table 3. The criterion of the GLUUL and HED coupling coordination degree.

Degree of Coordination Coupling Coordination
Degree Coupling Level

Antagonistic range
0.0 ≤ D ≤ 0.1 Severe disorder
0.1 < D ≤ 0.3 Moderate disorder
0.3 < D ≤ 0.4 Mild disorder

Run-in range 0.4 < D ≤ 0.5 Borderline disorder
0.5 < D ≤ 0.6 Primary coordination

Coordinated range
0.6 < D ≤ 0.7 Intermediate coordination
0.7 < D ≤ 0.9 Good coordination
0.9 < D ≤ 1.0 Superior coordination

After determining the CCD of each city, the regional development type can be further
determined according to the ratio of η1 and η2 (E). Due to the factors of the two systems,
which are in different dimensions, and the magnitude of the values being quite disparate,
these data are not suitable to compare directly. Hence, this paper refers to the judgment
criteria by Zhu [53] and makes improvements based on the actual situation, enlarging η2
by 10 times and then comparing it with η1. Since the level of GLUUL cannot be the same as
HED in a city (η1/η2= 1), the approximate value (η1/η2 ≈ 1) is regarded as the synchronous
development of the two systems. To minimize the error and improve comparability, 1 ± 0.2
was taken as the basis to judge whether the two systems were synchronized [57], and the
development types of cities were divided into three types (see Table 4).
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Table 4. Criterion of development types of cities.

Type of Development E=η1/η2

Advanced development E < 0.8
Synchronous development 0.8 ≤ E ≤ 1.2

Backward development E > 1.2

3.2.4. Geographically and Temporally Weighted Regression (GTWR)

GTWR is an extension of the GWR in time dimension, which can simultaneously
capture the temporal and spatial heterogeneity of variable data. It has been widely used
in Geographic Information-Science, Environmental Science, Hydrology, Epidemiology,
and other research fields [51,58,59]. Therefore, we used it to explore the social and
economic factors influencing the coupling coordination of GLUUL and HED and to
explore the spatial–temporal differentiation characteristics. The mathematical expression
is as follows:

Yi = β0(µi, vi, ti) +
K

∑
k=1

βk(µi, vi, ti)Xik + εi (11)

where Yi is the value of the i-th explained variable and (µi , vi , ti) is the longitude,
latitude, and time coordinates of the i-th sample point. β0(µi , vi , ti) is the regression
intercept and βk(µi , vi , ti) is the regression coefficient of the k-th explanatory variable.
Xit is the data of the k-th explanatory variable and ε i is the error term. The selection
of bandwidth will affect the model results. Too small of a bandwidth value will lead
to over-fitting, while too large of a bandwidth value will include points that have
little impact on the model, resulting in inaccurate results. In this paper, adaptive
bandwidth is adopted, namely, the revised Akaike Information Criterion (AICc) is used
as the criterion for bandwidth and model selection. The natural break point method
in ArcGIS is used to divide the model results, and the intensity of the influencing
factors is divided into five levels: strong, stronger, medium, weaker, and weak, which
are displayed in different colors on the map. Blue is weak, green is weaker, yellow is
medium, orange is stronger, and red is strong.

3.3. Research Area and Data Description

As the largest developing country in the world, China’s urbanization process is
ongoing and is currently at a critical stage of transitioning from resource- and factor-
driven primary urbanization to innovation- and talent-driven secondary urbanization [60].
Therefore, China must balance the relationship between urban land use and economic
development while considering resource and environmental constraints. Taking it as a
research object to quantitatively examine the coordination relationship between GLUUL
and HED can provide a valuable reference for other developing countries or regions. Due
to the unavailability and inaccuracy of data on GLUUL efficiency-related measures at the
municipal level, some cities with missing data were excluded from the study area. This
paper identified 282 cities throughout China as the study object, including 33 cities in
North China, 33 cities in Northeast China, 77 cities in East China, 42 cities in Central China,
36 cities in South China, 31 cities in Southwest China, and 30 cities in Northwest China.
Their specific distribution is shown in Figure 2.

Data come from the “China Urban Statistical Yearbook”, “China Environmental
Statistical Yearbook”, and “China Urban Construction Statistical Yearbook” over the
past years.
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4. Empirical Results
4.1. Analysis of GLUUL Efficiency and HED Level

Seven geographical administrative divisions were taken as the dividing standard:
North China, Northeast China, East China, Central China, South China, Southwest China,
and Northwest China. Their mean values were taken as the development levels of GLUUL
and HED in different areas, and the results are presented in Figure 3.
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the change in GLUUL efficiency and HED level, respectively.

During the whole study period, GLUUL efficiency was significantly improved, show-
ing a steady increase trend. The mean value rose from 0.283 in 2005 to 0.579 in 2020, with
the largest increase in Northeast China followed by Southwest China, and the smallest
increase in East China. With the promotion of ecological civilization construction and the
implementation of a new urbanization strategy, the development mode of green transfor-
mation is accelerated [61]. GLUUL efficiency in Northeast China has been greatly improved
under the substantial support of the “comprehensive revitalization” strategy [62].

HED level showed a fluctuant growth trend, which is characterized by an inverted
“V” shape during 2010–2020. The average value rose from 0.077 in 2005 to 0.102 in 2020,
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among which East China had the largest increase and Northeast China had the smallest
increase. East China has a good industrialization foundation, an early start in economic
expansion, and a strong foundation of a modern industrial system. In addition, the central
government encourages the acceleration of development in the eastern region, greatly
improving its HED level [63]. The industrial structure of Northeast China is relatively
undiversified and over-relies on resource-based industries. However, in recent years, the
lower demand for domestic downstream industries increased the downward pressure on
steel, coal, petrochemical, and other industries [64]. As a result, Northeast China, which
relies on these industries, has been greatly affected.

To show the evolution of GLUUL efficiency and HED level in different regions clearly
and intuitively, the measured values were imported into ArcGIS 10.8 to draw the spatial–
temporal evolution trends of four years in 2005, 2010, 2015, and 2020 (Figures 4 and 5). The
efficiency of GLUUL was classified into five levels using the natural breakpoint method
in the software. The levels are as follows: low level [0.0304, 0.1982), medium–low level
[0.1982, 0.2943), medium level [0.2943, 0.4641), medium–high level [0.4641, 0.7837), and
high level [0.7837, 1.4590). The HED levels were classified into five grades using the
quantile method. The grades are as follows: low level [0.0209 to 0.0459), medium–low level
[0.0459, 0.0555), medium level [0.0555, 0.0655), medium–high level [0.0655, 0.0982), and
high level [0.0982, 0.7024).
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Figure 4 illustrates that in 2005, GLUUL efficiency was at a low or medium–low level in
most regions, and a few cities with high or medium–high levels were mainly concentrated
in Gansu Province. In 2010, the number of low-level cities decreased significantly. Most of
them lay in the medium–low or medium level. The high-level and medium–high-level cities
were obviously concentrated in the intersection of Gansu, Ningxia, and Inner Mongolia.
In 2015, the number of medium-level cities increased drastically, lower-level cities only
included Chongqing, Hulunbuir, Jiaozuo, and Dongguan. High and medium–high-level
cities were concentrated along the “Hu Huanyong Line” and the southeast coast. In 2020,
the number of cities with high and medium–high levels further increased, accounting for
more than 60% of the total. Chongqing and Hulunbuir lay in the low level, and Tianjin
dropped to the low level.
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Figure 5 shows that in 2005, cities with high and medium–high HED levels were
predominantly located along the eastern coast, and the central region was mainly at
medium and medium–low levels, while the western region was mainly at low levels. From
2010 to 2020, the distribution of HED levels decreased from east to west, which is essentially
unchanged. The number of cities with high and medium–high levels of HED has risen
significantly, reaching 69% in 2020, and most of them were in the east. There were only
12 low-level cities left, located dispersedly in the western region.

4.2. CCD Relationships of GLUUL and HED
4.2.1. Time Evolution Trend of CCD

Due to the number of cities studied being too much, it is inconvenient to display all
the results, so they are presented in the form of charts. Figure 6 reflects the alterations in the
number and proportion of different grades of cities. Overall, the main coupling level of cities
evolved from primary coordination to intermediate coordination. The proportion of cities
with good coordination gradually increased, while the proportion of cities with borderline
disorder gradually decreased to near zero. In 2005, the main coupling level of the city
was primary coordination, accounting for 67%, and the secondary was borderline disorder.
The entirety was in the run-in range of development. In 2010, the major coupling level of
the city was primary coordination, and the proportion increased slightly. The proportion
of intermediate coordination exceeded the borderline disorder and became a secondary
coupling level. In 2015, the main coupling level of the city was still primary coordination,
but the proportion decreased, while the proportion of intermediate coordination increased.
In 2020, intermediate coordination exceeded primary coordination and became the main
coupling level of cities, accounting for 44%, while primary coordination decreased to
39%. In addition, cities with good coordination increased to 16%, and those three levels
accounted for 99% of the total amount. This indicates that GLUUL and HED coupling
coordination of China is about to enter a new stage and fully enter the coordination range.

Figure 7 shows the mean value of CCD between GLUUL and HED in different regions
during 2005–2020. In the aspect of the time dimension, the average value of each region
and the whole country presented a steadily increasing trend, with the overall mean value
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rising from 0.5378 in 2005 to 0.6335 in 2020, exhibiting a growth rate of 17.8%. It indicates
that GLUUL and HED were further harmonized in all regions during the investigation
period. From the inter-regional comparison, in 2005, Northwest China had the highest
mean value for CCD, followed by South China, and the lowest in North China. By 2020,
the average value of CCD in Northeast China became the highest, followed by Northwest
China, with the lowest value expected in Central China. Throughout the period of study,
Southwest China was the fastest moving towards harmonization with an average growth
rate of 7.7%, followed by Northeast China with an average growth rate of 6.72%, and South
China with the slowest rate of 4.19%.
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4.2.2. Spatial Evolution Trend of CCD

As demonstrated in Figure 8, the spatial distribution and evolution mode of CCD
presented “the cities around Hu Huanyong Line and southeast coastal area radiate central
region” generally. Specifically, in 2005, the top ten cities in CCD were Shenzhen, Zhanjiang,
Dongguan, Haikou, and Sanya in South China, Anshun and Lincang in Southwest China,
and Shangluo, Pingliang, and Longnan in Northwest China, which were in the stage of
intermediate coordination and good coordination. Dongguan and Shenzhen, located in
the southern coastal region, have taken the lead in achieving a high degree of coupling
coordination. Their GLUUL efficiency and HED levels were among the highest in China.
This is due to their advantages in technological innovation and tertiary development,
which can be verified by basic index data (e.g., Dongguan’s and Shenzhen’s R&D internal
expenditure is the first and second in China, respectively). The bottom ten cities were
Chongqing, Neijiang, Liupanshui, Baoshan, Zhaotong, and Pu’er in the Southwest; Laibin
in South China; Zhongwei in the Northwest; and Yuncheng and Xinzhou in North China.
Among them, Liupanshui and Pu’er showed mild signs of disorder, while the remaining
cities were on the verge of disorder. In 2010, the spatial distribution of CCD first emerged,
with higher levels occurring in the northwestern and southeastern regions and lower levels
occurring in the central region. The top ten cities in CCD were Jinhua, Quanzhou, and
Yichun in East China, Dongguan and Sanya in South China, Lijiang in Southwest China,
Jiayuguan, and Qingyang, Guyuan, and Karamay in Northwest China, which were all
in the good coordination stage. The bottom ten cities were Chongqing, Meishan, and
Liupanshui in the Southwest; Guigang, Hezhou, and Laibin in South China; Nanyang
in Central China; Xinzhou in North China; Baoji in the Northwest; and Chaoyang in the
Northeast. Among them, only Liupanshui lay in the mild disorder stage. In 2015, the
cities with high CCD spread from Northwest China’s Gansu Province to the Northeast and
Southwest. Meanwhile, a “coastal line” of high CCD was formed in the southeast, and most
cities entered the coordination stage. The top 10 cities were mainly distributed in southern
China, including Guangzhou, Shenzhen, Foshan, Hechi, and Sanya, which were all in the
good coordination stage. Cities at the bottom have progressed to the primary coordination
stage, except for Chongqing, Laibin, and Hulunbuir, which were on the verge of disorder.
From 2010 to 2015, Chongqing Municipality vigorously developed its automobile industry
and transport infrastructure. Meanwhile, along with the disorderly expansion of its urban
area, its GLUUL efficiency was suppressed and has remained consistently low (less than
0.1), which led to a lower CCD than that of most cities. In 2020, the number of cities
with high CCD was aggrandized and distributed around the “Hu Huanyong Line” and
southeast coastal areas, which has formed an envelope pattern and radiated cities in the
central region. Currently, the top ten cities in CCD are Beijing in North China, Dalian
and Tieling in Northeast China, Shanghai and Suzhou in East China, and Guangzhou,
Shenzhen, Zhuhai, Foshan, and Chaozhou in South China, which are all in the good
coordination stage. The CCD of some cities fell back, among which Jinhua, Changsha, and
Hechi showed a significant decline, from good coordination to primary and intermediate
coordination. The reason for this may be that the increase in energy consumption in these
cities in 2020 led to a significant rise in carbon emissions, which reduced the efficiency of
GLUUL, and, consequently, the coupling coordination. The cities at the bottom of the list
were Yuncheng, Linfen, and Hulunbeier in North China; Jilin in the Northeast; Binzhou in
East China; Shangqiu and Xiaogan in Central China; Shaoguan and Hechi in South China;
and Chongqing in the Southwest.

4.2.3. Subtype Analysis of CCD

The purpose of studying CCD subtypes is to further understand which sub-system
lagging behind in the coupled coordination relationship between GLUUL and HED at the
present stage. This will help us make policy recommendations accordingly, so the most
recent year in our research period, 2020, was selected to study. Cities with different D and
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E were divided into different coupling coordination subtypes; the results were presented in
the form of a map and table, as shown in Figure 9 and Table 5.
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Table 5. Number and proportion of subtypes of CCD (2020).

Degree of
Coordination

Number
of Cities CCD Type of Development Subtype

of CCD
Number
of Cities Proportion

Run-in range 79

Borderline
disorder Advanced development type 1 1 0.35%

Primary
coordination

Advanced development type 2 76 26.95%

Synchronous development type 3 2 0.71%

Coordination
range 203

Intermediate
coordination

Advanced development type 4 98 34.75%

Synchronous development type 5 41 14.54%

Backward development 6 19 6.74%

Good
coordination

Advanced development type 7 9 3.19%

Synchronous development type 8 2 0.71%

Backward development 9 34 12.06%

As can be seen in Figure 9, overall, GLUUL and HED coupling in 282 cities in China
were basically coordinated, but there was still a big gap between them and superior
coordination. Most of the cities with high CCD were backward and surrounded the “Hu
Huanyong Line”. The cities had primarily advanced development and were centralized in
the southeast coastal area intensively. The number of synchronous developing cities was
the least. They were evenly distributed in the Northeast and central regions.

According to Table 5 and Figure 9, there were 98 cities belonging to the “intermediate
coordination—advanced development” type, accounting for 34.75% of the total sample.
Most of them lay in East China, such as Fuzhou and Wenzhou. A few of them are located
in Northeast China like Shenyang, and South China, like Sanya. These cities have entered
the intermediate coordination stage, but GLUUL was relatively behind HED. Advances in
science and technology should be strengthened to promote GLUUL, and the protection of
the urban ecological environment should be put in a more highlighted position. There were
76 cities belonging to the “primary coordination—advanced development” type, compris-
ing 26.95% of the entire sample. They were mostly found at the junction of North China,
East China, and Central China, including Tianjin, Qingdao, Jinan, Luoyang, Shijiazhuang,
etc. In these cities, the HED was relatively ahead of GLUUL. First, the economic progress
of these urban areas has been rapid under political support. Second, the agglomeration of
population and industry increases the demand for land use, and at the same time, the input
may not be properly controlled. This results in high consumption of energy and emission
of pollutants, which restricts the coupling and coordinated development. A total of 41 cities
belonged to the “intermediate coordinated—synchronous development” type, accounting
for 14.54% of the total sample. They were scattered in almost every region, except East
China, such as Chengde and Xianning in the western region and Yueyang and Anqing in
the central region. HED and GLUUL of these cities have basically achieved coordinated
development. While moving towards a higher level of HED in the future, land resources
should be used rationally to continuously promote GLUUL. Then, 34 cities belonged to
the “good coordination—backward development” type, accounting for 12.06% of the total
sample. They were mainly distributed near the “Hu Huanyong line”, containing Ya’an,
Guyuan, Chaoyang, Lincang, etc. These cities have entered the stage of good coordination,
but HED was relatively behind GLUUL. In the future, based on maintaining the advantages
of GLUUL, HED is supposed to be further accelerated.
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5. The Main Influencing Factors—From the GTWR Perspective

The CCD of GLUUL and HED was influenced by multiple factors. Based on the
coupling coordination mechanism, following the comprehensive and scientific principles,
we selected economic development level (Edl), green technology innovation ability (Gtia),
industrial structure upgrading (Isu), foreign investment scale (Fis), urban population size
(Ups), and financial support (Fs) as the main influencing factors.

The Edl is inextricably linked to GLUUL efficiency. As the urban economy continues
to grow, high density, multi-level, multi-angle, and multi-quality characterized the develop-
ment and utilization of land resources, and the efficiency of GLUUL increased accordingly.
Edl is measured by GDP per capita. Gtia can promote GLUUL. The application of green
technologies has the potential to lower resource and energy consumption, minimize waste
generation and emissions, and thus advance the efficiency of land use. Gtia is calculated by
the number of green patent applications per capita. Isu helps optimize land use efficiency.
In the industrial structure upgrading process, some outdated traditional industries will be
eliminated, while new industries will gradually emerge. Emerging industries usually adopt
more advanced technology and management methods, which can promote GLUUL. Isu
is calculated by the proportion of added value generated by the tertiary sector compared
to that of the secondary sector. Foreign investment generally has high environmental
protection and sustainable development requirements, which are conducive to driving
local governments and enterprises to improve GLUUL efficiency, thereby achieving energy
conservation, emission reduction, and resource recycling. Fis is measured by the total value
of industrial output of foreign-invested firms. Population agglomeration is a key driver of
urban development, which can promote the centralized use of resources, thereby creating
scale economies and improving the efficiency of GLUUL. Urban population is selected
to measure Ups. By investing financially in science and technology, local governments
support the research, development, and promotion of green and low-carbon technologies
and products, attracting high-tech enterprises to locate in these areas, resulting in more
efficient use of land and reducing environmental losses, which benefits economic develop-
ment and GLUUL efficiency. Fs selects investment in science and technology to measure,
as illustrated in Table 6.

Table 6. Influencing factors and measurement indicators of CCD.

Influencing Factor Measurement Index References

Edl GDP per capita Huang et al. [52]

Gtia Number of green patent applications per capita Xu et al. [65]

Isu Proportion of the tertiary industry’s added value
in secondary industriess Gao et al. [20]

Fis Total industrial output value of
foreign-invested enterprises Wan et al. [66]

Ups Urban population Kong et al. [67]

Fs Investment in science and technology Lu et al. [68]

5.1. Spatial Autocorrelation Features

ArcGIS 10.8 was utilized to acquire the global Moran’s I index of CCD (Table 7). The
global Moran’s I value and Z-value of CCD in 2005, 2010, 2015, and 2020 all passed the spa-
tial autocorrelation test at a significance level of 1%. A global Moran’s I index > 0 illustrates
that CCD is positively correlated in general. From 2005 to 2020, the value of the global
Moran’s I and Z showed a fluctuating upward trend, indicating that the spatial agglomera-
tion effect of CCD was enhanced.
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Table 7. Global spatial autocorrelation of GLUUL and HED coupling coordination degree.

Year Moran’s I Z-Value p-Value

2005 0.1059 5.2714 0.0000
2010 0.1760 8.6291 0.0000
2015 0.1254 5.1114 0.0000
2020 0.1492 6.0511 0.0000

5.2. GTWR Data Verification

Factors affecting CCD were tested by the GTWR regression model (Table 8). In the
aspect of AICc, the value of adaptive bandwidth was −3386.77, which was lower than
that of the fixed bandwidth. The model’s effect improves as the value decreases. For the
goodness of fit aspect, the R2 and adjusted R2 were both higher than 0.47, indicating that
the model fits well.

Table 8. GTWR estimation results of influencing factors.

Model
Parameters Sigma Residual

Squares AICc R2 Adjusted R2 Spatiotemporal
Distance Ratio

Value
(Fixed) 0.0508 2.9144 −3351.88 0.4677 0.4649 3.2493

Value
(Adaptive) 0.0504 2.8689 −3386.77 0.4760 0.4732 0.2688

5.3. Temporal and Spatial Differences of Influencing Factors

Figures 10–15 show the effect of each of these factors on CCD.
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5.3.1. Economic Development Level

The influence of Edl on CCD is mainly promoting, and as its influence gradually
decreases, the spatial–temporal non-stationarity weakens. This indicated that the improve-
ment of Edl could promote CCD. As shown in Figure 10, according to the temporal and
spatial differentiation of influence, Edl has the strongest positive promoting effect on
Guangdong and Guangxi Province in South China, while it has a certain hindering effect
on Chongqing and Sichuan in Southwest China, Shaanxi and Gansu Province in Northwest
China. The overall influence pattern is relatively stable. From 2005 to 2020, the promoting
effect of Edl on cities in East China was relatively enhanced, cities in Northeast China were
relatively weakened. The cause might be that the economic progress of the southern region
commenced earlier, subsequently experiencing consistent and rapid development after the
reform and opening. Cities in East China, including Shanghai, Hangzhou, and Fuzhou,
have followed suit. The economies in these regions are relatively developed, consequently
exerting a strong promoting effect on CCD. Conversely, the western region’s economic
development is relatively deficient, and the natural land conditions are severe. Land
desertification, salinization, and other problems lead to scarce available land resources.
Meanwhile, with the industrial gradient transfer, resource and labor-intensive industries
intensify the extensive use of land, further increasing the environmental pressure in the
western region, which is not conducive to CCD. According to the variation process of
the regression coefficient, the mean value decreases from 0.0098 to 0.0038. It shows that
with the deepening of the development process, the limitation of promoting CCD solely
by economic development gradually appears. The gap between the maximum and mini-
mum decreased from 0.0502 to 0.0236. The regional unbalance of Edl’s influence on CCD
gradually decreases.

5.3.2. Green Technology Innovation Ability

Gtia has a beneficial impact on most cities in China; when its impact gradually weak-
ens, the spatial–temporal non-stationarity decreases. This suggests that improving Gtia
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may enhance CCD. From the temporal and spatial differentiation of influence (Figure 11),
in 2005, Gtia had the strongest promotion effect on Guangdong, Guangxi, and Hunan
Province in South China, while it had a certain inhibitory effect on cities in the western
region. In 2020, the impact on cities in Shandong was relatively heightened, with the degree
of impact on par with cities in the southern region. The pattern of influence distribution
is relatively stable. The higher level of technological innovation in the eastern and south-
ern regions may explain the overall differences observed with the central and western
regions. Their technological innovation started earlier, and relevant policies were more
precise. Reflecting on the quantity of applications for green patents, the top cities, including
Beijing, Shanghai, Shenzhen, Hangzhou, Nanjing, Jinan, Tianjin, Shenyang, Dalian, etc.,
are predominately located in the east and south, while the central and western regions
are generally below average. At the same time, these regions will undertake technology
transfer from developed regions. New technologies and new industries may bring new
land requisition and increase the bearing pressure of land. This promotes the formation of
the affected pattern of “strong in southeast, weak in central and west”. In addition, since
the strategy of revitalizing Northeast China was launched in 2003, the northeast region has
adhered to structural adjustment as the main line, introduced strategic emerging industries,
and encouraged technological innovation. Green technology innovation in Northeast China
can promote talent and industry agglomeration based on original land use, thus promoting
CCD. From the change in the regression coefficient, the mean value gradually decreased
from 0.0198 to 0.0013. The gap between the maximum and minimum decreased from 0.1138
to 0.0169. The regional unbalance of Gtia’s influence on CCD narrowed over time.

5.3.3. Industrial Structure Upgrading

The overall influence of Isu on CCD is positive, and its influence gradually increases,
and spatial–temporal non-stationarity is alleviated. This indicates that Isu can promote
CCD. As the industrial structure continues to improve, its promoting effect is continuously
enhanced. As can be seen in Figure 12, the influence of Isu has a significant temporal
and spatial heterogeneity. In 2005, Isu had the strongest positive promoting effect on
Southwest China, while it had a certain hindering effect on East China. The reason may
be that the industrial structure upgrading index and HED level in East China were both
high in the early phase, and industrial structure upgrading can promote regional economic
development. Meanwhile, the development mode that emphasized speed and inefficiency
also brings about high carbon emissions. As GLUUL efficiency was suboptimal, the
pace of progress in both the land and economy systems did not correspond. Therefore,
in this period, Isu hindered CCD in East China. From 2010 to 2020, the scope of the
positive impact area was expanded. It has promoted the improvement of CCD significantly,
except in Yuncheng, Linfen, and Luliang of Shanxi, Nanchang and Jiujiang of Jiangxi, and
Yulin of Shaanxi. Among them, the Yangtze economic corridor in East China and the
Beijing–Tianjin–Hebei region in North China are the most impacted. It is possible that
the dominance of the eastern region in the development of tertiary industry during the
later period of its evolution explains this phenomenon. Profiting from sufficient talent
supply and a huge demand market, the eastern region has witnessed rapid growth in
knowledge-intensive emerging sectors, including finance, R&D, and information services,
reducing its dependence on energy-intensive and heavy industry for economic growth.
This promotes GLUUL and narrows the development speed difference between land and
economy, and thus promotes their coupling and coordination. From the perspective of
the regression coefficient’s change, the mean value grew from 0.0089 to 0.0212, and the
gap between the maximum and minimum dropped from 0.1268 to 0.1113. The regional
unbalance of Isu’s influence on CCD decreased slightly over time.

5.3.4. Foreign Investment Scale

As shown in Figure 13, the influence of Fis on CCD has a significant spatial–temporal
differentiation, and the overall influence trend has a great change. In 2005, Fis had a positive
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impact on the eastern and southern regions, with a stronger influence in South China. The
inhibitory effect was mainly concentrated in Xinjiang, Gansu, and Heilongjiang Provinces,
and it was strongest in Xinjiang, located in Northwest China. From 2015 to 2020, the
positive effect of Fis on South China was always the most significant, while the promoting
effect on the central and eastern regions was relatively enhanced. The area of inhibition
was expanded and concentrated in the western region and Northeast China. Xinjiang and
Gansu Provinces in Northwest China and Heilongjiang Province in Northeast China were
negatively correlated with Fis, but the degree of inhibition was gradually weakened. It is
possible that the concentration of foreign investment in China was largely centered on the
southern coastal areas, with the Pearl River Delta as its core, during the initial period of
reform and opening, representing approximately 82% of the total, while the western region
barely held a share of around 3%. The declining share of foreign investment in the southern
region has been steadily shifting to the Yangtze River Delta and Beijing–Tianjin–Hebei
urban clusters in the eastern region as reform and opening deepens. In 2020, the eastern
region accounted for 85% of the total amount of foreign investment utilized, while the
western region still only accounted for approximately 5%. When a region has a low level
of foreign investment, it tends to increase carbon emissions. Because there was a strong
drive towards rapid economic development, investment, and construction of factories
regardless of the cost in the early stage of foreign capital introduction, the energy demand
is large, and the effect of investment in environment-green on carbon emission reduction
cannot be immediately shown, which hindered progress towards GLUUL. This impedes the
enhancement of CCD in the western region. From the variation of the regression coefficient,
the gap between the maximum and minimum decreased from 3.8383 to 1.5941. The regional
unbalance of Fis’s influence on CCD weakened over time.

5.3.5. Urban Population Size

The overall impact of Ups is positive, and its influence waned and then grew, while
spatial–temporal non-stationarity slowed down. This indicates that Ups can promote
CCD, and its promoting effect presents an inverted U-shaped pattern with the gradual
growth of Ups. From the temporal and spatial differentiation of influence (Figure 14), in
2005, Ups promoted southeast coastal areas and central North China, and it promoted
Guangdong, Guangxi, and Hunan Provinces in South China most significantly. It has a
certain inhibitory effect on western regions and Northeast China, and Gansu Province
in Northwest China is the most obvious. From 2010 to 2020, the area of positive impact
continues to expand in the east. In 2020, Ups played a promoting role in East China,
Northeast China, Central China, and South China, and the strongest positive impact was
still concentrated in the southern coastal area. The inhibitory effect was more apparent in
the western and northeastern regions. This may be due to the southeast coastal areas and the
North China area having more favorable development environments, attracting population
flow and concentration to them. The increase of population size and agglomeration of
population is conducive to the improvement of building density, thus improving land use
efficiency. Meanwhile, the population concentrations are also connected to the centralized
energy supply, thus improving energy efficiency, which helps to promote GLUUL. However,
the development of the western region lags behind other regions, resulting in substandard
living and working conditions. The urban resources cannot match the growing population
in a short time, resulting in the rapid increase of per capita energy consumption and
environmental governance pressure. Since the implementation of the reform and opening
policy, the northeastern region has experienced a loss of its geographical advantages, a
significant decline in the regional economy, a heavy reliance on industrial sectors, and a
continuous outflow of population. Population shrinkage restricts the economic density and
energy supply level of northeast China and hinders its economic development. From the
variation of the regression coefficient, the mean regression coefficient of Ups increased from
0.0023 to 0.0115. It indicates that the agglomeration of the urban population promoted the
accumulation of resources, generated a scale economy, and positively acted on CCD. The
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difference between the highest and lowest regression coefficients decreased from 0.4158 to
0.2601. The unbalanced regional impact of Ups on CCD was gradually mitigated.

5.3.6. Financial Support

As can be seen in Figure 15, the influence of Fs on CCD has a significant spatial–
temporal differentiation, and the overall trend of influence is relatively stable. In 2005, Fs
positively affected East China, Central China, South China, and central North China, but
hindered Northeast China, Southwest China, and Northwest China to varying degrees.
Among them, South China was the most affected by the positive effect, and Gansu Province
in Northwest China was the most affected by the obstruction. From 2010 to 2020, the
effect of Fs on Northeast China and North China all turned positive, while the pattern of
influence in other regions is basically unchanged and gradually weakened from east to
west. One of the possible reasons is the structural disparity in local financial spending
on science and technology. The expenditure on science and technology in the eastern
region greatly surpasses that of the central and western regions, with the central region
having slightly more expenditures than the western region. Over time, there has been a
growing rift between the three regions. An upsurge in government funding for science and
technology is expected to drive economic expansion. It will bring technological innovation
and make the transfer to green, low-carbon, and environmentally friendly energy, which
has a favorable impact on both GLUUL and HED, thus promoting their coupling and
coordination. In addition, the obstructive effect of Fs on the western region may arise due
to various issues, such as an irrational financial allocation towards science and technology,
inadequate funding for fundamental research, and low productivity of fiscal investment
in science and technology in the western region. The mean regression coefficient of Fs
increased from −0.1844 to 0.0186. It verified that the strengthening of financial support
had a positive effect on CCD. The difference between the highest and lowest regression
coefficients reduced from 12.6603 to 0.1424. There was a significant decrease in the disparity
of the impact of Fs on CCD across different regions.

6. Conclusions

Based on an analysis of the coupling coordination mechanism, research was conducted
on 282 cities in China. Comprehensive measurements and analysis were performed on the
spatial–temporal characteristics of GLUUL and HED, as well as their CCD, from 2005 to
2020. Additionally, GTWR was used to determine the influencing factors of CCD and their
action modes.

Firstly, during their development, GLUUL efficiency gradually improved, but the
improvement extent reduced slowly. The HED system exhibited a fluctuating growth trend
during 2010–2020, which is characterized by an inverted “V” shape. Regarding their spatial
distribution, high-efficiency areas of GLUUL were mainly concentrated along the “Hu
Huanyong Line”. The regions manifesting high levels of HED are primarily located in the
east, exhibiting a typical “high in the east and low in the west” trend, with a horizontal
diffusion flowing towards the west.

Secondly, the spatial–temporal evolution of CCD indicates a growing overall harmony
between 2005 and 2020. The main coupling level has progressed from primary coordination
to intermediate coordination, resulting in a gradual increase in the proportion of cities
exhibiting good coordination. Several cities teetered on the brink of chaos, and a pattern of
relapse was evident. The distribution of CCD exhibited a relatively balanced and displayed
declining spatial discrepancy. The general pattern of spatial distribution is characterized
by being “high in the northwest and southeast, low in central”, and the evolution trend is
observed as “extending from the northwest to the southwest and northeast”.

Thirdly, in 2020, 34.75% of cities were classified as the “intermediate
coordination—advanced development” type, 26.95% as the “primary coordination—advanced
development” type, and 14.54% as the “intermediate coordination—synchronous devel-
opment” type. A total of 184 cities were identified as having advanced development,
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accounting for more than 65%. It is evident that although the efficiency of GLUUL is con-
sistently improving, HED remains relatively advanced, indicating that rapid development
is underway in these cities and that their focus is still on the economy.

Fourthly, the influence degree and direction of Edl, Gtia, Isu, Fis, Ups, and Fs on
CCD in different regions were significantly diverse. In 2020, Edl, Gtia, Isu, Ups, and
Fs primarily contributed to the enhancement of CCD. Among them, Isu had the most
significant promotion effect compared to other factors, and it had the strongest influence
on the Yangtze economic corridor and the Beijing–Tianjin–Hebei region. The hindrance
effect of Fis is currently impeding the CCD of the Northeast and western regions.

7. Discussion

Urban land as a natural resource with complex characteristics, and scholars have
studied the relationship between it and economic development from the perspective of
unilaterally influencing. Combined with related research, this article summarized and
proposed the coupling coordination mechanism between GLUUL and HED, considering
their richer connotations. In constructing the evaluation index system of urban land use
efficiency, it notes that there are two main situations in previous studies. The first is that only
economic and social outputs are considered in the desired outputs, neglecting the important
component of ecological outputs [69]. The second is that the non-expected outputs only
consider environmental pollution, such as industrial waste emissions, without taking into
account carbon emissions during the urban land use process [70]. To comprehensively
measure the land use efficiency of cities under environmentally friendly and low-carbon
constraints, this study includes ecological outputs (carbon sinks in urban green spaces)
and undesired outputs (carbon emissions from urban construction land) in the evaluation
index system simultaneously. GLUUL efficiency values in South China and Northwest
China were found to be higher, while those in Southwest China and Central China were
lower, which is consistent with the results of Xie et al. and Yu et al. [50,69]. Additionally,
the cities with high CCD are mainly distributed in the vicinity of the “Hu Huanyong
line” and the southeast coastal area, which has a strong connection with the distribution
characteristics of GLUUL and HED. It shows that when studying the CCD of two systems,
often a better development of one system will lead to an increase in the overall coupling
coordination value [56]. When exploring the CCD of GLUUL and HED, the development
types of each city based on the relative degree of the two systems were investigated, and
then the results of the coupling coordination subtype of GLUUL and HED were derived.
This not only clarifies the CCD of each city but also identifies which sub-system is leading
in this coupled system. Moreover, in exploring the influencing factors, it considered that
each city has different characteristics in economic and social conditions, and different cities
will be affected by the same factor in different ways. Therefore, the GTWR model was
employed to study how different cities are affected by different factors at different time
points. From the detailed regression results obtained, a deep understanding of the driving
factors of CCD was gained.

Based on the results and discussions, this article proposed the following related policy
implications.

Tailored Development Path for Different Types of Coordination.
Synchronous development cities. This type of city can reasonably allocate the input of

land and economy in the process of development and achieve better output. In the future,
based on coordinated development, they should further bolster the input of technology
and talents whilst accelerating the adjustment of industrial structure and promoting trans-
formation and upgrading in the mode of economic development. Meanwhile, it is also
necessary to enhance the urban greening level and strengthen environmental pollution
control measures to further improve the efficiency of GLUUL.

Advanced development cities. With the advantages of a high level of HED, this type
of city should strengthen its investment in GLUUL in the future, make good plans for
land use, actively redevelop inefficient utilization of land, implement new land use modes,
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and encourage intensive, environmentally friendly, and low-carbon land use. Accelerating
the promotion of GLUUL by upgrading the industrial structure and innovating in green
technologies needs to be accompanied by a more pronounced emphasis on protecting
urban land resources.

Backward development cities. Under the condition of the high efficiency of GLUUL,
this type of city should strive to transform this advantage into an economic growth ad-
vantage in the future. Such cities generally have a better ecological environment. On
the one side, they can attract projects and funds based on regional ecological advantages;
on the other side, they actively accept the radiation of surrounding cities with advanced
development, taking the sustainable development path of a green economy.

Orientated by Sustainable Development Exploring the Improvement Path of CCD.
Firstly, green and low-carbon industrial transformation should be accelerated. Opti-

mizing the urban land use structure through upgrading the industrial structure is imper-
ative. The indicators of urban land use ought to prioritize low energy consumption, low
pollution, and high-benefit industries, including high-technology industries, environmental
protection industries, and service industries. To raise the city’s industrial level and speed up
economic development, the industries are also implementing green, low-carbon production
GHG reduction, so that economic development and environmental conservation go hand
in hand.

Secondly, improve the financial support system. Enterprises will be encouraged to
invest and innovate in green technologies through tax breaks, subsidies, and incentives.
Implement specific policies to provide financial support for the development of green and
low-carbon industries, ensuring sufficient financial resources are available to promote green
economic development. Meanwhile, the government could improve the appeal of urban
areas and encourage investment and employment by providing public service facilities
and improving the urban environment. This would foster the coordinated development of
GLUUL and HED.

Thirdly, promote the innovation and application of green technology. The innovation
and application of various green technologies encompassing clean energy, clean production
technology, and low-carbon emission technology can both diminish costs and advance
competitiveness among enterprises, whilst simultaneously enhancing urban environmental
standards and building an ecological civilization city. Meanwhile, promoting the applica-
tion of new technologies, such as green intelligent transportation systems, could elevate
the quality of urban services and strengthen the competitiveness of cities.

There are still some shortcomings in this study that need to be further explored. First,
this study solely focuses on the theoretical analysis of the coupling and coordination mech-
anism between GLUUL and HED. Future research can delve deeper into the interaction
mechanism between them through empirical evidence, such as utilizing the PVAR model
or constructing a DEA evaluation model of the coordination relationship. Second, this
study only analyzes how the coupling coordination of GLUUL and HED develops and
evolves. In the future, further investigation of CCD between them can be conducted from
the perspectives of optimization and prediction; for instance, constructing a spatial Markov
chain model of CCD to predict its evolutionary trends. Third, due to data restrictions,
our study was limited to covering only a portion of the cities in China, with a significant
number of cities in western China excluded from consideration. A follow-up study can
further expand the research scope and explore the changing trend of east–central–west in a
more comprehensive way.
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