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Abstract: The driving fatigue state of shield machine drivers directly affects the safe operation and
tunneling efficiency of shield machines during metro construction. To cope with the problem that it
is challenging to simulate the working conditions and operation process of shield machine drivers
using driving simulation platforms and that the existing fatigue feature fusion methods usually
show low recognition accuracy, shield machine drivers at Shenyang metro line 4 in China were
taken as the research subjects, and a multi-modal physiological feature fusion method based on an
L2-regularized stacked auto-encoder was designed. First, the ErgoLAB cloud platform was used to ex-
tract the combined energy feature (E), the reaction time, the HRV (heart rate variability) time-domain
SDNN (standard deviation of normal-to-normal intervals) index, the HRV frequency-domain LF/HF
(energy ratio of low frequency to high frequency) index and the pupil diameter index from EEG
(electroencephalogram) signals, skin signals, pulse signals and eye movement data, respectively.
Second, the physiological signal characteristics were extracted based on the WPT (wavelet packet
transform) method and time–frequency analysis. Then, a method for driving fatigue feature fusion
based on an auto-encoder was designed aiming at the characteristics of the L2-regularization method
to solve the over-fitting problem of small sample data sets in the process of model training. The
optimal hyper-parameters of the model were verified with the experimental method of the con-
trol variable, which reduces the loss of multi-modal feature data in compression fusion and the
information loss rate of the fused index. The results show that the method proposed outperforms
its competitors in recognition accuracy and can effectively reduce the loss rate of deep features in
existing decision-making-level fusion.

Keywords: ErgoLAB; feature fusion; driving fatigue; shield driver; auto-encoder

1. Introduction

The display interface of the main control room of shield machines mainly consists of
several modules, such as the real-time load display of cutters, the operation information
display of belt and screw conveyors, transportation system monitoring and the posture
sensing information display. During shield tunneling, due to uneven geology, shield drivers
need to adjust and control multi-dimensional tunneling parameters, such as torque, boost
force, position and posture, in real time and carry out multi-information interaction and
multi-task collaboration operations to ensure the safety and efficiency of shield tunneling.
Therefore, the high attention and multi-task operation of shield drivers during operation
can easily lead to driving fatigue, which affects the construction safety and driving efficiency
of shields. So, how to effectively identify and evaluate the driving fatigue state of shield
drivers is the key to ensuring the safety of shield driving and construction efficiency.

Shield drivers usually pay attention to shield position, main thrust, screw conveyor
status and video monitoring information in metro construction tunnels with vibration
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and noise and complete real-time adjustments of driving parameters. Multi-information
interaction and multi-task collaboration abilities, which mainly include perceptual infor-
mation, decision making and operational ability, are directly related to driving fatigue. At
present, some significant works on intelligent transportation technologies have attracted
many concerns [1–7]. Research on driving fatigue mainly identifies fatigue status using the
corresponding changes in physiological indicators such as EEG, electrocardiogram (ECG),
electro-myogram (EMG), electrodermal activity (EDA) and so on.

For instance, Sun et al. established an individual fatigue identification model based
on the indicators calculated using the individual driver’s best parameters and unified
parameters [8]. Zou et al. proposed a method based on the combination of the shortest
path tree for constructing a functional brain network that is applied to fatigue driving
state recognition and neural mechanism analysis of fatigue driving [9]. Moreover, an
improved Bayesian fusion algorithm was presented for forecasting the blink number in a
continuous video [10]. In [11], the EEG signal was explored to detect the driving fatigue.
The results showed that the average intraclass correlation coefficients of the measures at
the sensor level were generally higher than those at the source level, except for the directed
between-region measures.

Moreover, Wang et al. presented a driving fatigue detection approach based on the
brain functional network and then provided a possible method for the key EEG electrode
and rhythm investigation with these brain networks [12]. The authors of [13] applied
the multifractal detrended fluctuation analysis (MF-DFA) method to detect driver fatigue
caused by driving for a long time. A novel relative wavelet entropy complex network
method was introduced for improving the classification accuracy in [14]. Kong et al.
proposed a method to evaluate driver fatigue that utilizes inter/intra-region phase synchro-
nization and functional units (FUs) to explore whether EEG synchronization changes from
the alert state to the fatigue state and indicates a simple and significant spatial-frequency
pair of electrodes [15].

Du et al. used a single RGB-D camera to extract three fatigue features, including heart
rate, eye openness level and mouth openness level [16]. The authors of [17] established
a mental fatigue assessment model combining subjective self-state assessment and facial
features. In [18], a specific feature-weighted support vector machine was designed to
handle individual differences. Lin et al proposed a fuzzy recurrent neural network for
driver fatigue detection based on steering-wheel angle sensor data [19]. Mousavi et al.
designed a binary classification system based on the compression sensing of EEG signals
and a deep neural network [20].

To handle the issue that the accuracy of the fatigue assessment of instructors decreases
due to individual differences, a driving fatigue assessment method based on the fusion
of electroencephalogram and electro-myogram features as well as migration learning
was presented by Qi et al. [21]. The authors of [22] calculated the absolute alpha power
by collecting the EEG signals of the subjects and combined it with the subjective state
evaluation method to assess the effectiveness of the proposed method. Wang et al. extracted
the features from EEG and EOG based on entropy theory, fused the features on the basis of
canonical correlation analysis and performed classification experiments using correlation
vector machine to achieve the time-series complexity measurement of EEG signals [23].
In [24], a driving fatigue detection method based on a multi-non-linear feature fusion
strategy was applied. Li et al. proposed a fatigue driving detection model based on multi-
feature fusion and semi-supervised active learning [25]. In addition, several works present the
application of ML/DL methods for disease and mental workload prediction, such as [26–31].

In summary, most studies on driving fatigue collect time-domain physiological signals,
such as electroencephalogram and eye movement, using analog driving platforms. For
single and multiple time-domain physiological signals, a mapping relationship between
driving fatigue and characteristic indicators is established, and a driving fatigue identifica-
tion model is established using machine learning methods. The working conditions and
environment of shield drivers are difficult to simulate, and single or multiple physiological
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time-domain signals cannot accurately reflect the fatigue state of shield drivers. It is difficult
to simulate working conditions and environment with vibration, noise and uneven geology
using existing analogue driving platforms. At the same time, existing research on fatigue
status identification mostly collects one or more time-domain signals from physiological
signals using analogue driving platforms, which makes it difficult to fully reflect driving
fatigue information, thus affecting the recognition rate of the fatigue status of shield drivers.
Furthermore, when extracting a driver’s physiological signal characteristics, it is necessary
to compress the shield driver’s original physiological data, which inevitably lose some
valid information, resulting in training loss during the training phase and test loss during
data testing, thus affecting the accuracy and robustness of fatigue state identification.

The main contributions of this work can be concluded as follows: First, the time and
frequency domains of physiological signals such as electroencephalogram and electrocardio-
gram during the driving operation of shield drivers were collected using the ErgoLAB cloud
platform. Then, a method for fusing the driving fatigue characteristics of shield drivers was
developed based on an L2-regularized stacked encoder. Moreover, the EEG features and the
ECG features were extracted using the WPT method and time–frequency-domain analysis
based on SDNN and LF/HF, respectively. Finally, an L2-regularization-based stacked
encoder driver fatigue feature fusion network was constructed, and a regularization factor
was added to the stacked self-encoder to fuse the physiological features of the feature layer.

The rest of this paper is arranged as follows: Section 2 presents the shield driver
multiple physiological signal feature extraction method. A multi-modal physiological fea-
ture fusion method for shield machine drivers based on an L2-regularized auto-encoder is
introduced in Section 3. Section 4 shows the experimental design, experimental procedures
and data analysis. Finally, Section 5 concludes this work.

From the perspective of engineering management, the feature fusion method based
on L2-regularized stacked auto-encoder features proposed in this paper can effectively
fuse multi-sensor physiological features. Compared with traditional methods, it can
reduce the loss rate of deep features after feature fusion to a certain extent. At the same
time, the consumption of recognition time is reduced, and the recognition accuracy of the
classification model is improved, so as to achieve the purpose of reducing monitoring costs
and improving economic benefits.

2. Analysis of Driving Fatigue Generation Mechanism of Shield Drivers

Based on the analysis of the driving behavior characteristics of shield drivers, com-
bined with the “perception-decision-operation” behavior of shield drivers, the main reason
for driving fatigue is to maintain high concentration at all times to perceive the information
on the monitor screen in the main control room, determining the type of information and
then perform the corresponding operation during the long process of underground envi-
ronment driving operation. Because of this, the operation process of shield drivers during
driving can be divided into the following three kinds: perception information operation,
judgment and strategy operation (information processing and thinking operation), and
operation tasks. According to the job type, driving fatigue can be divided into perception
information fatigue, judgment and strategy fatigue, and operation fatigue, respectively.

2.1. Perceptual Information

In the perception information operation stage, construction information is obtained
using the screen and intercom, and the main sensory organs are eyes and ears. Restricted
by the working ability of the sensory organs, when the driver stares at the screen for a
long time and pays attention to the intercom information, with the decrease in perception
ability, the phenomena of perception weakening, perception dullness or hallucination and
auditory hallucination appear. In this case, the driver re-perceives the information and
confirms the information. Therefore, fatigue in the perception stage is most likely to occur,
which is also an important factor in driving fatigue.
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2.2. Judgment and Strategy

During the decision-making stage, the main working organ is the brain or central
nervous system, in which a judgment is made after processing the perceived information;
then, the command signal is sent to the human action organ. With the increase in the
amount of perceptual information, the brain and the central nervous system continue
working; the mental load of the driver increases; and the ability to judge declines. When
judgment error occurs, the information should be reconfirmed and re-perceived to make a
new judgment until right.

2.3. Operation Task

In the operation stage, the main working organs are hands and mouth, which are
driven to perform the corresponding action or reply after the brain and central nervous
system complete the judgment and strategy. This long-time quasi-static operation easily
makes the muscles of the driver atrophy and become hard, causing muscular fatigue.

3. Feature Extraction Method for Multi-Physiological Signals of Shield Drivers

To further identify the driving fatigue state of shield machine drivers, the ErgoLAB
cloud platform was used in this paper to monitor the physiological signals of shield drivers
during driving and then to extract physiological characteristic indicators to characterize
the fatigue state of shield drivers. The physiological signals monitored included electroen-
cephalogram (combined energy index E), heart rate variability (SDNN and LF/HF), eye
movement (average pupil diameter) and skin electrical signals (response time). The average
pupil diameter was used to calculate the change in pupil diameter during the experiment,
and the fatigue status was characterized using the change in pupil diameter.

Driving behavior data were used to characterize the driving performance of shield
drivers during the driving process, which is based on the driver’s response time, which is
the time between the beginning of reading a certain information on the display and the
moment when the driver takes action after making a decision upon information processing.
Video data were acquired using an external camera and were used to calculate the response
time of EDA signals in physiological data during driving. The pupil diameter index and
reaction time index obtained during driving were used as indicators to distinguish the
fatigue level of drivers; then, combined energy index E, SDNN and LF/HF were integrated
as indicators to identify the driver fatigue status to complete shield driver driving fatigue
status identification.

3.1. WPT-Based EEG Signal Feature Extraction for Shield Drivers
3.1.1. Analysis of EEG Signal Characteristics of Shield Drivers

The considered process includes the driving task of a shield machine driver and
their rest while waiting for segment assembly, as well as the shield tunneling time and
the time spent wait for segment assembly. As the operation unfolds, the driver reads
the information on the display to control the shield machine to continue tunneling and
continuously receives information through the sensory organs. The central nervous system
analyzes the shield machine tunneling status according to the shield machine status and
tunneling parameters, combined with driving experience and driving skills. Finally, the
driver completes the decision and implements it.

This stage is characterized by a high-mental-load working state, in which Eθ , Eα and Eβ

increase and the combined energy index (Eα + Eθ)/E increases. When shield tunneling
is suspended, the driver fills in the tunneling record, enters the rest time and informs
the segment assembler to carry out segment assembly. In this stage, Eθ and Eα decrease;
Eβ does not significantly change; and the combined energy index (H) decreases. When the
driver’s rest time is over, they start the propulsion system, main drive pump and other
equipment in turn; Eθ increases; Eα increases; Eβ increases; and the combined energy index
(E) increases.
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Therefore, the change trend of slow waves and fast waves of the EEG signal can reflect
the change process of a shield machine driver from wakefulness to fatigue. Based on this,
the energy ratio of slow waves to fast waves of the shield machine driver’s EEG signal is
taken as an indicator of the fatigue state and recorded as E.

E =
Eα + Eθ

Eβ + Eδ
(1)

where Eα, Eβ, Eθ , Eδ are the energy values of the α, β, θ, δ waves, respectively.

3.1.2. WPT-Based EEG Feature Extraction Method for Shield Drivers

In view of the “high frequency and low resolution” phenomenon caused by the
adaptive time–frequency window of the traditional wavelet transform [32], this paper
proposes a method for extracting the EEG features of shield drivers based on wavelet
packet decomposition and reconstruction. This method is based on the expansion of
wavelet decomposition and adaptively matches the characteristics of the analysis signal
with the spectrum of the signal to reflect the essential characteristics of the signal. The
essence of wavelet packet decomposition is to divide the signal into multiple levels and
further decompose the high-frequency part of the signal, so as to solve the problem of
“high frequency and low resolution” that occurs when the traditional wavelet transform is
used to process EEG signals. The algorithm is as follows:

Let us set arbitrary j-scale space function

Sn
j (t) ∈ Un

j (2)

Then,
Sn

j (t) = ∑ rj,n
l un(2jt− l) (3)

Among them, rj,n
l is the wavelet packet coefficient. Wavelet packet coefficient rj,2n

l on

subspace U2n
j and wavelet coefficient rj,2n+1

l on subspace U2n+1
j are obtained by solving

wavelet packet coefficient rj,n
l : 

rj,2n
l = ∑

k
Hk−2l•r

j+1,n
k

rj,2n+1
l = ∑

k
Gk−2l•r

j+1,n
k

(4)

Equation (4) is the wavelet packet decomposition algorithm, which decomposes
the original EEG signal into multiple wavelet packets with the same bandwidth and
interconnected frequency bands. As the number of decomposition layers increases, the
resolution of the signal in the frequency domain increases, while the resolution in the
time domain decreases. The reconstructed decomposed wavelet packet can improve
the resolution in the frequency domain and ensure the resolution in the time domain.
Reconstruction refers to preserving the wavelet packet data to be reconstructed after
decomposition, clearing the remaining wavelet packet data to zero and improving the
time-domain resolution of the retained wavelet packet data to the level of the signal before
decomposition. The reconstruction equation can be depicted as follows:

rj+1,2
l = ∑

k

[
Hl−2k•r

j,2n
k + Gl−2k•r

j,2n+1
k

]
(5)

Signal resampling in data preprocessing is 128 Hz, so the frequency range of the
wavelet packet root node is 0~64 Hz, and the decomposition tree diagram is shown
in Figure 1.
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To represent the original signal, layer decomposition is performed based on the wavelet
packet decomposition algorithm; a sub-band is obtained at layer m, and its expression is
as follows:

f (t) =
2i−1

∑
j=0

fi,j(tj) = fi,0(t0) + fi,1(t1) + . . . + fi,2i−1(t2i−1) (6)

where j = 0, 1, . . . , 2i− 1; fi,j(tj) is the reconstructed signal decomposed using the wavelet
packet on nodes (i, j).

Energy Ei,j of reconstructed signal fi,j(tj) contained in the sub-band after wavelet
packet decomposition is calculated as follows:

Ei,j =
∫

r
∣∣ fi,j(tj)

∣∣2dt =
m

∑
k=1

∣∣∣xj,k

∣∣∣ (7)

where Ei,j is the band energy of the f (t) wavelet packet decomposed to nodes (i, j);
xj,k
(

j = 0, 1, . . . , 2i − 1, k = 1, 2, . . . m
)

is the discrete point amplitude of reconstructed sig-
nal fi,j(tj) and m is the number of signal sampling points. If Ei is the energy value of a node
and E is the total energy of all nodes, then the frequency band energy ratio, Pj, of the node
is as follows:

Pj =
Ej

E
(8)

3.2. Feature Extraction from ECG of Shield Machine Drivers Based on
Time–Frequency-Domain Analysis

A shield driver’s ECG signal is generated by the potential change formed by the
heartbeat on the body surface. Therefore, this paper selected the heart rate variability
(HRV) index, which refers to the small fluctuation in the instantaneous heart rate between
individual continuous heartbeats. The HRV signal contains a lot of information about
cardiovascular regulation, reflecting the change rule of the time interval between two
consecutive heartbeats. The extraction and analysis of this information can quantitatively
evaluate the tension and balance of cardiac sympathetic and vagal nerve activities, and
their impact on cardiovascular system activities [33]. Therefore, in this paper, the PPG
pulse signal was used as a way to record the heart activity of the subjects. For the ECG
fatigue index, this paper selected the HRV time-domain index and frequency-domain index
as the evaluation index to study the driving fatigue of shield machine drivers.
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3.2.1. HRV Time-Domain Index

HRV time-domain analysis is employed to evaluate heart rate variability by calculating
a series of mathematical and statistical indicators related to the R-R interval, reflecting the
law of signal change with time. Time-domain indicators mainly reflect the tension of sym-
pathetic and parasympathetic nerves and then evaluate the overall degree of the autonomic
nervous system. Therefore, the SDNN was selected as the time-domain characteristic index
of HRV to evaluate the overall change in HRV. The SDNN can be obtained as

SDNN =

√
1
n

n

∑
i=1

(rri − rr) (9)

where n, rri and rr represent the total number of normal cardiac beats, the length of the i-th
adjacent sinus RR interval and the average value of n RR intervals, respectively.

3.2.2. HRV Frequency-Domain Index

Fluctuations in the heart rate are usually considered to be periodic. These fluctuations
in IBI time series can be quantified by calculating the power spectral density. PSD expresses
the spectral power density of time series as a function of frequency and obtains the heart
rate power spectrum with frequency as the abscissa and energy as the ordinate, providing
the basic information of energy distribution with frequency. Therefore, LF/HF was selected
as the frequency-domain index of HRV in this paper, and the LF/HF index can evaluate
the balance degree of the autonomic nervous system of a shield machine driver. Based
on the ErgoLAB cloud platform, the RR interval was randomly decomposed into energy
components at different frequencies, and the power spectral density of the signal was
obtained using the classical spectral estimation method of fast Fourier transform, which
effectively reflects the composition and energy size of each frequency band in the signal.

4. Shield Machine Driver Multi-Modal Physiological Characteristics Fusion Method
Based on Auto-Encoder of L2 Regularization

Based on the physiological data of the operation process of shield machine drivers
after pretreatment, we extracted the combined energy feature (E), the reaction time, the
HRV time-domain SDNN index and the HRV frequency-domain LF/HF index, respectively.
The number of samples was divided into training set, validation set and test set according
to the proportion of 3:1:1. Then, all samples were normalized to the range of [0, 1]. Due to
the large acquisition frequency and number of channels of the original physiological signals,
the number of original data collected was huge. Limited by the experimental equipment,
the feature layer fusion method was used for fusion. Based on the L2-regularization
method, combined with the characteristic that the auto-encoder can learn the expression
of high-order features of data, the over-fitting problem of small sample data sets in the
model training process was solved. A method for driving fatigue feature fusion during the
operation of shield machine drivers based on an auto-encoder is proposed. The feature is
input into the auto-encoder coding model to train and reduce the dimension to complete
the fusion and is then decoded by the decoder back to the original input. Then, the
sigmoid function is used as the activation function to output the training loss, and the
optimal hyper-parameters of the model are verified using the experimental method of the
control variable.

4.1. Auto-Encoder

To overcome the problems of large error and easy loss of information in the recog-
nition of the fatigue state using a single physiological feature, this paper introduces the
unsupervised learning auto-encoder algorithm of the artificial neural network to learn the
efficient representation of input data. In the coding process, the EEG and ECG signals of
different drivers are dimensionally reduced using the coding model to achieve the purpose
of feature remapping, and the mapping result is a one-dimensional, higher-order feature
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vector. In the decoding process, the decoding model reversely decodes the one-dimensional,
higher-order eigenvectors obtained from the fusion of the coding model into the input
physiological signal features as much as possible. Figure 2 shows the network architecture
of the basic auto-encoder. The network output is approximately equal to the network input
using the back-propagation algorithm. The input is compressed into potential higher-order
features, and the output is reconstructed.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 26 
 

loss, and the optimal hyper-parameters of the model are verified using the experimental 
method of the control variable.  

4.1. Auto-Encoder 
To overcome the problems of large error and easy loss of information in the recogni-

tion of the fatigue state using a single physiological feature, this paper introduces the un-
supervised learning auto-encoder algorithm of the artificial neural network to learn the 
efficient representation of input data. In the coding process, the EEG and ECG signals of 
different drivers are dimensionally reduced using the coding model to achieve the pur-
pose of feature remapping, and the mapping result is a one-dimensional, higher-order 
feature vector. In the decoding process, the decoding model reversely decodes the one-
dimensional, higher-order eigenvectors obtained from the fusion of the coding model into 
the input physiological signal features as much as possible. Figure 2 shows the network 
architecture of the basic auto-encoder. The network output is approximately equal to the 
network input using the back-propagation algorithm. The input is compressed into po-
tential higher-order features, and the output is reconstructed. 

 
Figure 2. Single hidden layer auto-encoder. 

Let us suppose that there are 𝑛 shield machine driver physiological signals as the 
input, 1 2{ , ,..., }nX X X X= , of the auto-encoder and that the auto-encoder coding process 

uses coding function fθ  to compress X  into vector a : 

1 1( )a f WX b= +  (10) 

where a  is the encoded higher-order feature vector, 1 2 3{ , , }Ta a a a= ; the Relu function 

is the activation function of the coding function; coding weight matrix 1
s nW R ×∈ , where 

the initial value is generally a minimum random value; and offset of the hidden layer 
1

1
sb R ×∈ , where its initial value also needs to be initialized and 1 1 1{ , }θ W b=  represents 

the set of parameters of the coding part. In the decoding process, the sigmoid function is 
used as the activation function of decoding function g θ , and higher-order eigenvector 

a  is reversely decoded into 1 2{ , ,..., }nY Y Y Y= . 

2 2( )Y gWa b= +  (11) 

where weight matrix 2
n sW R ×∈  , output layer offset 1

2
nb R ×∈  , and 2 { }θ = 2 2，W b   repre-

sent the parameter set of the decoding part. In forward propagation, the loss is calculated 
as 

21 [ ]
2

loss X Y= −  (12) 

The parameters in the network are updated as follows: In back propagation, the par-
tial derivative of each parameter is obtained based on the chain rule: 

Figure 2. Single hidden layer auto-encoder.

Let us suppose that there are n shield machine driver physiological signals as the
input, X = {X1, X2, . . . , Xn}, of the auto-encoder and that the auto-encoder coding process
uses coding function fθ to compress X into vector a:

a = f (W1X + b1) (10)

where a is the encoded higher-order feature vector, a = {a1, a2, a3}T ; the Relu function is
the activation function of the coding function; coding weight matrix W1 ∈ Rs×n, where
the initial value is generally a minimum random value; and offset of the hidden layer
b1 ∈ Rs×1, where its initial value also needs to be initialized and θ1 = {W1, b1} represents
the set of parameters of the coding part. In the decoding process, the sigmoid function is
used as the activation function of decoding function gθ , and higher-order eigenvector a is
reversely decoded into Y = {Y1, Y2, . . . , Yn}.

Y = g(W2a + b2) (11)

where weight matrix W2 ∈ Rn×s, output layer offset b2 ∈ Rn×1, and θ2 = {W2, b2}
represent the parameter set of the decoding part. In forward propagation, the loss is
calculated as

loss =
1
2
[X−Y]2 (12)

The parameters in the network are updated as follows: In back propagation, the partial
derivative of each parameter is obtained based on the chain rule:

sigmoid(x)′ = 1
1+e−x

′
= e−x

(1+e−x)
= sigmoid(x)[1− sigmoid(x)]

∂loss
∂W2

= ∂loss
∂Y •

∂Y
∂W2

= (Y− X)•[Y•(1−Y)a]

∂loss
∂b2

= ∂loss
∂Y •

∂Y
∂b2

= (Y− X)•[Y•(1−Y)]

(13)

∂loss
∂W1

=
∂loss
∂Y
•∂Y

∂a
• ∂a

∂W1
= (Y− X)•[Y•(1−Y)W2]•[a•(1− a)x] (14)

∂loss
∂b1

=
∂loss
∂Y
•∂Y

∂a
• ∂a

∂b1
= (Y− X)•[Y•(1−Y)W2]•[a•(1− a)] (15)
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The updated weights are as follows:

W1 = W1 − lr
∂loss
∂W1

, b1 = b1 − lr
∂loss
∂b1

(16)

W2 = W2 − lr
∂loss
∂W2

, b2 = b2 − lr
∂loss
∂b2

(17)

4.2. L2 Regularization

This paper took the operation process of shield machine drivers in actual subway
shield construction as the research object. Due to the limited construction conditions, the ac-
tual number of physiological data samples obtained during the operation of shield machine
drivers was small, and the physiological data during the driving task were not balanced
with the physiological data at rest; data were prone to the over-fitting phenomenon, which
means that a model performs well with training data but has poor generalization ability
in the test validation data set. To avoid over-fitting, L2 regularization was introduced to
add costs associated with larger weight values to the auto-encoder network loss function,
which can reduce the network generalization error and improve the generalization ability
of the self-encoder network.

A regular term, Ω(θ) = 1
2‖w‖

2
2, is added to the objective function to make the weight

closer to the origin. Assuming that there is no bias in the objective function, the total
objective function of the model is expressed as

∼
J (w, X, y) =

α

2
wTw + J(w; X, y) (18)

The corresponding gradient is

∇w
∼
J (w; X, y) = αw +∇w J(w; X, y) (19)

Equations (18) and (19) show that adding weight decay results in a modification of
the learning rules, shrinking the weight vector in each step before performing the usual
gradient update, multiplying the weight vector by a constant factor.

4.3. Sigmoid Function

Let us suppose that there is a training set of
{(

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(i), y(i)
)}

fused physiological signal characteristics of shield drivers, where x(i) are the sample data
of the shield driver fatigue state and y(i) are the sample labels of the shield driver fatigue
state. Using the data extracted from the driver fatigue status features as the input of the
classifier and using the sigmoid function as the activation function of the neural network,
the training data set is composed of two categories of individual driver fatigue status
samples. Using the data extracted from the driver fatigue status features as the input of the
classifier and using the sigmoid function as the activation function of the neural network,
we make n driver fatigue samples of binary classification into training data set. When
fusing the physiological features of driving fatigue of shield drivers, the features are input
into the original input after dimension reduction of auto-encoder coding model training.

The sigmoid function is used as the activation function to output the training loss,
and the hyper-parameter of the auto-encoder is adjusted experimentally to reduce the
training loss. The sigmoid function is a common S-type function. It is often used as an
activation function for neural network binary classification problems in deep learning. It
maps variables in the range of [0, 1], and its function expression is

P =
1

1 + e−xi
(20)
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4.4. Stacked Auto-Encoder

Since it is difficult to extract the high-dimensional features of a shield driver’s physi-
ological data with a single-hidden-layer auto-encoder, the model parameters need to be
adjusted to obtain high-order, abstract physiological data features and capture the semantic
information of physiological data. This paper built a deep auto-encoder by stacking layers
to form an SAE. By training the learning network parameters step by step and updating the
weights and offsets of the layers, the high-order and abstract physiological data features are
obtained; thus, the multi-modal physiological features of shield drivers are fused. Figure 3
shows the network structure of a stacked auto-encoder.
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4.5. Softmax Classifier

Let us suppose that there is a training set of
{(

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(i), y(i)
)}

fused physiological signal characteristics of shield drivers, where x(i) are the sample data
of the shield driver fatigue state and y(i) are the sample labels of the shield driver fatigue
state. With the data extracted from the driver fatigue state feature as input to the classifier,
the training data set consisting of n driver fatigue state samples classified by k has the
following output probability:

P(y = i) =
exp(∑

d
widxd)

∑
j

exp(∑
d

widxd)
, i = 1, 2, 3, k (21)

where wid is the weight parameter vector of the classifier, j is the sample number, and i
is the label corresponding to the category. The x(i) data of the k-classified problem are
classified as having the highest probability. The softmax classifier is trained by finding the
optimal parameters with the final optimization algorithm.

4.6. Fusion Method of Driving Fatigue Characteristics of Shield Drivers Based on L2-SAE

Drivers watch and read monitors to obtain driving parameters in real time during
shield driving. In this way, task crossover is high, and cognitive resources are consumed.
The subjective self-assessment of drivers inevitably affects their driving cognitive status.
Traditional methods cannot extract driving fatigue characteristics and effectively identify
driving status in real time. The improvement in computer hardware and software perfor-
mance has made a breakthrough in deep learning algorithms in academia and applications.
Then, an effective method for fusing driving fatigue characteristics of shield drivers that
combines the advantages of in-depth learning and the ability of the auto-encoder to learn
the expression of higher-order features of data is presented. The overall framework of the
proposed method is shown in Figure 4, and the specific steps are as shown below.
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Step 1: Data acquisition
Multimodal physiological data, including the fatigue state of shield drivers, such

as electroencephalogram, pulse signal, picoelectric signal and other behavior data, were
obtained from shield drivers who performed driving tasks at the construction site of
Shenyang metro line 9 extension line.

Step 2: Data preprocessing
To preprocess the original multimodal physiological data, we used filtering, removing

outliers, ICA and other methods to remove interference, reduce the noise signal in the
original data and improve the signal-to-noise ratio.

Step 3: Feature extraction of multimodal physiological data of shield drivers
Based on the feature extraction method mentioned above, we separately carried out

the feature extraction of multimodal physiological signals. We divided the samples into
training set, validation set and test set according to the 3:1:1 ratio. Finally, we normalized
all samples to the [0, 1] range.

Step 4: Building a fused model of driving fatigue characteristics of shield drivers based
on L2-SAE

We constructed shield driver driving fatigue feature fusion, initialized various param-
eters of the network and input the normalized training set and verification set into the
auto-encoder. Based on the forward-propagation algorithm, we trained the network layer
by layer, minimizing the loss function. We observed the fitting state of the model using
Tensorboard, continuously updated the super-parameters to minimize network loss, and
completed the initial training.

Step 5: Reverse-propagation fine-tuning
On the basis of Step 4, we used the reverse-propagation algorithm to fine-tune each

network, obtained the global optimal weights and offsets and then saved them.
Step 6: Model testing
We input the test sample data into the trained model to test and output the test results.
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5. Experiment
5.1. Experimental Conditions

To assess the effectiveness of the above methods, the ErgoLAB human environment
synchronization platform was used as the experimental platform. We took drivers, aged 25
to 30 years, at the construction site of the south extension of line 4 of Shenyang shield group
Co., Ltd., as the research subjects. Drivers were prohibited from drinking for 24 h before
the start of the experiment, which stimulated neurological properties. The shift scheduling
system at the construction site was a two-shift operation mode, with the total working
hours of the day shift being 12 h (07:00–19:00) and those of the night shift being 12 h
(19:00–07:00). In addition to the lunch break and evening break, the rest time of the drivers
during the work period also included other fragmented time periods, such as the segment
assembly time of the segment assembler, the wait for the delivery of the residue, etc. These
time periods were not fixed and depended on the completion of other work tasks.

Before and during the experiment, drivers were in a normal driving state. The EEG
signal and pulse signal of the shield drivers during operation were obtained using 16 lead
semi-dry electrode EEG caps and intelligent wearable sensors, respectively, as demonstrated
in Figure 5 below.
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Figure 5. Test equipment.

Among them, the electrode of the EEG cap was placed according to the 10–20 interna-
tional standard, and the parietal lobe (P), frontal lobe (F), central region (C) and occipital
lobe (O) of the subjects were selected; the sampling frequency was 128 Hz. The sampling
frequency of the intelligent wearable sensor was 64 Hz. Figure 6 demonstrates the semi-dry
EEG cap electrode arrangement.
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5.2. Experimental Process Design

As shown in Figure 7, the natural circadian rhythm of the human body shows that
the natural peak fatigue of the human body is more likely to occur between 2:00 and
5:00 A.M. and between 14:00 and 16:00 P.M. [34]. Therefore, this experiment planned to
use the monitoring display in the main control room of the shield machine, the tunneling
parameter information on the parameter display and the construction geological conditions
as stimulating materials to obtain the physiological signal data of shield machine drivers.
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Figure 7. Natural fatigue rhythm of the human body during the day and the night.

In order to obtain the physiological signals, eye movement signals, driving behavior
data and video data of the drivers’ fatigue state change during the whole driving process,
the subjects needed to wear data acquisition equipment throughout the experiment. The
collection experiment was designed based on the natural circadian fatigue rhythm of
the human body and the driving task of the subjects. The experimental data acquisition
paradigm was as follows: working time (shield tunneling); rest time (segment assembly);
working time (shield tunneling). According to field research and interviews, the working
time and rest time of the subjects were not fixed during the collection process. The working
time range was 30–60 min, and the rest time was about 30 min. Figure 8 and Table 1
show the schematic diagram of the acquisition process and the acquisition schedule of the
experiment, respectively.

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 26 
 

 
Figure 7. Natural fatigue rhythm of the human body during the day and the night. 

In order to obtain the physiological signals, eye movement signals, driving behavior 
data and video data of the drivers’ fatigue state change during the whole driving process, 
the subjects needed to wear data acquisition equipment throughout the experiment. The 
collection experiment was designed based on the natural circadian fatigue rhythm of the 
human body and the driving task of the subjects. The experimental data acquisition par-
adigm was as follows: working time (shield tunneling); rest time (segment assembly); 
working time (shield tunneling). According to field research and interviews, the working 
time and rest time of the subjects were not fixed during the collection process. The work-
ing time range was 30–60 min, and the rest time was about 30 min. Figure 8 and Table 1 
show the schematic diagram of the acquisition process and the acquisition schedule of the 
experiment, respectively. 

 
Figure 8. Physiological data acquisition from shield machine driver during excavation driving. 

Table 1. Test time plan for obtaining physiological data of shield machine drivers. 

Shift Experiment Number Start Time End Time 

Day shift 

First test 07:00 After tunneling three rings 

Second test 10:00–14:00 
After tunneling three rings 

(including rest time) 
Third test The last three tunneling instances on the day shift After tunneling three rings 

Night shift 

First test 19:00 After tunneling three rings 

Second test 00:00–02:00 After tunneling three rings 
(including rest time) 

Third test The last three tunneling instances on the night shift Tunneling three rings 
Non-working 

state 
First test 10:00–14:00 20 min after the start 

The overall experimental process is as follows: 
1. Debug the cloud platform to the working state to ensure that all modules are correctly 

connected. 

Figure 8. Physiological data acquisition from shield machine driver during excavation driving.



Sustainability 2023, 15, 9405 14 of 25

Table 1. Test time plan for obtaining physiological data of shield machine drivers.

Shift Experiment Number Start Time End Time

Day shift

First test 07:00 After tunneling three rings

Second test 10:00–14:00 After tunneling three rings
(including rest time)

Third test The last three tunneling instances on the day shift After tunneling three rings

Night shift

First test 19:00 After tunneling three rings

Second test 00:00–02:00 After tunneling three rings
(including rest time)

Third test The last three tunneling instances on the night shift Tunneling three rings

Non-working state First test 10:00–14:00 20 min after the start

The overall experimental process is as follows:

1. Debug the cloud platform to the working state to ensure that all modules are cor-
rectly connected.

2. Before they drive, have the subjects wear EEG caps, wearable eye movement meters
and ECG sensors, and begin to collect relevant data (including personal data) after
working for a few minutes.

3. Ensure that the subjects complete the driving operation according to the normal work
flow; read the stimulation information on the monitoring and control display; and
perform the key, knob and other operations on the operating console. At the same
time, record the subjects’ eye movement, EEG, pulse and skin electrical data.

4. Remove the equipment.
5. Repeat steps (2) and (3).
6. Experiment complete; save the relevant data.
7. The collected raw data are shown in Figure 9.
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5.3. Data Analysis
5.3.1. Data Preprocessing

The noise interference in the shield construction environment is strong, and the
operation of other electric equipment during the construction process produces power
frequency interference. Therefore, in order to reduce the data error or loss caused by
the interference of the experimental equipment and surrounding environment during the
experiment, while data acquisition in the driving experiment on shield machine drivers is
completed, experimental data preprocessing was conducted. Based on the ErgoLAB cloud
platform and EEGLAB, signal denoising, artifact removal, data filtering, data segmentation,
data synchronization and other methods were used to achieve accurate experimental
analysis results and improve signal quality.

(1) EEG signal preprocessing
a. EOG artifact and motion artifact processing
In this paper, independent component analysis (ICA) was used to remove EOG ar-

tifacts. ICA attempts to identify independent variation sources in EEG data, separate
abnormal signals from EEG signals, and complete the removal of EOG artifacts. Figure 10
shows a waveform after removing EOG artifacts.
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b. Filtering
In this paper, a non-recursive filter (Finite Impulse Response (FIR)) was used to remove

the interference caused by the experimental equipment and the surrounding environment,
ensuring that any amplitude frequency characteristic had strict linear phase frequency
characteristics at the same time and that its unit sampling response was limited. Therefore,
the filter was a stable system. The frequency domain of EEG signals concerned in the field
of driving fatigue contains four basic rhythm waveforms (0–30 Hz), so the filtering range
of the band-pass filter was set to 0–30 Hz. Figure 11a,b show the comparison of an EEG
waveform before and after the filtering operation using the band-pass filter.

(2) Pulse signal preprocessing
In this paper, the PPG pulse signal was selected as the way to record the heart activity

of the subjects. Before the start of an experiment, motion interference should be reduced,
and the stability of the sensor should be strengthened to ensure the reliability of the
electrode and the palm. Figure 12a shows the original pulse signal of a certain segment
obtained in this experiment. The sampling frequency was 64 Hz, and the frequency
range was 0.1–40 Hz. On the ErgoLAB cloud platform, the concave filtering method
was used to remove the power frequency interference in the environment; the band-pass
filtering method was used to remove the noise signal; and the effective data frequency
band was retained. Figure 12b shows the pulse waveform after band-pass filtering and
concave filtering.
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(3) Eye movement data preprocessing
In this paper, eye movement data preprocessing consisted in the processing of pupil

data, including two methods of interpolation and noise reduction. In Figure 13, the right
side shows the pupil data processing interface. Combined with the number of original
data, linear interpolation and sliding mean filtering were used to process signal loss and
noise. The upper left side shows the stimulus received by the subjects, and the lower left
side shows the change waveform of the Pupil X index of the original data machine of eye
movement after data processing.

(4) Skin electrical signal data preprocessing
In this paper, the sampling frequency of the EDA signal was 64 Hz, and the effective

frequency range of the EDA signal was 0.02–0.2 Hz. The effective frequency band of
machine noise and other physiological signals was much higher than 0.2 Hz. Low-pass
filtering was used for noise reduction. Figure 14 shows the comparison of EDA signal
waveforms before and after filtering.
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The physiological signal waveform of a shield driver after processing is shown in
Figure 15.
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5.3.2. Feature Extraction

The EEG features of shield machine drivers extracted using wavelet packet decom-
position and reconstruction are shown in Figure 16. Starting from the driving task of the
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driver of the shield machine, the acquisition process included the time in which the subjects
waited for segment assembly after the completion of the last round of tunneling, the time
for shield tunneling and the time for segment assembly. As shown in Figure 16a, this
section shows the data of the second half of the night-shift driving process of shield drivers.
As the operation unfolded, the energy index of the subjects increased, and the drivers read
the information on the display to control the shield machine to continue to excavation. In
this stage, the driver continuously receives information through sensory organs.
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After the central nervous system combines driving experience and driving skill analy-
sis information, it makes a decision to complete the task and finally executes it using body
organs based on the actual reflection of the decision. In this stage, the subjects worked
under high mental load; Eθ increased; Eα increased; Eβ increased; and the combined energy
index, (Eα + Eθ)/Eβ , increased. When shield tunneling pauses, the driver fills in the
driving record to enter the break time and notifies the segment assembler to assemble the
segments. In this stage, Eθ and Eα decreased, and Eβ did not change significantly, while
the combined energy index, H, decreased. At the end of break time, the driver starts the
propulsion system, the main drive pump and other devices in turn. Eθ , Eα and Eβ increased,
and the combined energy index E increased.

Figure 16b,c show the EEG characteristic data of shield drivers driving on shift.
Figure 16b shows shield drivers at the lowest point of natural fatigue, and the overall
EEG characteristic data of the drivers show a downward trend. Shield drivers were in a
better mental state, were concentrating and had a lower probability of distraction. The
extracted EEG comprehensive energy index as the driving hours continued to increase is
shown in Figure 16c. This period represents the middle and late stages of shield driver
driving operation. At this time, the drivers’ combined energy index had an obvious upward
trend, and their fatigue degree gradually affected normal driving. Even after a short break,
their concentration, reaction speed and performance level could not be restored to the state
at the beginning of the experiment.

The combined energy index was lower than that of the previous excavation stage but
still higher than that at the beginning of the experiment. The repetitive cognitive process
and the effects of physical fatigue made the drivers’ brain dull and slow down, but by
adjusting their own state, the effect of fatigue was reduced, so the combined energy index
(E) showed an increasing trend compared with the previous period, even if there was
a decrease.

With in vivo and in vitro environmental changes, SDNN indicators are significantly
reduced; the mechanism of the autonomic nervous system to maintain body auto-balance
is disordered; and the ability of drivers to resist pressure and maintain their mental state
are gradually reduced. Based on the ErgoLAB cloud platform, the SDNN result of the
original PPG signal after feature extraction is shown in Figure 17, where the acquisition
time is synchronized with EEG. Figure 17a shows the end of the night-shift experiment,
during which drivers were at the peak of natural human fatigue and the SDNN index
showed a downward trend. Driving fatigue caused by watching the monitor and executing



Sustainability 2023, 15, 9405 19 of 25

the operation for a long time increased the fatigue of the subjects. Figure 17b,c show the
beginning and end of the day-shift experiment, and the mental state of shield drivers
ceaselessly decreased from the peak. As the experiment progressed, the HRV time-domain
index slowly decreased. Due to the existence of the autonomic nervous system regulation
ability, drivers continuously adjusted their own state during driving, and the SDNN still
increased with the decreasing trend. However, due to the accumulation of driving fatigue,
the SDNN index of drivers could not return to the level before the start of the experiment.
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Figure 18. Shield driver HRV frequency-domain LF/HF indicator (a) segment 1, (b) segment 2 and 
(c) segment 3. 

5.4. Feature Fusion Experiment 
5.4.1. Fusion Process 

During shield driving, shield drivers watch and read monitors to obtain driving pa-
rameters in real time. High cognitive resources are consumed for task crossover. The sub-
jective self-assessment of drivers inevitably affects their driving cognitive status. Tradi-
tional methods cannot extract drivers’ driving fatigue characteristics and effectively iden-
tify driving status in real time. The improvement of computer hardware and software per-
formance has made a breakthrough in the study and application of deep learning algo-
rithms. Combining the advantages of deep learning with the ability of auto-encoders to 
learn the expression of high-order features of data, an effective method for fusing the driv-
ing fatigue features of shield drivers is presented.  

Figure 17. HRV time-domain index of shield driver (a) segment 1, (b) segment 2 and (c) segment 3.

LF/HF was selected as the frequency-domain index of HRV; it is widely used to assess
the balance of the autonomic nervous system of shield drivers. Based on the ErgoLAB
cloud platform, the RR interval was randomly decomposed into energy components at
different frequencies. The power spectral density of the signal was obtained using the
classical spectral estimation method of fast Fourier variation, which effectively reflects
the composition and energy size of each band in the signal. As shown in Figure 18b, the
HRV frequency-domain index of shield driver driving fatigue was at the lowest point in
the whole cycle at the beginning of the experiment. As the driving task advanced, the
LF/HF indicators gradually increased; drivers began to perceive their own fatigue state,
resist the attack of driving fatigue by moving their bodies, standing, etc.; and the LF/HF
indicators decreased to a certain extent. Figure 18a,c show that when drivers could not
reduce their own fatigue using the above methods, the LF/HF index significantly increased.
Until they entered the resting state, the drivers’ nerves were relaxed, and LF/HF showed a
slow downward trend.
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Figure 18. Shield driver HRV frequency-domain LF/HF indicator (a) segment 1, (b) segment 2 and 
(c) segment 3. 

5.4. Feature Fusion Experiment 
5.4.1. Fusion Process 

During shield driving, shield drivers watch and read monitors to obtain driving pa-
rameters in real time. High cognitive resources are consumed for task crossover. The sub-
jective self-assessment of drivers inevitably affects their driving cognitive status. Tradi-
tional methods cannot extract drivers’ driving fatigue characteristics and effectively iden-
tify driving status in real time. The improvement of computer hardware and software per-
formance has made a breakthrough in the study and application of deep learning algo-
rithms. Combining the advantages of deep learning with the ability of auto-encoders to 
learn the expression of high-order features of data, an effective method for fusing the driv-
ing fatigue features of shield drivers is presented.  

Figure 18. Shield driver HRV frequency-domain LF/HF indicator (a) segment 1, (b) segment 2 and
(c) segment 3.
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5.4. Feature Fusion Experiment
5.4.1. Fusion Process

During shield driving, shield drivers watch and read monitors to obtain driving param-
eters in real time. High cognitive resources are consumed for task crossover. The subjective
self-assessment of drivers inevitably affects their driving cognitive status. Traditional meth-
ods cannot extract drivers’ driving fatigue characteristics and effectively identify driving
status in real time. The improvement of computer hardware and software performance has
made a breakthrough in the study and application of deep learning algorithms. Combining
the advantages of deep learning with the ability of auto-encoders to learn the expression of
high-order features of data, an effective method for fusing the driving fatigue features of
shield drivers is presented.

5.4.2. Experimental Verification

The experiments were implemented in Windows 10 with an Intel Corei7–11800H CPU
@2.40 GHz and 16 GB RAM. The deep learning framework was TensorFlow2.6, and the
development environment was Jupyter Notebook; the configuration is shown in Table 2.

Table 2. Hardware Parameters of Driving Fatigue Physiological Characteristic Fusion Experiment for
Shield Drivers.

Classification Name Configuration

Hardware

Processor CPU©te© Core(TM) i7–11800H CPU @2.30 GHz
Running memory RAM 16 GB

Solid-state disk IM2P33F8–512GD (512 GB)
Graphics card NVIDIA GeForce RTX 3060 Laptop GPU (6 GB/1D05)

Operating system Windows10

Software
In-depth learning framework TensorFlow2.6

Development environment Jupyter Notebook
Algorithmic language Python

Before the actual experimental operation, 2000 physiological data were obtained from
the data extracted from the completed features, and the data under five working conditions
were obtained, including data A1 at the beginning of the shift, data A2 during the shift, data
A3 at the end of the shift, data A4 during breaks in the shift and data A5 during non-shift
times. Based on the control variable method to train the auto-encoder, the influence of
hyper-parameters on the training loss of the model was analyzed, and the optimal super-
parameters were found. In the network, the rule function was used as the activation
function of the hidden layer and the input layer, and the sigmoid function was used as the
activation function of the output layer.

Model hyper-parameter optimization mainly takes the hyper-parameters of the optimizer,
the learning rate and the number of batch samples as variables. Stacked auto-encoders
increase network depth by increasing layers to extract higher-order features. Under other
conditions, the loss of higher-order feature extraction is different for different layers of
stacked auto-encoders. Similarly, as shown in Figure 19, the learning rate, the number of
batch samples, the regularization parameters, and the optimizer’s hyper-parameters were
also experimentally different under other constant conditions.

The basic data structure of a neural network is a layer, which converts one or more
input tensors into one or more output tensors. In neural network fusion with different
structures and numbers of layers, the loss of the physical characteristics of shield drivers
is different. Therefore, the network structure and network parameters need to be experi-
mentally adjusted to extract higher-order features from the data. As shown in Figure 14a,
with the increase in the number of hidden layers in the network, the loss of training and
verification data gradually decreases. When the number of hidden layers reaches five, the
loss of training and verification is the lowest and then increases. Therefore, the optimal
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number of hidden layers for stacked auto-encoders is five. The number of network layers
and the unit parameter settings within the layers were experimentally verified, as shown
in Table 3 below.
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Table 3. Node Parameter Settings for Deep Neural Networks.

Layer Hidden1 Hidden2 Hidden3 Dense2

Parameter 16 1 16 3

It can be seen from Figure 19a that as the number of hidden layers of the network
increases, the recognition accuracy of the network gradually increases. When the number of
hidden layers reaches four, the recognition accuracy of the network is the highest. Therefore,
four is the best number of hidden layers. As observed in Figure 19b, with the increase in the
learning rate, the training loss and validation loss of the network steadily increase. When
the learning rate parameter is 1× 10−3, the network training loss is minimal. Therefore,
the optimal learning rate parameter of the deep neural network is 1× 10−3. As shown in
Figure 19c, the training and validation loss curve of the network steadily increases with
the increase in the L2-regularization coefficient. When the L2-regularization parameter is
3× 10−3, the training and validation loss of the network reaches the minimum value, so
the weight decay parameter of the stacked auto-encoder is 3× 10−3 as the optimal weight
decay parameter. To summarize, the hyper-parameter values that determine the stacked
auto-encoder are shown in Table 4 below.

Table 4. Settings for Other Network Parameters.

Hyper-Parameter Name Parameter Code Numerical Value

Hidden layers h 3
Nodes in each layer n 3-16-1-16-3

Learning rate Learning_rate 1 × 10−3

Regularization factor λ 3 × 10−3

5.4.3. Result Analysis

Due to the irreversibility and high economic cost of shield construction, the model for
shield driver driving fatigue state should not only be accurate but also be applicable in
real time. Therefore, besides the accuracy of classification, the training time of the stacked
auto-encoder should also be one of the indexes used to evaluate network performance.
Based on the analysis and settings of the above network hyper-parameters, combined
with the loss value index, the stacked self-encoder hyper-parameters were set with the
values in Table 4, and the model stopped fitting when the validation loss stability exceeded
10 epochs. The training set and test set were input into the stacked auto-encoder to train,
and the weight offset of each layer was saved. The training results and the distribution
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of weight offset after repeated experiments are shown in Figure 20a,b, respectively. The
stacked auto-encoder was trained with a loss value of 0.03214 after several iterations, and
the overall loss of the test set was reduced to 0.03129. Therefore, the hierarchical model of
shield driver driving fatigue based on the stacked auto-encoder mentioned in this chapter
can be used as a reference method to monitor shield driver driving fatigue.
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To verify the validity of the proposed method for fusing the physiological signal
characteristics of shield driver driving operation, this method was compared with PCA,
Kalman filter, D-S evidence theory and Bayes estimation method. We entered a variety of
fusion results into densely connected networks, where the learning rate and the number
of iterations were consistent with the method of this chapter. The data labels were based
on the shield driver’s self-status at the time, and the network architecture was set to (128,
256, 64, 4). Taking into account the risk of shield driver driving and engineering economic
problems, training accuracy was the first index of network performance. Considering the
timeliness of shield driver fatigue assessment, the network training time was taken as the
second index to evaluate network performance. To reduce the experimental error, the above
methods were trained ten times, and the average value was taken as the comparison index.
Table 5 summarizes the recognition accuracy and training time of training and testing of
different fusion algorithms.

Table 5. Recognition accuracy and training time of training and testing of different fusion algorithms.

Feature Fusion
Method

Training Accuracy
(%) Test Accuracy (%) Training Time (s)

PCA 76.5 72.1 416
D-S syndrome 79.4 78.9 395

Bayesian estimation 78.3 76.9 413
L2-SAE 81.9 81.5 369

Table 5 shows that the methods presented in this chapter have good performance
in training time, training and test accuracy and are significantly better than traditional
data fusion methods. At the same time, it can be seen that the recognition accuracy of
PCA fusion results was significantly lower than that of this method, which further proves
that a deep learning network can extract more abstract feature information from data. In
this paper, regularization coefficients were added to the stacked auto-encoder for feature
layer fusion of physiological characteristics, which greatly reduces training loss during
the training phase and guarantees the test loss of deep neural network in data testing.
Moreover, the fusion results have advantages in accuracy stability and generalization
ability when applied to classification models.
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6. Conclusions and Prospect
6.1. Conclusions

In this paper, the fusing problem of EEG and ECG fatigue characteristics of shield
drivers is addressed. Moreover, a feature fusion method based on multiple physiological
signals and an auto-encoder is presented. The ErgoLAB platform was used to collect the
EEG and ECG signals of shield drivers at Shenyang metro line 4, China. Moreover, a stacked
encoder driver fatigue feature fusion network based on L2 regularization was constructed
based on time–frequency-domain analysis and ECG feature extraction. Moreover, a regu-
larization factor was introduced into the stacked auto-encoder to fuse the physiological
features of the feature layer. Extensive experiments showed that the proposed method has
higher accuracy in identifying the fatigue state of shield drivers and can effectively reduce
the loss rate of deep features after feature fusion, which provides a new method for shield
driver driving fatigue detection.

6.2. Prospect

This paper carried out research on the evaluation of the driving fatigue state of shield
machine drivers, but due to the experimental time and equipment factors, there are still
some deficiencies that need further in-depth study. As a result of the fact that there were
only two drivers at the construction site of this physiological data acquisition experiment,
the sample size of the test data in the SAE-based shield driver driving fatigue grading
model was small, and the driving age was in the same range. Thus, the following study
may consider different driving ages, age and other factors, as well as increase the number
of test samples, and then fully analyze individual differences. In this way, the robustness of
the model against differences in different driver characteristics will be improved.
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