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Abstract: This study quantified uncertainties involved in assessing the future flood vulnerability
in 33 urban areas with population exceeding designated thresholds in South Korea. The driver-
pressure-state-impact-response (DPSIR) framework was utilized as the study procedure, integrating
social, economic, and environmental factors. In addition, a total of 220 cases of combinations were
examined, encompassing twenty general circulation models combined with shared socioeconomic
pathway scenarios, five weight determination methods, and three multi-criteria decision-making
(MCDM) techniques, as sources of inherent uncertainties in the process. The rankings of urban flood
vulnerability (UFV) for the selected cities were comprehensively assessed considering all combina-
tions, followed by an analysis of variance test to investigate contributing sources of uncertainties.
As a result, Incheon and Busan were found to be vulnerable to flooding, while Yeongcheon and
Andong appeared to be safe cities. Some cities exhibited wide ranges in their rankings, such as
Daegu, Yangpyeon, and Jeongeup. The identified contributing sources were weighting (58%), MCDM
(27%), and the combination of weighting and MCDM methods together (15%). This study revealed
that weight determination methods and MCDM techniques are the primary sources of uncertainties
in the assessment of future UFV instead of multiple GCMs and SSPs. This finding underscores
the importance for decision-makers and stakeholders to carefully consider these uncertainties for
sustainable flood risk management and prevention.

Keywords: urban flood vulnerability; multi-criteria decision making; uncertainty; analysis of variance

1. Introduction

Flooding is a widespread natural hazard experienced globally, and has consider-
able impacts on human societies. Climate change and urbanization serves as key factors
that exacerbate flood risk (potential for adverse consequences for human or ecological
systems) and vulnerability (propensity or predisposition to be adversely affected) to the
community [1,2]. Recent studies indicate there is a significant increase in frequency and/or
intensity of extreme precipitation, with projections suggesting further intensification in the
future due to global warming, consequently increasing the risk of flooding [3–5]. In addi-
tion, a study shows that annual maximum daily precipitation has a significant increasing
trend in the past decades at a global scale, which can influence flood risk [6]. In addition,
most cities are developed near rivers or oceans to secure water resources. The proximity
of cities to water, coupled with increasing urban population densities and impervious
land areas, has led to increased vulnerability in the system due to fluvial-, pluvial-, and
coastal-flood [7,8]. Moreover, rapid urbanization without proper land use planning or
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management increases the exposure to floods [9,10]. The increased frequency of flooding is
exacerbating the deterioration of urban systems, hindering sustainable development, and
placing greater strain on social-environmental systems. This potential threat underscores
the necessity for attention and contribution to adequately prepare for future flood risks.

Understanding and adapting to future climate risk requires not only assessing the
hazard but also quantifying the associated risk. The Intergovernmental Panel on Climate
Change (IPCC) Sixth Assessment Report (AR6) has annotated the core definition of risk as “the
potential for adverse consequences” which is an interaction between hazard, vulnerability, and
exposure. Uncertainty, the incomplete knowledge, which can result from hazard, vulnerability,
and exposure, is recognized as a key component of the concept of risk [11]. These conceptual
terminologies provide a more robust basis to decision-makers to manage risk.

Research has been actively conducted in the past with a shared goal to explore the
links between climate change vulnerability and urbanization [12]. For example, the shared
socio-economic pathways (SSP), an integrated climate change scenario, was developed and
applied to future vulnerability assessments, where previous studies revealed that urbaniza-
tion should be included and specified as vulnerability conditions [13–15]. The relationship
of vulnerability factors, such as positive and negative effects of urbanization and vulnera-
bility, is still insufficiently understood [16–18]. The majority of the aforementioned articles
suggested that urbanization will contribute to an escalation in climate change vulnerability.
Meanwhile, several studies argued that urbanization may have both positive and negative
consequences, indicating that it is not always a driver for increased vulnerability. Therefore,
urbanization was considered as a pivotal factor influencing both vulnerability and response
capacity, as its impact is contingent upon the specific contextual conditions, which may
either exacerbate or ameliorate these factors [18,19]. Recent studies have investigated the
relationship between flooding and rapid urbanization, both on a global scale and within
developing and developed countries or at the city level on regional scales [2,20–22].

Two approaches are commonly used to assess flooding. One is a physical- and
numerical-model based approach, in which typical outcomes are inundation and flood
hazard maps according to targeting return periods [23,24]. This method offers precise
spatial distribution characteristics of flood risk and provides valuable information for
flood risk management, mitigation, and prevention. The other approach is a multi-criteria
index-based approach considering natural characteristics and socio-economic datasets
related to the study area [25]. This method enables the flexible selection of indicators
based on data availability and quantification methods to evaluate flood vulnerability and
risk. Due to advanced technologies, these approaches are now often integrated with geo-
graphic information systems, remote sensing, and deep learning techniques for assessing
flooding [26,27].

Various methodologies for carrying out uncertainty and sensitivity analysis on cli-
mate change vulnerability have been proposed in regional case studies. The following
frameworks combine different components of factors and their associating variables to
construct the foundation of each vulnerability assessment approach: driving force-pressure-
state-impact-response (DPSIR), social, ecological, and technological systems (SETS), IPCC
AR4-based exposure, sensitivity, and adaptive capacity (ESAC), IPCC AR5-based haz-
ard, exposure, and vulnerability (HEV), etc. [2,22,28,29]. Several studies have utilized the
technique for order of preference by similarity to ideal solution (TOPSIS), a multi-criteria
decision making (MCDM) method, to quantify the climate change vulnerability, to derive
the distribution of weights, and to reduce the uncertainty of weights [30,31]. Further imple-
mentations and applications on TOPSIS enabled a stronger ability of the model to manage
uncertainty in an effective manner based on coupling with Pythagorean fuzzy set, VIKOR,
and grey theory [32–35].

A recent study quantified uncertainties and evaluated flood vulnerability for medium-
sized cities on a regional scale utilizing the abovementioned MCDM approaches incorpo-
rating general circulation models (GCMs) [28]. However, a smaller number of previous
studies have explicitly examined what can be the contributing sources of uncertainty to
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flood vulnerability when considering both the medium and big populated cities in Korea.
Therefore, in this study, we present a comparative analysis to investigate the uncertainties
that lie in the assessment of future urban flood vulnerability (UFV) process in populated
cities in Korea. This study aims to answer the following research questions.

(1) How does flood vulnerability compare when estimated using different weighting,
MCDM, and GCMs with climate change scenarios for different sizes of cities?

(2) To what extent does flood vulnerability vary when considering all plausible inputs?
(3) How does the relative sensibility to the various components of flood vulnerability

assessment compare (i.e., weights, decision making process, and climate model)?

To answer these questions, this study evaluated the flood vulnerability for cities
with populations exceeding a certain threshold utilizing the DPSIR framework, which are
integrated with social, economic, and environmental (SEE) factors. Within the process, a
composite integrated model incorporating various weighting values for criteria and MCDM
scheme and GCMs including future scenarios in South Korea were applied to examine the
results of flood vulnerability. This study assessed the urban flood vulnerability utilizing
the multi-criteria index-based approach, which derives the rankings of cities vulnerable to
flooding according to calculated proxy variables. Then, the analysis of variance (ANOVA)
test was utilized to determine disparities among the derived priority rankings of flood
vulnerability for each city, considering all plausible components from the designated model.
The equal weight, entropy, Delphi, fuzzy, and grey approaches were utilized to derive
weighting values, while WSM, VIKOR, and TOPSIS approaches were employed for the
MCDM process. Note that the ‘vulnerability’ in this study includes both the exposure of the
system affected (i.e., the population and economic assets located in area potentially affected
by flooding) and the vulnerability of the system (i.e., the susceptibility of the exposed
elements to flooding).

This paper is organized as follows. Descriptions of the data and cities considered in
this study, along with the description of each methodology considered in this study, are
explained in Section 2. Section 3 presents the results including the obtained or computed
weighting values, derived rankings based on each method, and contributing sources of
uncertainties based on a statistic test. Finally, Section 4 summarizes our findings with
a conclusion.

2. Methods
2.1. Study Area, GCMs, and SSPs

This study was applied to 33 selected big and medium cities where synoptic weather
observation centers exist in South Korea. This study defined a “big city” as one with a
population greater than 500,000 and a “medium city” as having a population between
100,000 and 500,000. Although big cities with large populations can affect the vulnerability
of medium-sized cities during the normalization process, this study considered both big
and medium cities as a whole sample to investigate the characteristics on vulnerability,
ignoring the impact of city size. Figure 1 illustrates the location of the big and medium
cities considered in this study with different colors. The detail information of the selected
33 cities such as their size, area, location, and population can be found in the Supplementary
Material (Table S1).

GCMs are developed based on their own physical climate system processes and math-
ematical expressions, thereby offering a range of climate projection [36]. These models
typically encompass physical processes in the atmosphere, oceans, glaciers, and the Earth’s
surface. Therefore, they are valuable tools for analyzing climate change topics and estimat-
ing future climates resulting from rising concentrations of greenhouse gases. This study
selected ten GCMs (CMIP6) under two-SSP scenarios (SSP 2–4.5 and 5–8.5) on the climate
change and assessed flood vulnerability using monthly maximum precipitation for the fu-
ture period (2070–2099). The GCM data, characterized by varying spatial resolutions, were
downscaled to a spatial resolution of 0.25◦ × 0.25◦ using linear interpolation. Additionally,
the inverse distance weighting method was employed as a spatial interpolation technique
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to simulate point climate data for the study area based on the downscaled GCMs grid data.
As part of the process, bias correction was conducted using the quantile mapping method,
which is widely employed for this purpose. The 10 GCMs under two-SSP scenarios were
employed, and 20 different cases of future monthly precipitation for the future period were
applied as the driver component in the environmental factor. The information of ten CMIP6
GCMs selected in this study is described in the Supplementary Material (Table S2).
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2.2. DPSIR Framework and Social-Economic-Environmental Factors

This study utilized the DPSIR framework, developed by the European Environment
Agency in 1999 [37]. The DPSIR framework was improved based on the integration of
the PSR (Pressure-State-Response) and DSR (Driver-State-Response) framework presented
by the OECD (Organization of Economic Cooperation and Development) in 1993 and the
United Nations in 1996, respectively. This framework is widely used and applied globally
due to the fact that it addresses the limitations of the PSR framework by incorporating
additional components such as ‘drivers (or driving forces)’ and ‘impact’ factors alongside
the existing PSR structure [38–40].

In this study, indicators for UFV evaluation were selected using the DPSIR framework
considering SEE factors. A total of 25 indicators were selected, categorized into SEE factors,
which collectively determine flood vulnerability in urbanized cities within the study area.
Each factor comprises between six to twelve indicators, all of which were classified into the
DPSIR groups based on their relevance to flooding characteristics. These indicators initially
stemmed from multiple rounds of surveys conducted among group of experts, and was
applied in a study by [28]. This study is a follow-up to the previously mentioned study
and focuses on techniques for quantifying uncertainties and identifying the sources that
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contribute to them. However, some certain aspects were reconstructed in this study by
removing unnecessary indicators (i.e., population density, annual maximum precipitation,
and daily maximum temperature) and increasing the data length of historical indicators
from 2007 to 2022, while the previous historical data length was between 2010 to 2020. The
25 indicators, their belonging factors and DPSIR group, along with their expected benefit
and cost impact to flood vulnerability are listed in Table 1. For example, the social factor
includes indicators such as population growth, class of population vulnerable to disaster,
administrative district area, population, distance to shore, developed area, number of flood
events, number of casualties, number of injured people, number of inhabitants per resident,
number of hospital beds per thousand people, and number of doctors per thousand people.
Most of the indicators for the social factor are related to population and characteristics
of the urban area. Indicators relating to cost and economic activity are categorized into
the economic factor, while social infrastructures to prevent flooding and climatic data are
categorized into the environment factor.

Table 1. Selected indicators for urban flood vulnerability (UFV) in this study.

Factor DPSIR Label Indicators Benefit vs. Cost Period and Source of
Data Collection

Social

Driver

I01 Population growth (−)

2007–2022
Statistic Year Book of

Natural Disaster
(https://kosis.kr/
index/index.do

(accessed on 5 July
2023))

I02 Class of population
vulnerable to disaster (−)

I03 Administrative district
area (−)

I04 Population (−)

I05 Distance to shore (+)

Pressure I06 Developed area (−)

State I07 Number of Flood events (−)

Impact
I08 Number of casualties (−)

I09 Number of injured
people (−)

Response

I10 Number of inhabitants
per resident (−)

I11 Number of hospital beds
per thousand people (+)

I12 Number of doctors per
thousand people (+)

Economic

Driver I13 Unemployment ratio (−)

Pressure
I14 Financial independence

rate (+)

I15 GRDP (+)

State I16 Developing plan area (−)

Impact I17 Cost of damage (−)

Response
I18 Cost for recovery (−)

I19 Disaster prevention
budget (+)

Environmental

Driver I20 Future monthly
precipitation (GCMs) (−) 2070–2099

GCMs + SSP scenarios

Pressure I21 Daily maximum
precipitation (−)

2007–2022
Statistic Year Book of

Natural Disaster
(https://kosis.kr/
index/index.do

(accessed on 5 July
2023))

State I22 Damage area (−)

Impact I23 Number of restored
households (−)

Response
I24 Length of levee (+)

I25 Number of reservoirs (+)

https://kosis.kr/index/index.do
https://kosis.kr/index/index.do
https://kosis.kr/index/index.do
https://kosis.kr/index/index.do
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2.3. MCDM Techniques

In order to analyze the uncertainties inherent in the use of decision making process,
this study compared three-MCDM methods: weighted sum method (WSM), VIKOR, and
TOPSIS. Note that this study combined WSM with equal weight, entropy, and Delphi
(3 cases), VIKOR with equal weight, entropy, and Delphi (3 cases), and TOPSIS with equal
weight, entropy, Delphi, fuzzy, and grey (5 cases), which in total is 11 cases. These 11 cases
are combined with 10 GCMs and 2 SSP scenarios. Therefore, this study conducted the flood
vulnerability assessment 220 times.

The WSM integrates all multi-objective functions into a single scalar using the weighted
sum. The method of WMS is well described in [41], and the composite objective function, U,
can be expressed as follows:

U = ∑k
i=1 wiFi(x) (1)

where wi is the weight and Fi(x) is the objective function criterion of the ith criterion or
attribution. Minimizing Equation (1) provides a sufficient condition for Pareto optimal-
ity [42,43].

The VIKOR method provides rankings, compromise solution, and the intervals of
weight stability to assess the preference stability of the compromise solution derived from
the initial weights. It derives the multi-criteria ranking index based on the particular
measure of ‘closeness’ to the ‘ideal’ solution [44]. The VIKOR method and its compromise
ranking algorithm is well described in [45] and can be found in the Supplementary Material
(Equations (S1)–(S4)).

The TOPSIS method, known as the technique for order preference by similarity to an
ideal solution, was introduced by [46], referencing the work of [47]. The principle of this
method is that the selected alternative should be closest to the positive-ideal solution while
being farthest from the negative-ideal solution. The TOPSIS procedure consists of several
steps, which are well described in [45] and can be found in the Supplementary Material
(Equations (S5)–(S11)).

2.4. Weight Determination Methods

This study applied five different methods to define the weighting values for UFV
criteria and to examine whether the different weighting determination methods cause
uncertainties in assessing urban flood vulnerability. Equal weight and entropy methods
were selected to represent the objective weighting values, while the Delphi technique was
utilized to represent the subjective weighting values. In addition, fuzzy and grey were
employed to provide different concentrations and ranges based on subjective weighting
values. The weighting values obtained by equal weight, entropy, and Delphi were com-
bined with WSM, VIKOR, and TOPSIS, while fuzzy and grey were combined only with
the TOPSIS.

Equal weight assigns the same value to all selected indicators for flood vulnerability.
This method does not provide preference based on the indicators and treats each indicator
equally in terms of contribution to the decision making process. The weighting value for
the jth criterion, wj, can be expressed as follows:

wj =
1
n

, ∑n
j=1 wj = 1 (j = 1, 2, . . . , n) (2)

Entropy method, proposed by [48], is widely used in decision-making to obtain the
objective weight. Its advantage is the avoidance of the interference of human factors on the
weight of indicator. The entropy weight value can be derived by the following three-steps:
First, standardization of the value should be done. The standardized value of the ith
alternative in the jth criterion can be expressed as follows:

sij =
vij

∑m
i=1 vij

. (3)
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Second, the entropy value Ej of the jth criteria can be expressed as follows:

Ej =
∑m

i=1 sij·ln sij

ln m
. (4)

where sij·ln sij is set to 0 when sij = 0 for convenience in the actual evaluation.
Finally, the weight wj can be defined as follows:

wj =
1 − Ej

∑m
i=1

(
1 − Ej

) . (5)

This study also utilized the Delphi technique developed by [49] which is a method
that can solve complex problems by a series of questionnaires and feedback from a group
of experts. In this study, we determined the weighting values for flood vulnerability
indicators based on two rounds of surveys from the expert group including hydrologists,
water resources engineers, and climate change experts.

The fuzzy-TOPSIS method, proposed by [50], addresses uncertainty in MCDM prob-
lems by considering the triangle fuzzy number (TFN) and extends the classical TOPSIS
method to accommodate group decision-making scenarios. TFN represents a fuzzy set
where elements possess uncertain boundaries, which can be used easily because it can
be expressed by three dots. Similarly, the grey systems theory also offers a practical ap-
proach for managing uncertainty, particularly in situations involving highly imprecise
data [51,52]. ‘Grey’ denotes information that is partially known, and a grey number rep-
resents a value whose exactness is unknown, but a range within which the value falls is
known [53]. Detailed procedure of both the fuzzy-TOPSIS and grey-TOPSIS are described
in the Supplementary Material (Equations (S12)–(S22)).

2.5. Statistical Test for Flood Vulnerability Results
Analysis of variance (ANOVA), developed by Sir Ronald A. Fisher (1925), is designed

to determine if there is a significant difference among the means of two or more groups.
Essentially, ANOVA addresses whether all the group means are equal, or the variance
between the group means greater than what would be anticipated by chance. Therefore,
ANOVA’s strength lies in its capacity to not only quantify the uncertainty linked to each
individual source but also to assess the uncertainty stemming from the interactions among
these sources [54,55]. In this study, the derived rank based on the flood vulnerability assess-
ment was considered instead of the mean value to explore whether the different procedures
have an impact on flood vulnerability ranks. The sources of uncertainty considered in this
study includes GCMs combined with SSP scenarios, weight determination methods, and
MCDM techniques, which make a total of 220 cases. According to the ANOVA theory, the
total sum of squares (SST) can be divided into sums of squares due to individual sources.
Hence, in this study, the SST can be expressed as follows:

SST = SSGCM,SSP + SSWeight + SSMCDM + SSGCM,SSP:Weight + SSGCM,SSP:MCDM + SSWeight:MCDM + SSGCM,SSP:Weight:MCDM (6)

where SSGCM,SSP, SSWeight, and SSMCDM represents the variance due to individual sources
relating to GCM scenarios, weighting, and MCDM methods, and SSGCM,SSP:Weight,
SSGCM,SSP:MCDM, SSWeight:MCDM, and SSGCM,SSP:Weight:MCDM represent the variance due
to combined sources.

3. Results
3.1. Development of the Decision Matrix

The decision matrix, which is the initial matrix in the evaluation process, was devel-
oped considering 24 historical indicators (2007–2022; I01–I19 and I21–I25) and 1 indicator
based on future projection (2070–2099; I20). According to the methodology outlined in
this study, the future monthly precipitation data from GCMs, along with the two distinct
SSP scenarios, are categorized within the ‘Driver’ subgroup of the ‘Environmental’ factor.
Hence, this study assessed UFV using multiple decision matrices. In order to obtain the
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decision matrix with alternatives and criteria as the cities and indicators, respectively, the
mean value of each indicator was computed in this study. These matrices were applied
for the cases using equal weight, entropy, and Delphi. Moreover, the separate decision
matrices for fuzzy-TOPSIS and grey-TOPSIS, incorporating the changing indicator (I20),
were developed due to their distinct procedures, which take into account the minimum,
maximum, and most frequently occurring values. Figure 2 illustrates the distribution of
one indicator (I01; population growth) for each city through histograms. The minimum,
maximum, and most frequently occurring values are computed based on these histograms
to develop the decision matrix for the fuzzy- and grey-TOPSIS methods. Note that Figure 2
represents the histogram for a single indicator. Therefore, there are 43 additional figures
similar to this one for indicator I20 and the other indicators.
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3.2. Evaluation the Urban Flood Vulnerability from Different Methods
3.2.1. Weighting Values from Different Methods

Three different MCDM methods and five different weighting methods, incorporating
ten GCMs and two SSP scenarios, were used to evaluate UFV in this study. The weighting
values for each indicator were either obtained through surveys (Delphi method) or com-
puted. The weighting values based on the equal weight, Delphi, fuzzy, and grey methods
remain constant throughout the whole study procedure. Note that the weighting values for
fuzzy and grey were also obtained by the Delphi survey for this study. However, due to
the outlined framework of this study, the weighting values for entropy vary for each case.
This is because the varying indicator I20 was affecting the weighting values for the DPSIR
groups and their corresponding SEE factors.

Figures 3–5 illustrates the chart of the obtained and computed weighting values for
the criteria considered in this study. Figure 3 shows the weighting values according to the
25 selected indicators. The sum of the weighting values for the indicators belonging to the
DPSIR groups are one. For example, the sum of indicators (I01 to I05), which constitute the
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driver group in the social factor, is one. Similarly, the weighting values for the indicators
that exists solely in the DPSIR groups, such as I06 and I07, are one. For the entropy method,
indicator I20 solely composed the driver group in the environment factor. Therefore, the
weighting value for each indicator remains the same while indicator I20 varies. However,
the weighting values for the DPSIR groups and SEE factors slightly changed due to the
variation of the indicator I20 (Figures 4 and 5). Nevertheless, it was found that there were
not any significant variations within the weighting values in the DPSIR and SEE level for
the entropy method aspect.
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The weighting values for equal, entropy, Delphi, Fuzzy-max, and Grey-max were
observed to have no considerable difference in the 25 indicators (Figure 3). However, in
Figure 4, considerable changes in the weighting values can be observed. The weighting
values based on the equal, entropy, and Delphi method for the DR, PD, and DSI groups
in the SEE factors, respectively, had greater weights compared to maximum values of the
fuzzy and grey approach. The opposite cases, when the maximum weighting values of
the fuzzy and grey methods were two or three times greater than the other weighting
methods, were observed for the SI, I, and P groups in the SEE factors. At the SEE factor
level (Figure 5), the weighting values based on the equal and entropy method exhibited
similarities across factors, with the chart’s shape resembling an equilateral triangle. The
chart representing the other weighting methods resembles an isosceles triangle, indicating
that the environmental factor has relatively higher weights compared to the others. The
difference in weighting values resulting from various methods are anticipated to cause
uncertainties in the UFV assessment, even before entering the decision-making process.

3.2.2. UFV Assessment Based on Different MCDM Techniques

MCDM methods were integrated with the computed weighting values. Based on
the developed decision matrix, the weighting values and MCDM methods were applied
for all plausible combinations. As per the outlined methodology of this study, the UFV
assessment was conducted 220 times, corresponding to the number of combinations of the
GCMs and SSP scenarios, weight determination methods, and MCDM techniques. Proxy
values were obtained for each city after following all steps of a single MCDM method.
The obtained proxy values were utilized to prioritize flood vulnerability for each city. The
city with the highest proxy value was ranked as 1st (most vulnerable to urban flooding),
while the city with the lowest proxy value was ranked as 33rd (least vulnerable to urban
flooding). Figure 6 presents the ranking information using aggregated statistics, which
shows representative information such as the highest, the lowest, and the most frequent
ranking for each city.

According to Figure 6, cities 1 (Incheon), 2 (Seoul), 4 (Busan), and 13 (Pohang) were
observed as cities vulnerable to flooding when considering the most common rank. How-
ever, Incheon and Busan showed a narrow range in their rank variation, whereas Seoul and
Pohang exhibited relatively greater changes in their ranks. On the other hand, cities ranked
below or equal to 28th, such as 20 (Jecheon), 22 (Jeongeup), 23 (Mokpo), 26 (Andong), 27
(Gumi), 28 (Yeongju), and 29 (Yeongcheon), were identified as cities safe from flooding.



Sustainability 2024, 16, 3450 11 of 16

The rankings for Andong, Yeongju, and Yeongcheon showed less diversity, indicating
that these cities have robust results despite the application of numerous combinations of
uncertainty sources.
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all scenarios.

When comparing the size of cities, the majority of the big cities had higher ranks,
indicating that most of the big cities are vulnerable to flooding, except for cities 3 (Daejeon),
6 (Daegu), and 11 (Jeonju). In contrast, medium cities were low ranked. However, when
considering the highest rank for the medium cities, it was observed that 12 cities were
ranked higher than 13th, indicating that medium cities can be more vulnerable to flooding
than some of the big cities under specific cases and scenarios.

Figure 7 visualized the maximum difference between the ranking for UFV in each city
considering all plausible scenarios. According to this figure, cities that are sensitive and less
sensitive to the applied methodology can be easily sorted out. As a result, cities with mini-
mal ranking differences, such as 1 (Incheon), 4 (Busan), 28 (Yeongju), and 29 (Yeongcheon),
appeared to be insensitive. In contrast, 3 (Daejeon), 6 (Daegu), 15 (Yangpyeong), 22
(Jeongeup), and 24 (Yeosu) were found with greater ranking differences, indicating that
UFVs of these cities are highly influenced by either the GCMs and SSP scenarios, weight
determination methods, or MCDM techniques. This suggested that the sensitivity to the
applied methodology for flood vulnerability varies from city to city.
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3.3. Statistical Analysis of Urban Flood Vulnerability Rankings

In order to examine the sources of uncertainties that lies in the scenarios and methods
in the flood vulnerability assessment in each city, this study utilized the ANOVA test.
Figure 8 illustrates the ratio of contributing sources based on the ANOVA test, while Table 2
shows brief statistic information relating to Figure 8. The test was conducted with the
ranking resulting from the UFV assessment for each city considering the combination of
GCMs, SSP scenarios, weight determination methods, and MCDM techniques. The SST
obtained from Equation (6) was converted to 100% for visualization purposes. As a result,
the individual weighting and MCDM method and the weighting combined with MCDM
methods were greatly involved in causing uncertainties in the UFV. The weighting methods
were the most sensitive source, contributing to a broad spectrum of uncertainties in UFV,
with a ratio of contribution to the variance in rankings ranging from 35.0% to 92.9% in
19 cities. The MCDM techniques were observed to be the next influential source as their
ratios of contribution ranged between 40.7% to 71.4% in nine cities, while the combination
of the weight determination and MCDM methods showed a range of 28.4% to 58.6% in
five cities.
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Table 2. Minimum and maximum of the ratio of contributing sources that causes ranking variation in
UFV for all cities and only considering the cities with the sources that contributed the most.

Sources
All Cities Considering Only the Cities Based on the Most

Contributed Sources

Min Max Min Max

GCM + SSP 0.01 16.70 - -
MCDM 0.51 71.37 40.66 71.37
Weight 11.44 92.93 35.06 92.93

GCM + SSP + MCDM 0.02 13.60 - -
GCM + SSP + Weight 0.06 17.25 - -

MCDM + Weight 0.46 58.55 28.42 58.55

GCM + SSP + MCDM + Weight 0.07 15.93 - -

The application of different weight determination methods and MCDM methods
influenced the final flood vulnerability rankings. For example, the objective weighing
methods, such as equal weight and entropy method, calculated weighting values based
on the information content of each criterion, which reduces the reliance on subjective
judgements. It can be inferred that the objective weighting values can be used for regions
with no background knowledge about the characteristics and environment of the area. On
the other hand, the subjecting weighting method (i.e., Delphi technique) reflects experts’
opinions by identifying indicators that require particular focus, and can lead to different
outcomes based on comprehensive understanding of various factors. Furthermore, the
application of different MCDM methods can be crucial in decision making since they can
lead to different outcomes. There are chances of obtaining similar results when applying
different MCDM methods, especially when considering a smaller number of criteria and
alternatives [35]. However, the final outcomes based on different MCDM methods can
vary due to the fact that recent studies are comprehensively utilizing numerous climate
data, land use data, socio-economic data, and so on. Our findings show that weights and
decision-making techniques have to be carefully selected, as they are the primary sources
of uncertainty. Recognizing that utilization of different weighting approaches and MCDM
methods can yield diverse outcomes can assist policymakers, officials, and planners in
sustainable urban management, planning, and flood risk prevention.

4. Conclusions

This study evaluated UFVs considering future climate change in urbanized cities in
South Korea. The DPSIR framework integrated with SEE factors were utilized as for the
study procedure. Indicators related to urban flooding were selected, and their weighting
values were obtained by the equal weight, entropy, Delphi, fuzzy, and grey approaches. The
weighting values for each method were then used in three different MCDM methods, which
are WSM, VIKOR, and TOPSIS. The UFV assessment was conducted 220 times, which is
the number of combinations of the three sources of uncertainties considered in this study:
GCMs, SSP scenarios, weight determination methods, and MCMD techniques. The derived
rankings for each city were aggregated to investigate the variation of the flood vulnerability
ranks based on different methodologies and to explore the ratio of contributing sources
causing uncertainty based on the ANOVA test.

This study revealed that weighting values are the most contributing source that cause
variation to the UFV ranks, followed by MCDM methods and the combination of weight
determination and MCDM methods. Daegu appeared to have the most difference between
the maximum and minimum ranks, indicating that this city’s rank for flood vulnerability
is sensitive to varying weightings and MCDM methodologies. Nevertheless, some cities
were found having robust ranking with fewer changes: Incheon and Busan were identified
as vulnerable cities, whereas Yeongcheon was depicted as the safest city to flooding. In
addition, the majority of the big cities scored high ranks, while medium cities were low-
ranked when comparing the city size. The results of this study suggests that weight
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determination and MCDM methods are the primary components that can cause uncertainty.
Therefore, to better understand the uncertainty in the assessment of flood vulnerability and
to effectively communicate with decision–makers and stakeholders, it is essential to take
all plausible methods into account.
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