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Abstract: The utilization of waste products is becoming a vital aspect of the construction industry to
safeguard environmental assets and mitigate pollution, all of which lead to long-term sustainable
development. From this perspective, this experimental investigation was carried out to determine
the cumulative influence of waste glass cullet and metakaolin (MK) as partial replacements for coarse
aggregates and cement in an isolated and combined manner. This research demonstrated the influence
of integrating glass aggregate and metakaolin wherein coarse aggregate was substituted by 10%, 15%,
20%, 25%, and 30% glass cullet (by weight), and cement was supplemented with 10% metakaolin.
The substitution of waste glass with coarse aggregate significantly declines the compressive strength
correspondingly; however, the integration of 10% metakaolin powder enhanced the strength slightly
for all specimens up to 25%. On the other hand, for flexural strength, the inclusion of glass waste in
concrete reduced the performance, whereas the incorporation of metakaolin boosted the strength but
did not achieve greater strength compared to the control mixture. The sustainability analysis revealed
that the production cost and eCO, emission could be reduced by 15% and 7% by incorporating glass
cullet and metakaolin in the concrete mix, which satisfied sustainability. Based on the experimental
results, the ideal proportion substitution would be 25% glass aggregate with 10% metakaolin, which
could satisfactorily be used to generate sustainable concrete.

Keywords: recycling; glass waste; metakaolin; mechanical characteristics; cost; eCO, emissions

1. Introduction

The concrete industry is questing after the development of alternative materials that
mitigate environmental challenges caused by the continual use of environmental assets
and emission of greenhouse gas as well as preserve quality, leading to a sustainable
environment. Environmental resources utilized as concrete components are scarce in
quantity, and concrete might have to be abandoned as a building material at a certain
stage in the future if it is utilized at the present rate in the construction sector, resulting in
catastrophe and turmoil. The manufacturing of concrete is anticipated to need 9 billion
tons of aggregate, 1.5 billion tons of cement, and 1 billion tons of water each year [1].
Because of environmental degradation, carbon emissions, and heavy energy usage, it has a
range of detrimental environmental effects, including climate change, scarcity of natural
resources, and air pollution [2]. Aggregate is one of the most important elements of concrete,
contributing approximately 60-75% of the overall volume of the finished product [3].
The worldwide demand for concrete aggregates is beyond 26.8 billion tons yearly [4].
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Consequently, traditional aggregate resources are deteriorating at an accelerated rate to
meet this ever-increasing demand for concrete aggregates. Additionally, the production of
the primary binding agent, Portland cement, is a high-cost and power-consuming procedure
that emits CO, at a significant amount. For manufacturing one ton of cement, it takes about
1.5 tons of raw elements [5] and 4000 MJ of power [6]. Because of the substantial energy
required for generating Portland cement, which produces 5-7% of overall carbon emissions,
the impact of employing Portland cement on concrete creation would be tremendous [7].
As a result, integrating waste products as concrete elements would be a crucial choice for
making optimal use of environmental assets and minimizing contamination.

Concrete utilization is anticipated to grow to almost 18 billion tons by 2050 as a
consequence of enhanced infrastructure development; thus, it is safe to conclude that
concrete will play an important part in shaping the future [8]. Moreover, waste forma-
tion is followed by a dumping challenge as well as severe environmental repercussions.
Additionally, the majority of the waste products are useless. If these products can be
integrated as a component in concrete after being evaluated for functionality, it would be
tremendously advantageous for developing a sustainable construction industry, employing
unproductive waste products, and creating more cost-effective concrete. Numerous stud-
ies have been done recently for integrating different waste products, such as demolition
wastes [9-11], municipal solid wastes [12-14], and other commercial and industrial wastes,
including crushed brick [15-18], plastic [19-21], steel scrap metal [22,23], crushed glass
powder [24-26], and electronic waste [27-29] to strengthen concrete in ways that make it
safer and capable of performing more various functions. Biological waste (i.e., solidified
plant) [30] and polymeric waste (i.e., polystyrene foam) [31] were also subjected to recent
studies, resulting in positive outcomes and indicating that the search for novel materials
can provide alternatives to conventional concrete materials.

Glass products are some of the most commonly employed products in daily life, and
their use is expanding day by day. This increased glass manufacturing and utilization in
recent times is attributable to increased urbanization and rapid economic development [32].
Glass is a transparent substance that is generated by liquefying the silica, soda ash, and
CaCOs3 mixture at elevated temperatures, then chilling the mix until it solidifies without
crystallizing [33]. As per UN Projections, the world’s solid trash totaled 200 million tons in
2004, with waste glass accounting for 7% of that amount, or 14 million tons [34]. The rising
quantities of waste glass, particularly window glass or sheet, have become a significant
issue that needs efficient and equitable alternatives. These waste glasses may be repurposed
for generating new glass items; however, the sector is confronted with problems leading
to more expensive glass reprocessing [35]. As a result, a tiny proportion is repurposed,
and the remaining is discarded as waste. Dumping discarded glasses is problematic since
they are not compostable [33], rendering these ecologically unfriendly and polluting. As a
consequence, its application in other fields is becoming progressively crucial.

While considering the features of waste glass, including absorption and durability, it
appears that this could be used as a supplemental binding component or as an aggregate in
typical concrete. Glass has a very low absorbency, rendering it a particularly durable sub-
stance. Furthermore, glass has such a high stiffness, giving the concrete a strong resistance
to abrasion [33]. Numerous studies have looked into the different attributes of concrete
with the integration of glass as a substitute for cement [36-38], coarse aggregate [33,39,40],
and fine aggregate [41,42] at varying concentrations. The qualities seem to be positive
and favorable overall. As per Celik et al. [43], the concrete mixture, including waste glass
powder as fine aggregate, resulted in the proper pozzolanic reaction. The released silica,
from glass dissolution, reacts with calcium hydroxide (CH) to form C-(N)-S-H (alkali-silica
gel) with different compositions depending on the system. This pozzolanic reaction of
glass not only consumes portlandite to form in situ C-S-H, which appears as a reaction
rim around glass grains, and precipitated C-S-H but also reduces monosulfate level, which
in turn, augmented in enhanced mechanical properties.
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Metakaolin (MK) is a residue that is abundantly generated and has high reactivity
and silica—aluminous constitution [44]. Kaolin, a raw resource in numerous industries, is
transformed into metakaolin using thermal processing that chemically removes bonded
water and changes the crystalline phase [45,46]. The thermal system causes moisture to leak
out of the kaolin (Al,03-2510,-2H,0) [47] and changes the structural parameters, leading
to metakaolin, an unstructured aluminosilicate (Al;O3-2510;) [48]. At room temperature,
metakaolin combines with Ca(OH), to generate the Calcium Silicate Hydrate (C-S-H) gel,
which then interacts with Calcium Hydroxide (CH) to create alumina-containing stages,
such as C4AH;3, CASHg, and C3AHjg [49,50]. Since MK is a pozzolanic substance, it lowers
the amount of CH inside a cement-based process. In contrast, cement is substituted by MK,
the blend of pore improvement and decrease in CH, resulting in enhanced durability [51,52].
This has the potential to be both cost-effective and environmentally friendly.

Metakaolin’s unique chemical composition allows it to function as a perfect additional
cementing component among various nutrients and residues already used in construction
such as various powder contents [53]. While employed as a partial substitution for cement,
it gives advantages in terms of mechanical strength and tolerance to the intrusion of
hostile substances [54]. Tafraoui et al. [55] discovered that the improvements in mechanical
properties and durability of concrete made with MK are comparable to the advances
made with silica fume. Additionally, Duan et al. [56] compared the compressive strength
enhancements in concrete made employing MK, silica fume, and pulverized granulated
blast-furnace slag and discovered that concrete made with MK seemed to have the best
results. Siddique and Kaur [57] investigated the impact of MK as incorporation of cement
at weight ratios of 0%, 5%, 10%, and 15%. The compressive strength reduced at 15% MK
replacement, whereas 10% MK content was shown to be the best replacement amount.
Moreover, Dinakar et al. [58] studied the mechanical and endurance features of concrete
integrating 5%, 10%, and 15% MK, concluding that 10% was the optimum amount with
respect to the compressive strength and that the durability increases proportionately with
the enhancement of the proportion.

Research Significance

Based on the increasing deterioration of the present and emerging ecosystem, aca-
demics and engineers have been interested in the long-term sustainable development
of concrete. Waste glass aggregate and MK have been employed in the development of
self-compacting concrete in an isolated manner and revealed positive outcomes. Previously,
numerous studies were conducted on improving the performance of concrete made with
fine glass aggregate and dust. However, only a few investigations have been done on
the utilization of waste glass cullet as a coarse aggregate. In addition, employing glass
aggregate from domestically supplied waste glass bottles as coarse aggregate along with
metakaolin has not been initiated yet. Hence, the objective of this analysis is to identify
the behavior, features, and efficiency of concrete with waste glass as supplementary coarse
aggregate and metakaolin as supplementary cementitious material. This study also focuses
on promoting the minimization of environmental problems associated with employing
natural resources by suggesting substituting them with less environmentally damaging
elements that can prolong the structure’s life span instead of decreasing productivity and
minimizing emissions.

2. Materials and Methods
2.1. Research Plan

Experimental investigations of the present study include concrete’s fresh qualities,
mechanical characteristics, carbon analysis, and cost estimation, which are all evaluated and
reported. Figure 1 illustrates the successive activities through which these investigations
were carried out.
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Figure 1. Research methodology flow chart.

2.2. Materials

To conduct the present research, the Type I ordinary Portland Cement (OPC) of the
“Seladang” brand, manufactured by Tenggara Cement Manufacturing Sdn, was used as a
primary binder for the concrete mixes that correspond to the ASTM C150/C150M-20 [59]
standard. In addition, 10% metakaolin was employed as a supplementary cementing agent
because prior literature [57,58,60] had revealed that incorporating 10% metakaolin as a
replacement for cement produces the best performance. To manufacture metakaolin, the
yellowish-white-tinted regional kaolin provided by “Kaolin Malaysia Sdn. Bhd.” was
heat-treated at 750 °C in a dedicated oven. The chemical composition of cement and kaolin
used in the investigation is given in Table 1.

The research utilized river sand as fine aggregate, which was acquired from a regional
supermarket and air-dried to achieve a saturated surface dry condition for maintaining the
water—cement ratio, and granite crushed aggregates as coarse aggregate (CA), which were
extracted from local producers with a marginal diameter of 10 mm and met the require-
ments of ASTM C136/C136M-19 [61]. Glass material (cullet) utilized as additional coarse
aggregate was gathered in various forms, dimensions, patterns, and colors from houses,
clubs, and bars, and municipal trash collection authorities because it is not easily accessible
in a consistent queue regionally. The material was collected, rinsed to remove any sticky
material that had accumulated on the glass, and then allowed to dry completely. The waste
glass was then crushed and sieved to achieve a grade that was close to that of conventional
coarse aggregate, as defined by ASTM C136/C136M-19 [61]. Figure 2 illustrates a sample
of waste glass cullet that was employed as supplemental coarse aggregate in this study at
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various amounts. The gradation curve of stone chips as coarse aggregate, crushed glass
aggregate, and fine aggregate (sand), is depicted in Figure 3 with upper and lower limits in
accordance with ASTM-C33 [62].

Table 1. The chemical composition of cement and kaolin.

Parameters Cement (%) Kaolin (%)
Silica (S5i0;) 20.1 55
Alumina (Al,O3) 49 29
Iron Oxide (Fe;O3) 2.5 1
Calcium Oxide (CaO) 65 -
Magnesium Oxide (MgO) 3.1 0.5
Sodium (Na,O) 0.2 0.02
Potassium Oxide (K,O) 0.4 3.1
Titanium Dioxide (TiO,) 0.2 -
Loss On Ignition 2.5 8.8
Fineness (2 pm) 24 10

Figure 2. Sample of waste glass cullet used in the investigation.
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Figure 3. Gradation Curve of the aggregates.

2.3. Mix Proportioning and Specimen Preparation

A total of six combinations for both with and without metakaolin were constructed
for this research in addition to the control sample to evaluate the impacts of the waste
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glass cullet and MK and compare the qualities with the control specimen. In this study, the
coarse aggregate and cement were substituted with glass aggregate (10%, 15%, 20%, 25%,
and 30% by weight of coarse stone aggregate) and 10% metakaolin. The water-cement
ratio in such concrete mixtures was set at 0.45, and the compressive strength target was
set at 30 MPa after 28 days. The control sample, designated as GC 0 and GMC 0 for
without and with metakaolin, respectively, was the first sample of concrete utilized for
evaluating and analyzing concrete incorporating varied proportions of cullet. For this
experiment, the remaining batches were molded integrating 10%, 15%, 20%, 25%, and
30% waste glass aggregates and labeled as GC 10, GC 15, GC 20, GC25, and GC 30 for
combinations without metakaolin. In contrast, GMC 10, GMC 15, GMC 20, GMC 25, and
GMC 30 for combinations with 10% metakaolin. The concrete mixtures with various waste
glass aggregate percentages with and without metakaolin are demonstrated in Table 2.

Table 2. Ingredient proportions of the concrete mixtures (kg/m?3).

Mix Id Cullet Water Cement Metakaolin Fine Aggregate Coarse Aggregate Cullet
Percentage (Kg/m®) (Kg/m®) (Kg/m3) (Kg/m®) (Kg/m3) (Kg/m®)
GCO Control 177.75 395 - 805 989 0
GC10 10% 177.75 395 - 805 890.1 98.9
GC15 15% 177.75 395 - 805 840.65 148.35
GC20 20% 177.75 395 - 805 791.2 197.8
GC25 25% 177.75 395 - 805 741.75 247.25
GC30 30% 177.75 395 - 805 692.3 296.7
GMC 0 0% 177.75 355.5 39.5 805 989 0
GMC 10 10% 177.75 355.5 39.5 805 890.1 98.9
GMC 15 15% 177.75 355.5 39.5 805 840.65 184.35
GMC 20 20% 177.75 355.5 39.5 805 791.2 197.8
GMC 25 25% 177.75 355.5 39.5 805 741.75 247.25
GMC 30 30% 177.75 355.5 39.5 805 692.3 296.7

GC = Glass replacement; GMC = Glass replacement with 10% metakaolin.

For the fabrication of concrete, the combination, the binders (cement and metakaolin)
are initially measured and physically combined until the elements were homogeneously
blended together to ensure the mixture’s consistency. The binders and aggregates are then
put into the mixing machine, pouring a small volume of liquid; the mixer is started for the
first 20 s. Then, the remaining water is added, and the mixture is allowed to mix for 2 min
before being tested. Compressive strength was measured using 100 mm x 200 mm cylinder
specimens, whereas flexural strength was examined using 100 mm x 100 mm x 500 mm
prisms that were prepared in the laboratory. The molds were extracted after 24 h of casting,
and the samples were placed in the water tank to cure at 27 £ 2 °C.

2.4. Testing Methods

The Slump test was used to examine the consistency of the concrete and evaluate
its workability by comparing the control sample and other combinations, according to
the ASTM C143/C143M-20 [63] specification. The compressive strength was assessed
at 3,7, 28, and 60 days using a 100 mm X 200 mm cylinder in accordance with ASTM
C39/C39M-20 [64]. Additionally, the flexural strength was evaluated using a prism sizing
100 mm x 100 mm x 500 mm employing third-point flexural loading at 7, 28, and 60 days
following ASTM C78/C78M-18 [65] standard.

3. Results and Discussion
3.1. Rheological Properties
3.1.1. Slump and Yield Stress
Figure 4 provides a graphical illustration of the slump and yield stress values of

all concrete mixes containing different percentages of glass aggregate and a constant
percentage of MK. According to the results, an increasing tendency for the slump value was



Sustainability 2023, 15, 11254

7 of 26

observed with the increased percentages of glass aggregate. The maximum values were
recorded for the mix fabricated with 30% glass aggregate (i.e., GC 30 and GMC 30). The
control concrete mix with 0% glass aggregate (GC 0) exhibited a minimum slump value of
39 mm, and the control concrete mix for glass metakaolin concrete with 0% glass aggregates
(GMC 0) showed a slump value of 40 mm, which is quite same to the former one. This
increasing pattern of workability could be due to the smoother surface of glass coarse
aggregates than crushed stone aggregate, which forms a poorer cohesion with cement
paste. These properties can dramatically lessen the inter-particle resistance among the glass
aggregates and other constituents of concrete in the mix, thus achieving a smooth flow
caused by minor needed energy to overcome frictional stress in the freshly mixed concrete,
leading to a significantly higher slump to the mix. This behavior is more pronounced with
the rising percentages of glass aggregate in the concrete mixes. Generally, glass particle
has a lower absorption capacity, which can leave the free water in the mix and assist in
improving the inter-particle movements in the matrix and improve the slump induced by
the more promising ball-bearing effect. This increasing pattern of workability was also
observed in the studies of Tian et al. [66] and Gerges et al. [67].

E=2GC (Slump) === GMC (Slump) == GC (Yield) =O=GMC (Yield)

80 % -
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-
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Figure 4. Slump and yield stress values for all concrete mixes.

It was registered that the concrete containing MK augmented the concrete slump more
than the MF-free concrete mixes, as reported in Figure 4. This could be due to the slower and
lower magnitude of the temperature inside the freshly mixed concrete containing MK than
the concrete cast with OPC. Indeed, a faster development with higher temperature could
be expected for the OPC concrete due to the rapid and higher heat of hydration of OPC,
thus lowering the workability of concrete mixes. On the contrary, the lower temperature
in the MK concrete mixes could decelerate the cement paste’s hydration and enhance the
slump. Certainly, the higher workability of concrete mixes could dramatically improve the
transportability and moveability; thus, they can help to compact the concrete better and
reduce the porosity due to the formation of lower voids and permeability, enhancing the
global strength and durability properties of concrete.

The yield stress for all the mixes was achieved without performing any experimental
investigation, as there is a procedure suggested by Tattersall and Banfill [68]. The numerical
data for yield stress adopted was characterized by two equations (Equations (1) and (2))
both for GC and GMC concrete which shows a 99% correlative confidence. The relationship



Sustainability 2023, 15, 11254

8 of 26

between the slump and yield stress for both GC and GMC is presented in Figure 5 and
denoted by Equations (1) and (2), respectively.

fy=—11.49 S + 2888 1)

fy=-11.49S + 2888 2)

where, f,, = yield stress (pa), and S = slump value (mm)

GC GMC
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Figure 5. Yield stress of concrete mixture in relation to the slump value.

A linear relationship was registered and revealed that the slump values decreased
with the increased value of yield stress of the freshly mixed concrete.

3.2. Mechanical Properties
3.2.1. Effect of Crushed Glass Aggregates on Compressive Strength for GC

Table 3 and Figure 6 represent the compressive strength of GC with various propor-
tions of crushed glass aggregates tested at 3, 7, 28, and 60 days. Numerous statistical
parameters were also calculated from the attained results, such as coefficient of variation
(CoV), standard deviation, standard error, and 95% confidence interval within 3, 7, 28, and
60 days. It is observable from the table that the mean compressive strength varied from
16.99 to 20.97 MPa for 3 days and 19.23 to 24.47 MPa; 24.28 to 30.35 MPa; 28.87 to 33.3 MPa
for the 7th, 28th, and 60th days, respectively. The standard deviation for GC concrete
mixes varied from 0.74 to 1.48, along with a coefficient of variation spanning from 0.017%
to 0.059% and a standard error of 0.26 to 0.86. At 3 days, GC10 achieved the minimum
compressive strength of 16.99 MPa, including a 95% confidence interval of 14.69 MPa to
19.29 MPa. In contrast, GC25 showed a maximum compressive strength of 20.97 MPa,
including a 95% confidence interval of 19.14 MPa to 22.80 MPa. Similar results were found
at 7 days of curing. However, for 28 days, GC 10 attained the maximum compressive
strength of 30.35 MPa. On the contrary, GC 30 exhibited a minimum compressive strength
of 24.28 MPa, and for 60 days, GC 10 displayed a maximum compressive strength of
33.30 MPa, as shown in Table 3 and Figure 6.
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Table 3. Summary of the compressive strength test results for GC.

95% Confidence Interval

. Curing Mean Standard o Standard
Mix Id Days Strength (MPa) Deviation CoV (%) Error Lower Upper
Range Range
3 17.97 0.87 0.048 0.50 15.81 20.13
GCo 7 19.93 1.11 0.056 0.64 17.17 22.69
28 28.91 1.05 0.036 0.61 26.30 31.52
60 31.93 1.23 0.039 0.71 28.87 34.99
3 16.99 0.92 0.054 0.53 14.69 19.29
GC 10 7 19.23 1.06 0.055 0.61 16.59 21.87
28 30.35 1.16 0.038 0.67 27.47 33.23
60 33.30 1.24 0.037 0.72 30.22 36.38
3 17.38 0.99 0.057 0.57 14.93 19.83
GC 15 7 20.59 1.04 0.051 0.60 18.00 23.18
28 29.90 1.18 0.039 0.68 26.97 32.83
60 32.54 1.48 0.046 0.86 28.85 36.23
3 18.82 0.77 0.041 0.44 16.91 20.73
GC 20 7 21.31 0.98 0.046 0.57 18.87 23.75
28 25.73 0.45 0.017 0.26 24.62 26.84
60 30.06 1.03 0.034 0.60 27.50 32.62
3 20.97 0.74 0.035 0.43 19.14 22.80
GC 25 7 2447 1.33 0.054 0.77 21.17 27.77
28 26.38 1.15 0.044 0.67 23.51 29.25
60 31.66 1.24 0.039 0.71 28.59 34.73
3 20.33 1.05 0.051 0.60 17.73 22.93
GC 30 7 22.99 1.36 0.059 0.79 19.61 26.37
28 24.28 1.02 0.042 0.59 21.75 26.81
60 28.87 1.41 0.049 0.81 25.38 32.36
Strength ———13 Days 7 Days 28 Days 60 Days
Change --A--3Days =— ¢— 7Days =--O--28Days ----60 Days
35 40
_I_ -} ‘I‘ 30
30 A
g g
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Figure 6. Compressive strength of concrete mixes for GC at 3, 7, 28, and 60 days.
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Almost 17% and 23% increments of compressive strength were observed for GC 25
for 3 and 7 days, respectively; however, the strength decreased at 28 and 60 days. GC
10 and GC 15 provided the increment of compressive strength for 28 and 60 days at a
range of 2 to 5%. The maximum compressive strength was observed for GC 10 for 28 days
which was about 5% higher than the control mix. In addition, more than a 4% increment
of compressive strength was observed for GC 10 at 60 days. The results reveal that the
incorporation of the lower content of glass aggregate provides a positive impact on the
compressive strength of concrete. In comparison, the strength decreased for the higher
content of glass aggregate in the concrete. Notably, the compressive strength for GC 25 was
higher than GC 20 but lower than the control mix. This increase can be attributed to the
suitable compaction of the glass aggregate. Moreover, it is possible that the angular-shaped
aggregates were well distributed and oriented along with the natural stone aggregate. The
combined effects can impart a stiffer matrix to the concrete, resulting in higher strength for
25% GC incorporation. Similar irregularities in compressive strength of higher contents
of waste glass were observed by Arabi et al. [69], when they used windshield waste glass
aggregate to replace natural coarse aggregate partially. In their study, a notable jump
in strength was seen when the glass aggregate was used at a higher dosage along with
recycled natural coarse aggregate. The enhancement in compressive strength could be due
to the high Mohs hardness index of glass particles. In contrast, generally, glass aggregates
are fairly flat and flaky, which could provide inhomogeneity in their distribution in the
concrete mix, resulting in higher porosity and permeability. Indeed, the flat and flaky
shape of glass aggregates is more vulnerable to break/damage (i.e., easy to break with
lower load due to the higher slenderness effect) when they experience the mechanical
load, which also depends on their orientation [70]. Additionally, the glass aggregate has a
smooth surface, which can create a poor interfacial transition zone (ITZ) around the glass
aggregates and cement paste [71]. Last but not least, glass aggregate has significantly high
brittleness, a great disadvantage of glass particles. Hence, when the concrete experiences
the mechanical load, the cracks can easily initiate at the ITZ, and then the cracks propagate
more effortlessly as the glass aggregates are more vulnerable to detaching from the cement
mortar, i.e., failure may occur primarily due to the initiation of cracks at ITZ rather than the
glass and stone aggregate fracture [72]. This behavior prevents the concrete from resisting
the higher mechanical load and presents a lower compressive strength to the concrete
cast with glass aggregates. As a result, 10% replacement of glass aggregate displayed the
optimum result. A similar compressive strength pattern can also be found in the study
carried out by Gerges, Issa, Fawaz, Jabbour, Jreige and Yacoub [67]. Ganiron Jr. [73] suggests
a 5% replacement of glass aggregates for enhancing compressive strength; in addition, a
maximum of up to 20% replacement is suggested by Tian, Liu, Cui, Sun, Wang, Li, Fu and
Wang [66].

3.2.2. Effect of Crushed Glass Aggregates on Compressive Strength for GMC

Table 4 represents the compressive strength of GMC with various proportions of
crushed glass aggregates. Meanwhile, Figure 7 illustrates the compressive strength and
change in the strength of concrete mixed fabricated with different percentages of glass
aggregates and MK tested at 3, 7, 28, and 60 days. Numerous statistical parameters were
also calculated from the attained results, such as coefficient of variation (CoV), standard
deviation, standard error, and 95% confidence interval within 3,7, 28, and 60 days, respec-
tively. It was found that the mean compressive strength varied from 15.28 to 22.54 MPa, for
3 days and 20.5 to 29.61 MPa; 27.64 to 38.39 MPa; 32.34 to 39.73 MPa for the 7th, 28th, and
60th days, respectively. The standard deviation for GMC concrete mixes varied from 0.67 to
1.34, along with a coefficient of variation spanning from 0.018% to 0.058% and a standard
error of 0.39 to 0.77. At 3 days, GMC30 accomplished the minimum compressive strength of
15.28 MPa, including a 95% confidence interval of 13.08 MPa to 17.48 MPa, whereas GMC15
achieved the maximum compressive strength of 22.54 MPa, including a 95% confidence
interval of 20.01 MPa to 25.07 MPa. Similar results were found at 7 days of curing. However,
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for 28 days, GMC25 attained the maximum compressive strength of 38.39 MPa, whereas
GMC30 exhibited the minimum compressive strength of 27.64 MPa, and for 60 days where
the GMC25 displayed the maximum compressive strength of 39.73 MPa.

Table 4. Summary of the compressive strength test results for GMC.

95% Confidence Interval

. Curing Mean Standard o Standard

Mix Id Days Strength (MPa) Deviation CoV (%) Error Lower Upper
Range Range

3 19.57 0.87 0.044 0.50 17.41 21.73

CMC O 7 20.50 0.68 0.033 0.39 18.82 22.18
28 29.70 0.75 0.023 0.43 30.63 3437

60 32.45 0.82 0.024 0.47 32.23 36.29

3 20.18 0.67 0.033 0.39 1851 21.85

7 24.60 0.91 0.037 0.52 2235 26.85

GMC10 28 29.80 123 0.041 0.71 26.75 32.85
60 32.67 113 0.035 0.65 29.85 35.49

3 2254 1.02 0.045 0.59 20.01 25.07

7 29.61 0.96 0.032 0.55 27.23 31.99

GMC15 28 31.31 1.06 0.034 0.61 28.68 33.94
60 33.55 134 0.040 0.77 30.23 36.87

3 22.12 0.89 0.040 0.51 19.92 2432

7 27.22 0.98 0.036 0.56 24.79 29.65

GMC 20 28 35.77 1.19 0.033 0.69 3281 38.73
60 37.21 1.14 0.031 0.66 3437 40.05

3 19.86 0.84 0.042 0.49 17.77 21.95

7 2481 0.92 0.037 0.53 2251 27.11

GMC 25 28 38.39 0.69 0.018 0.40 36.67 40.11
60 39.73 0.96 0.024 0.55 37.36 4210

3 15.28 0.89 0.058 0.51 13.08 17.48

7 22.06 0.95 0.043 0.55 19.69 2443

GMC 30 28 27.64 131 0.047 0.75 24.39 30.89
60 3234 1.09 0.034 0.63 29.63 35.05

After 3 and 7 days of the curing period, GMC 15 achieved the maximum compressive
strength of 22.54 MPa and 29.61 MPa, respectively. However, after 28 and 60 days, GMC
25 achieved the maximum compressive strength of 38.39 MPa and 39.71 MPa, respectively.
The addition of metakaolin enhances the strength of concrete mixes, i.e., a gradual incre-
ment of compressive strength increment was observed for 10%, 15%, 20%, and 25% glass
aggregate incorporation. GMC 25 exhibited the highest increment of compressive strength
compared to the control mix at 28 days. Almost 30% and 23% increments of compressive
strength were observed for GMC 25 after the curing of 28 and 60 days, respectively. How-
ever, a decremental pattern of strength was observed for GMC 30 compared to the control
mix. A constant 10% replacement of metakaolin helps to initiate the filler effect as well
as the compounding effect of concrete mix, which was observed by Sujjavanich et al. [74].
In the study of Ramezanianpour and Bahrami Jovein [75], the early reaction property of
metakaolin was observed to form a C-S-H bond earlier, and the addition of 10-15% of
metakaolin exhibited an optimum result. With the effect of metakaolin, a 25% replacement
of glass aggregate displayed the highest compressive strength. The strength increment
pattern was also observed in the study of Afshinnia and Rangaraju [76] and Lee et al. [77],
and suggested a 15-25% of glass aggregate replacement to enhance the strength.
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Figure 7. Compressive strength of concrete mixes for GMC at 3, 7, 28, and 60 days.

The enhancement in compressive strength of concrete cast with 10% MK as replace-
ment of cement and glass aggregate is associated with the combined refinement of pore
structure due to the micro-filler effect (i.e., lowering porosity, resulting in an enhanced ITZ)
and formation of secondary C-5-H gels in the cement matrix due to the pozzolanic reaction
of MK with calcium hydroxide. Indeed, in control concrete, the strength development
depends on only the hydration reaction of clinker; in contrast, OPC-MK concrete com-
bines OPC hydration and Mk’s pozzolanic action. Especially at prolonged curing age (i.e.,
60 days), MK can respond with the hydrated products of clinker (CH) with the existence
of water in the concrete matrix and could form secondary C-S-H gels, thus dramatically
diminishing the size of pores (i.e., decrease the porosity) and connectivity (i.e., lowering
the permeability) and boost the ITZ. These properties augment the capability to withstand
the higher compressive force and provide greater strength to the concrete containing MK.
This behavior does not occur for the concrete cast with 100% OPC (i.e., control concrete),
thus making lower compressive strength than the MK-OPC concrete (i.e., GMC). Moreover,
the significant jump in the strength of GMC 25 concrete mix can be attributed to the hydra-
tion heat of MK based concrete. At early ages, hydration heat can affect the compressive
strength of concrete by increasing shrinkage and thermal cracks [78]. These effects can
be intensified using MK, a high-reactivity pozzolan [79]. Along with this, as discussed
in Section 3.1.1, incorporating glass aggregate increases the workability and makes more
water available for the hydration process. As a result, the higher dosage of GC exhibited
comparatively lower strengths at the early ages of 3 and 7 days, whereas higher strengths
at later ages of 28 and 60 days.

3.2.3. Analysis of Variance (ANOVA) for Compressive Strength Test Results

A single-factor ANOVA test was performed to assess the statistical significance of
GC and GMC mixes on the compressive strength of concrete. The test was initiated for
all the curing intervals to observe their statistical significance at a 95% significance level
(¢ = 0.05). The results for both the GC and GMC mix combinations are detailed in Table 5.
The null hypothesis states that the percentages of glass cullets in GC and GMC mixes
have no statistical significance to their compressive strengths, such as, if the p-value is
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less than 0.05, it can be rejected, which indicates that a statistically significant relationship
exists among the two variables. From the test outcomes, it can be seen that at early curing
intervals of 3 and 7 days, there is no statistically significant relationship for both the GC
and GMC mixes. In contrast, at early curing days of 28 and 60, a significant statistical
relationship can be found. This test outcomes are in line with the findings discussed in
Sections 3.2.1 and 3.2.2, where it was evident that the glass cullet and metakaolin both
affected the later age compressive strengths more than their earlier ages.

Table 5. ANOVA test results for different curing intervals of GC and GMC mixes to their mean
compressive strengths.

Curing . . Degree of Sum of Mean R
Group Days Source of Variation Freedom Squares Square F-Test p-Value  Significance
Between Groups 1 12.94 12.94
3 0.217 0.65135 N
Within Groups 10 59635  59.63 ©
Between Groups 1 67.78 67.78
0 7 1.124 0.31391 N
GC% to Within Groups 10 602.82 60.28 ©
Compressive
Strength Between Groups 1 358.07 358.07
2 . . 7 Yo
8 Within Groups 10 613.91 61.39 o833 00563 e
Between Groups 1 650.62 650.62
60 10.902 0.00799 Ye
Within Groups 10 596.79 59.68 °
Between Groups 1 31.85 31.85
3 . 0.516 0.48883 No
Within Groups 10 616.76 61.68
Between Groups 1 198.45 198.45
0 7 3.109 0.10835 N
GMC% to Within Groups 10 638.36 63.84 ©
Compressive
Strength Between Groups 1 758.59 758.59
28 11.476 0.00691 Yo
Within Groups 10 661.02 66.10 °
Between Groups 1 1003.94 1003.94
60 . 16.044 0.00250 Yes
Within Groups 10 625.74 62.57

3.2.4. Comparison of Analytical Values of the Splitting Tensile Strength

To forecast tensile strength relying on compressive strength, various standards pre-
scribe different alternative formulae. The ACI 363R, ACI 318, CEB-FIP, and AS 3600 [80-83]
standards were employed to calculate the tensile strength of GC and GMC concrete with
respect to the compressive strength of different formulas, as reported by Equations (3)-(6).

fst = 0.3 (f)*/3 (CEB-FIP) ©)
fst = 0.591/fc (ACI 363R) 4)
fst = 0.561/fc (ACI 318) ®)
fst = 0.4 \/fc (AS 3600) 6)

where, f; = Splitting tensile strength (MPa), f. = Compressive strength (MPa).

Figures 8 and 9 represent the analytical value of splitting tensile strength, which was
compared to different standards and plotted against experimental compressive strength.
From the analytical result, the ACI 363R recommended standard exhibited the maximum
tensile strength value for both the GC and GMC mixes. On the other hand, the AS 3600 ex-
hibited the lowest values for both GC and GMC. These analytical values can be utilized
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to measure the splitting tensile strength of GC and GMC, complying with various code
standards.
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Figure 8. Comparison of analytical tensile strength for GC.
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Figure 9. Comparison of analytical tensile strength for GMC.

3.2.5. Effect of Metakaolin and Crushed Glass Aggregates on Flexural Strength

Figure 10 graphically demonstrates the mean flexural strength and their fluctuations
for GC and GMC at 28 days. Without the mixing of metakaolin, GC 10 achieved the
maximum flexural strength of 4.81 MPa, which was 0.63% higher in comparison to the
control mix. Above that replacement, the flexural strength decreased with the increased
content of glass aggregate in the concrete. As mentioned in Section 3.2.1, the flat and flaky-
shaped GC can affect the matrix positively by interlocking and providing load transfer
pathways. For this reason, incorporating GC at a lower percentage of 10% exhibited slightly
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higher flexural strength. However, when the GC content is further increased, this advantage
can turn into a disadvantage because the overuse of GC can impart inhomogeneity in their
orientation [70]. In addition, the smooth surface of GC can create poor and porous ITZ
between aggregates and cement paste [71]. The combined effect of these can significantly
decrease the flexural strength of hardened concrete when GC is employed. However,
the addition of metakaolin and glass aggregate decreased the flexural strength of all the
GMC mixes with respect to the control mix (GMC 0). The maximum flexural strength of
5.36 MPa was achieved by the GMC 0 mix having 10% metakaolin and no replacement of
coarse aggregates. This flexural strength of GMC 0 was more than 12% higher than the
GC 0 mix, which was the conventional concrete mix. It is also noteworthy that the flexural
strengths of all the GMC mixtures were higher compared to their respective GC mixes.
As discussed in Section 3.2.2, the filler and pozzolanic effects of metakaolin helped GMC
to attain more flexural strength than GC mixtures with the same percentages of coarse
aggregate replacements. In the case of GMC mixtures, GMC 30 attained the lowest flexural
strength of 3.33 MPa, almost a 38% decrement compared to GMC 0.

=73 Strength (GC) ==3 Strength (GMC)
—a— Decrement (GC) —{—Decrement (GMC)

N

Flexural strength (MPa)
w
o
(]

Percentage decrement (%)

0 10 15 20 25 30
Coarse aggregate replacement (%)

Figure 10. Flexural strength of concrete mixes for GC and GMC at 28 days.

3.2.6. Relationship between Compressive Strength and Flexural Strength

The interrelationship between the compressive and flexural strength of the concrete
incorporating metakaolin and various proportions of glass aggregate at 28 days is illustrated
in Figures 11 and 12. The correlation can be used for the flexural strength’s anticipation
of concrete mixtures incorporating GC and GMC without the need for flexural testing. To
forecast flexural strength relying on compressive strength, various standards prescribe
different alternative formulas. The ACI 363R, ACI 318, CEB-FIP, and AS 3600 [80-83]
standards were employed to determine the flexural strength of concrete with respect to the
compressive strength using these prescribed formulas.

fir =094 V/fe @)
f = 062 /f; ®)

fr=046 (fC)Z/s 9)
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fr = 0.60 \/fe (10)
where, f; = Flexural strength (MPa), f. = Compressive strength (MPa).

5.4
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Figure 11. Relationship between the compressive and flexural strength of GC mix.
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Figure 12. Relationship between the compressive and flexural strength of GMC mix.

It can be depicted from Figure 11 that amongst all standards, the estimated values
of ACI 363R deviated highest compared to the experimental values for GC mixes. The
values according to ACI-318 and AS 3600 lie under the experimental values and deliver a
conservative result. A correlation was determined between the compressive and flexural
strength with a coefficient of determination of 73%, which indicates a decent relationship
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for GC mixes. From the investigation, the following formula (Equation (11)) can be advised
for expressing the relationship between the flexural strength and the compressive strength
of GC.

fpr =0.2747 f. — 3.7202 (11)

where, f5 = Flexural strength (MPa), fo = Compressive strength (MPa).

Figure 12 illustrates the relationship between compressive strength and flexural
strength for GMC mixes compared with different standards. It can be observed that
the analytical data for all the standards lie under the experimental values except for ACI-
363R, which indicates a conservative relationship. According to the study, the relationship
between the flexural strength and the compressive strength of GMC may be expressed
using the following formula (Equation (12)).

fp=10.0609 f + 3.0123 (12)
where, ffr = Flexural strength (MPa), f. = Compressive strength (MPa).

3.3. Sustainability Analysis

The entire procedure of making concrete, from raw material collection and processing
towards the concrete mixture formation, is included inside the system boundary. All
activities that fall inside the border include cement production, aggregate collection, and
material transportation. The concrete plant’s water and power sources are outside the
border. The next section provides justification for the system boundary assumptions used.

1 m3 is the functional unit, meaning that each mixture yields 1 mS.

Every mix proportion uses the same concrete processing parameters; hence they
are irrelevant to this comparative analysis. The framework includes the necessary
processing information for materials.

e Any emissions allocated to the materials from steel or electricity production are not
seen as relevant in terms of concrete production and have not been included inside
the system boundary. Only processing and transportation emissions are allocated to
the materials for this assessment.

e Itis optimistically predicted that all transportation will be done via roadway.

Table 6 shows the considered unit cost, embodied energy, and eCO, emissions of
each material for the cost and sustainability analysis. The cost is estimated in MYR
(IMYR =0.22 USD) currency. The authors have taken the production cost of concrete
materials from recent research that complies with the market standards [84]. The cost data
of metaklaolin was collected from the manufacturer. The production cost of glass cullet
was considered zero as it was collected from waste. However, the transportation of waste
glass led to an insignificant cost associated with it. Moreover, the unit cost of production
and transportation was assessed with respect to the Malaysian currency. It is to be noted
that the cost of concrete materials can vary from market to market. The material embodied
energy and eCO; emission rates for cement, natural coarse aggregate (NCA), and waste
glass coarse aggregate (GCA) were collected from Hammond et al. [85]; for fine aggregate
(FA) and water were collected from Datta et al. [86] and Bostanci [87], respectively. In the
case of metakaolin, eCO, emission data were gathered from Maddalena et al. [88]. The
carbon emissions due to materials transportation were estimated by taking into account
the travel distance from pulling out to the production site collaborating with the supplier
company.
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Table 6. Unit cost and eCO, emission of concrete materials.

. Unit Cost (MYR/kg) Material eCO; Emission (kg CO»/kg)
Material Production Transportation ~ Embodied Energy (M]/kg) Production Transportation Total
Cement 0.378 [84] 0.01428 5.5 [85] 0.95 [85] 0.02 0.971

Metakaolin 0.42 0.0126 3.48 [88] 0.218 [88] 0.018 0.236
NCA 0.21 [84] 0.01092 0.083 [85] 0.005 [85] 0.021 0.026
GCA - 0.0084 0.052 [85] 0.0038 [85] 0.0005 0.0043

FA 0.09114 [84] 0.00924 0.08 [86] 0.0048 [86] 0.16 0.1648
Water 0.003696 [84] - 0.0009 [87] 0.00155 [87] - 0.00155
3.3.1. Effect of Metakaolin and Crushed Glass Aggregates on the Concrete Production Cost
This study conducted a cost analysis of per m® volume of GC and GMC mixtures as
well as the cost of each material used in this study. Table 7 shows the breakdown of costings
and the total cost of producing 1 m? of concrete. From Table 7, it can be depicted that the
production cost of GC 0 was the highest at 454.91 MYR. The production cost per m® of
concrete decreased gradually with the incorporation of both the waste glass and metakaolin.
However, the incorporation of only glass aggregate to replace natural coarse aggregate
reduced the cost to the lowest point of 391.85 MYR. This reduction of concrete cost using
a 30% glass cullet as a replacement of NCA was almost 14% compared to conventional
concrete. On the other hand, the fabrication cost of GMC 30 containing 30% glass cullet and
10% metakaolin was determined to be 393.51 MYR, which was a 13.5% reduction in cost.
Cement and NCA are the two most costly materials among the traditional unreinforced
concrete. Replacing these two materials with low-cost new metakaolin and glass cullet
significantly reduced the cost.
Table 7. Cost assessment of per m? concrete mixtures.
Mix ID Cost of Materials (MYR/m? Concrete) Total Cost (MYR/m?®  Total Cost (USD/m3
Cement Metakaolin NCA GCA FA Water Concrete) Concrete)
GCO 154.95 - 218.49 - 80.81 0.66 45491 97.41

GC10 154.95 - 196.64 0.83 80.81 0.66 433.89 92.91

GC15 154.95 - 185.72 1.25 80.81 0.66 423.38 90.66

GC20 154.95 - 174.79 1.66 80.81 0.66 412.87 88.41

GC25 154.95 - 163.87 2.07 80.81 0.66 402.36 86.16

GC30 154.95 - 152.94 2.49 80.81 0.66 391.85 83.91

GMC 0 139.46 17.15 218.49 - 80.81 0.66 456.57 97.77

GMC 10 139.46 17.15 196.64 0.83 80.81 0.66 435.55 93.27
GMC 15 139.46 17.15 185.72 1.25 80.81 0.66 425.04 91.01
GMC 20 139.46 17.15 174.79 1.66 80.81 0.66 414.53 88.76
GMC 25 139.46 17.15 163.87 2.07 80.81 0.66 404.02 86.51
GMC 30 139.46 17.15 152.94 2.49 80.81 0.66 393.51 82.26

Note: Total costs of mixtures were estimated using the unit costs of materials detailed in Table 6.

Additionally, to ensure comprehensive evaluation, it is imperative to consider the
expenses associated with generating 1 MPa of strength for every mixture when conducting
a thorough cost-effectiveness assessment [89]. The cost to produce a 1-MPa compressive
strength at 60 days, which can also be termed as the cost index of the mixes, is shown in
Figure 13, which also depicts the reduction percentages. The cost index of concrete mix can
be derived utilizing Equation (13).

_ Cost

I
C c.

(13)

where, CI = cost index; Cost = cost of producing 1 m3 concrete mixture (MYR); and
Cs = compressive strength attained by the mix after 60 days (MPa).
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Figure 13. Cost index of concrete mixes.

While the control mix showed a cost index of 14.25 MYR/MPa, the inclusion of glass
cullet and metakaolin reduced it for all the mixes. The lowest cost for 1 MPa of 10.17 MYR
was exhibited by the mix containing 25% glass cullet and 10% metakaolin (GMC 25), an
almost 40% reduction, as compared to the control mix. In addition, 20% glass cullet and the
same concentration of metakaolin reduced the cost index by a margin of 28%. Furthermore,
among the mixes with only glass cullet inclusion, 25% dosage reduced this index by the
largest margin, more than a 12% reduction. As the two batches of mixes were designed to
substitute natural coarse aggregate and cement, the two most costly materials in concrete,
this significantly reduced the cost of mixtures. The design attained satisfactorily and, in
some cases, enhanced compressive strength; this significantly reduced the cost of producing
1 MPa, indicating a potential usage of these mixes when the strength limit and serviceability
criteria are met.

3.3.2. Effect of Metakaolin and Crushed Glass Aggregates on the eCO, Emission
of Concrete

The equivalent carbon dioxide emission during the construction and transportation
phase is represented in Table 8. It can be said that the conventional concrete mix (GC
0) with no MK and coarse aggregate replacement emitted maximum CO,, which was
542.2 kg per m> of concrete volume. Replacement of only natural coarse aggregate with
glass cullet aggregate reduced the carbon dioxide emission by only 1.2% with 30% glass
cullet aggregate. However, incorporating both glass cullet and metakaolin significantly de-
creased the amount of carbon dioxide emission. For GMC 30 mixture containing 30% glass
cullet and 10% metakaolin, it reduced the carbon dioxide emission to 506.73 kg / mS concrete,
which was almost 8% lower compared to the conventional concrete mix. Using low-carbon
emitting material such as metakaolin to replace cement with a high carbon emission rate
can be attributed to this reduction in eCO, emission value.
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Table 8. Equivalent CO, emission of per m” concrete mixtures.

Mix ID eCO; Emission (kg CO,/m?3 Concrete) Percentage of CO; Emission
. Production Transportation Total Production (%) Transportation (%)
GCo 384.33 157.86 542.20 70.88 29.12
GC10 384.22 155.84 540.05 71.144 28.86
GC15 384.16 154.82 538.98 71.27 28.73
GC20 384.10 153.81 537.91 71.41 28.59
GC25 384.03 152.79 536.83 71.54 28.46
GC 30 383.98 151.78 535.76 71.67 28.33
GMC 0 355.42 157.75 513.17 69.26 30.74
GMC 10 355.30 155.72 511.02 69.53 30.47
GMC 15 355.24 154.7 509.95 69.66 30.34
GMC 20 355.18 153.69 508.87 69.79 30.2
GMC 25 355.12 152.68 507.80 69.93 30.07
GMC 30 355.06 151.66 506.73 70.07 29.93

The assessment of environmental impact may involve considering the eco-strength
efficiency of concrete as an additional metric for evaluation. The concept of eco-strength
efficiency, as mentioned by Alnahhal et al. [90], and referred to as CO; intensity by
Damineli et al. [91], pertains to the amount of CO, emissions generated per unit of perfor-
mance. The calculation of this parameter was derived utilizing Equation (14).

~ CO,
==

G (14)
where C; = eco-strength efficiency, which denotes the intensity of CO, emissions;
CO, = carbon dioxide emissions by the concrete mixes (kg CO,/m? concrete), as de-
termined through the data provided in Table 5; and Cs = compressive strength attained by
the mix after 60 days (MPa).

To ensure a systematic and consistent comparison of the mixes, the eco-strength
efficiency of different combinations is juxtaposed with their respective compressive strength.
The outcomes of the analysis are illustrated in Figure 14, where the compressive strength
values at the 60-day mark are visually portrayed by the bar chart, whereas the CO, intensity
is graphically presented as a line along the secondary axis. The CO, intensity enables the
assessment of both the effectiveness and the role of concrete mixes in contributing to Global
Warming Potential based on their unit strength, positioning it as a reliable indicator for
estimating the environmental impact of concrete utilization [91]. In the majority of instances,
the CO, concentration tends to increase as the quantity of Portland cement in the concrete
mixture rises to enhance the compressive strength as per requirements. However, by
partially replacing natural aggregate and cement by a waste glass cullet and metakaolin, it
becomes possible to decrease the CO; intensity while maintaining the desired strength level,
in fact, enhancing it by a noticeable margin. All the designed mixes for the current study,
except the GC 20 and GC 30 mixes, have exhibited reduced carbon intensity. Among these,
the incorporation of 25% glass cullet and 10% metakaolin resulted in the most significant
reduction by 33%, shifting the intensity from 16.98 MPa/kg CO,-m 2 for the control mix
to 12.78 MPa/kg CO, m~3 for GMC 25 mix. As the production process of substituting
materials (i.e., glass cullet and metakaolin) emit significantly lower levels of CO, than
the substituted stone aggregate and cement, as well as impart enhanced compressive
strength, the carbon intensity was reduced. This outcome indicates that there is potential
for these materials to be used in the production of sustainable structural concrete without
compromising its strength.
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Figure 14. Eco-strength efficiency with respect to compressive strength.

4. Conclusions

Based on existing experimental outcomes, the following significant observations and

conclusions can be reached:

The overall workability of the concrete mixtures incorporating glass aggregate in-
creased gradually, both for the GC and GMC. The smooth surface and weaker cohesive
bonding of the crushed glass aggregates enhanced the overall workability. On the
other hand, the decelerating trend of MK increased the workability and moveability
even further.

The optimum compressive strength was achieved with GC 10 for only glass aggregate
incorporated concrete, which was 5% higher than the control mix at 28 days. Increased
GC content reduced the compressive strength due to their flat and flaky shape, which
can alter the aggregate matrix and induce inhomogeneity.

The incorporation of 10% metakaolin into the glass concrete mix accelerated the
compressive strength increment. The pozzolanic action of MK creates secondary C-
S-H gels and micro-filler effect reduces pore sizes. As a result, a 30% increment of
compressive strength was observed for GMC 25.

The flexural strength results were identical to those of the compressive strength tests,
where the incorporation of MK augmented in higher strengths. According to these de-
terminations, concrete incorporating 10% glass aggregate possessed optimum flexural
strength of 4.81 MPa for GC mixes. On the other hand, GMC 0 with 10% metakaolin
attained the maximum flexural strength of 5.36 MPa.

The attained compressive strength for both the GC and GMC mixes was compared
with different standards like ACI 318, ACI 363R, AS 3600, and CEB-FIP to determine
analytical tensile strength values without performing experiments. The outcomes of
the comparison were plotted in a scattered manner where all the standards except ACI
363R exhibited conservative results.

The outcomes of the relation between flexural strength and compressive strength tests
revealed a decent linear connection. The outcomes were also calculated with different
standards, and a conservative correlation was found for both the GC and GMC mixes.
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e  Among all mix proportions, the GMC 25 produced a satisfactory optimal performance
in terms of rheological and mechanical characteristics. It is feasible to generate high-
strength concrete by employing the crushed glass aggregate alongside metakaolin
incorporation as an additional cementing element which leads to waste manufacture
modification and a sustainable alternative for the concrete industry.

e  The production cost and equivalent carbon dioxide emission by concrete can respec-
tively be reduced by up to 13.5% and 8% with the incorporation of glass cullet and
metakaolin at optimal concentrations of 25% and 10%.

e  The cost index and carbon index can respectively be reduced by 40% and 33% with
the optimum dosages of GC and MK, establishing that glass cullet and metakaolin can
be termed as sustainable building materials and reduce the carbon footprint of the
concrete industry.

The present study considered untreated waste glass cullet and metakaolin as partial
replacements for stone aggregate and cement content for producing normal concrete and
revealed that both these materials can be used in isolated or combined to produce low-
cost concrete with similar mechanical strengths. Future studies should consider other
supplementary cementitious materials, such as fly ash, glass powder, quartz powder,
limestone powder, etc., along with waste glass cullet aggregates to produce eco-friendly
sustainable concrete. In addition, various extraction and treatment methods [92,93] for
these waste materials should be considered for future studies. Furthermore, extensive
exploration in terms of microstructural characterization of glass cullet and metakaolin
concrete needs to be conducted in future investigations.
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