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Abstract: Crack detection on roads is essential nowadays because it has a significant impact on ensur-
ing the safety and reliability of road infrastructure. Thus, it is necessary to create more effective and
precise crack detection techniques. A safer road network and a better driving experience for all road
users can result from the implementation of the ROAD (Robotics-Assisted Onsite Data Collecting)
system for spotting road cracks using deep learning and robots. The suggested solution makes use
of a robot vision system’s capabilities to gather high-quality data about the road and incorporates
deep learning methods for automatically identifying cracks. Among the tested algorithms, Xception
stands out as the most accurate and predictive model, with an accuracy of over 90% during the
validation process and a mean square error of only 0.03. In contrast, other deep neural networks, such
as DenseNet201, InceptionResNetV2, MobileNetV2, VGG16, and VGG19, result in inferior accuracy
and higher losses. Xception also achieves high accuracy and recall scores, indicating its capability to
accurately identify and classify different data points. The high accuracy and superior performance of
Xception make it a valuable tool for various machine learning tasks, including image classification
and object recognition.

Keywords: crack detection; deep learning; robotics; robotic vision system; surface identification

1. Introduction

Cracks may eventually form on roads as a result of exposure to adverse weather,
heavy traffic, and other environmental variables. These cracks could endanger the track’s
safety and worsen the situation if they are not found and repaired very soon. Moreover,
crack detection on highways is also crucial because it has a big impact on ensuring the
dependability and safety of the road infrastructure. Road crack detection with traditional
technology is typically time-consuming, expensive, and unreliable. While traditional
methods can be time-consuming and expensive, automated crack detection using deep
learning and robotic vision technology can improve accuracy, speed, and efficiency. These
methods involve training algorithms to recognize and classify cracks based on images
or videos collected by robotic vision systems. Automated crack detection can be used in
various applications, such as building and infrastructure inspection, bridge inspection, and
industrial equipment maintenance. Automated crack detection methods are essential for
improving structural health monitoring and assessment and preventing potential safety
hazards [1].
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Cracks on diverse surfaces refer to visible openings or fractures that occur on different
types of materials, such as concrete, wood, metal, ceramics, or glass. Cracks can be caused
by a variety of factors, including stress, temperature changes, chemical exposure, moisture,
and age [2]. On concrete surfaces, for example, cracks can be caused by the expansion and
contraction of the material due to temperature changes or moisture, as well as the weight
and movement of heavy objects. In wood, cracks can occur due to changes in humidity,
exposure to sunlight, or the aging process. The cracks can be caused by many reasons. The
cracks in flexible pavement and rigid pavement may have different reasons. For example, in
asphalt pavement, moisture damage is a major issue since water will weaken the adhesion
between asphalt and aggregate [3].

Cracks can vary in size and shape, from hairline fractures to larger openings. They can
be superficial and cosmetic or compromise the structural integrity of the material. Cracks
may also be an indication of a larger problem that needs to be addressed, such as a foun-
dation issue in a building or a problem with the structural support of a bridge. However,
it is challenging for computer vision methods due to low-level features such as cracks
and difficulties such as inhomogeneous illumination and irregularities in construction.
Recent advancements in computer vision and image processing techniques are improving
crack detection capabilities, enabling better decision-making for structural maintenance
and safety. Practical challenges remain due to the nature of the subject matter, which is
characterized by three major factors [4].

Crack detection is a challenging task for computer vision methods due to the low-
level discriminative features of cracks, which can be easily confused with background
noise such as foreign objects. In addition, the inhomogeneous illumination of the surface
and irregularities in the application process, such as the exposure of jointing, make it
difficult to distinguish the cracks from the surrounding area. These factors pose significant
obstacles to the accurate detection of cracks in structures and require sophisticated image
processing methods and algorithms to overcome. To address these issues, researchers
have concentrated on creating deep learning-based techniques that can accurately find and
categorize cracks in a variety of structures, such as steel and concrete buildings, bridges,
pipelines, aircraft, and railroad tracks. These approaches depend on the capacity of DNN
to learn intricate representations of the incoming data and generate precise predictions
even in the presence of noise and abnormalities [5].

Deep learning (DL) has been shown to perform better than conventional techniques
for image recognition and classification. Building a proper representation of the informa-
tion is a crucial step in creating the best algorithm for automated deep learning bridge
crack detection. Prior approaches, which can be constrained, rely on conventional picture
binarization and manually adjusted segmentation [6]. In this novel method, crack segments
are identified by line-fitting, and features related to the local line fit are computed. With the
use of machine learning, this strategy is sturdy and offers a viable remedy for automatically
detecting bridge cracks. It does so by overcoming the drawbacks of earlier methods [7].

Using deep learning-based techniques could change visual crack inspection and identi-
fication while lowering the need for human observations [8]. Ground robots and unmanned
aerial vehicles (UAVs) are gaining popularity as modern infrastructure inspection and mon-
itoring systems, offering advantages over traditional inspection methods such as improved
safety, efficiency, and accuracy [9]. These systems, equipped with sensors and cameras,
can provide real-time data and imagery of infrastructure components, allowing for more
accurate and efficient inspections [10]. These systems are anticipated to become increas-
ingly crucial as technology advances in the infrastructural inspection and monitoring
process [11].

2. Literature Review

Several methods for crack detection and assessment exist, including visual inspection,
acoustic testing, and stress analysis. The most popular method of crack detection is visual
inspection, which entails a civil engineer visually inspecting a structure for cracking or
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other symptoms of trouble. Acoustic testing involves using sound waves to detect cracks
and other defects in a structure. This method is useful for detecting cracks that are not
visible to the naked eye, but it can be affected by environmental noise and other factors that
can interfere with sound wave transmission. Stress analysis involves measuring changes
in the structure’s response to loads, such as changes in strain or displacement, to identify
potential cracks. This method requires specialized equipment and can be expensive, but it
is highly accurate. Despite these methods’ effectiveness, they have limitations. Traditional
methods for crack detection often rely on human interpretation, which can be subjective
and prone to errors. Moreover, these methods can be time-consuming, labor-intensive,
and require significant expertise, which can be costly. Here is a literature survey related to
the study:

By combining digital image processing methods [12,13] and machine and deep learn-
ing algorithms [14–16] with images, crack detection can be performed in numerous ways,
as described in this section. Fu Tao et al. [17] conducted a thorough analysis of the body of
research on crack identification using image processing methods. The authors go over the
various crack detection techniques and algorithms, such as segmentation, edge detection,
and thresholding. Additionally, they explore the difficulties and upcoming improvements
to the discipline of fracture detection and offer a thoughtful evaluation of the advantages
and disadvantages of each technique. The various methods for detecting road cracks,
including techniques for image processing, techniques for machine learning, and deep
learning methods, were described by J. Yang et al. [18]. The writers present a compar-
ative review of the various techniques and go through the benefits and drawbacks of
each methodology. In the area of detecting road cracks, they also identify the difficulties
and potential directions. An assessment of the most recent advancements in deep CNN
architectures was given by D. Bhatt et al. [19]. H. Yu et al. [20] go over many CNN archi-
tectures that are employed for image processing applications such as object recognition,
segmentation, and classification. Additionally, they compare the various CNN architectures
and emphasize their benefits and drawbacks. In their approach for extracting concrete
fracture attributes using image-based approaches for bridge inspection, the authors suggest
a technique that involves taking high-resolution pictures of concrete buildings, which are
afterwards examined to extract various crack-related properties. The authors conducted
experiments on actual concrete structures to gauge the efficacy of their proposed strategy.

In order to detect road cracks, L. Zhang et al. [21] developed a deep CNN method that
can extract high-level characteristics from unprocessed input photos. In order to identify
fractures, the authors suggest a brand-new architecture called Crack-Net that comprises
numerous convolutional and pooling layers. Additionally, they compare their strategy
with other cutting-edge techniques and show that it outperforms them. Kaseko et al. [22]
investigated the performance of pre-trained convolutional neural networks (CNNs) on
detecting cracks in building structures.

The authors compare several popular CNN architectures, such as VGG, ResNet,
and Inception, with their own CNN-based method. They evaluate the performance of
these methods using two benchmark datasets and show that their CNN-based method
outperforms other methods. A technique for identifying crack deterioration in engineering
structures using unmanned aerial vehicle images and a deep learning model that has
already been trained was proposed by Huang et al. [23]. The CNN used by the authors is
fine-tuned with their own data of UAV images after being pre-trained on the ImageNet
dataset. Using a dataset of UAV photos of civil infrastructure, they test their method, and
they demonstrate that it is highly accurate in identifying crack damage.

A deep CNN method for automatically detecting road cracks was presented by Ra-
jadurai et al. [24]. The VGG16 architecture is used by the authors, who fine-tune it using
a dataset of road photos with and without fractures. Additionally, they suggest a post-
processing technique to get rid of false positives. They test their technique on a sizable
collection of road photographs and demonstrate that it performs better than other cutting-
edge techniques. Maguire, M. et al. [25] provided SDNET2018 annotated picture dataset to
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detect non-contact concrete cracks in the buildings, bridges and walls. The dataset includes
more than 56,000 pictures of cracked and uncracked concrete surfaces that were taken using
different imaging methods. Bhowmick et al. [26] studied concrete crack detection with
handwriting script interferences using a faster region-based convolutional neural network.
In order to detect cracks in asphalt pavement Tien Le et al. [27] presented DeepCrack, a deep
hierarchical feature extraction architecture. A universal feature extraction network and a
local feature extraction network make up the suggested design. The research demonstrates
that DeepCrack beats cutting-edge techniques for crack segmentation.

S. Bhat et al. [28] designed a deep CNN. The research demonstrates that the suggested
CNN model outperforms typical machine learning techniques and can accurately identify
cracks in asphalt pavement. A computer vision-based method for detecting concrete cracks
was proposed by A. Khan et al. [29], utilizing U-net deep convolution networks. The study
demonstrates that the suggested technology may precisely and effectively find cracks in
concrete surfaces. An enhanced I-UNet convolutional network was put up by J. Deng
et al. [30] for the purpose of detecting road cracks using computer vision. The research
demonstrates that the suggested strategy may accurately and effectively find road cracks.

A deep CNN-based transfer learning technique for crack identification in civil infras-
tructure was introduced by N. A. M. Yusof et al. [31]. The suggested strategy enhances
the model’s efficacy by transferring knowledge from previously trained images to the
target domain. The research demonstrates that the suggested technique beats cutting-edge
techniques for detecting defects in civil infrastructure. For image categorization, Y. Liu
et al. [32] presented a conventional transfer learning approach. The suggested method clas-
sifies the data using a quantum circuit after extracting features from it using a traditional
neural network. The research demonstrates that the suggested method beats cutting-edge
techniques for picture categorization. Non-destructive tests were proposed by Z. Liu
et al. [33] to evaluate the load-carrying ability of cement anchor bolts using an artificial
multilayer perceptron neural network. The study demonstrates that the suggested method
can accurately forecast the load-carrying ability of concrete anchor bolts.

According to a review of the literature, deep learning and robotic vision applications
for crack assessment and detection are gaining popularity. The study’s suggested method
advances this area of inquiry by merging many sensing modalities to produce more thor-
ough fracture detection and assessment. The suggested approach is poised to increase
crack detection and evaluation accuracy and effectiveness across a range of applications
and fields. Traditional approaches for crack detection and assessment have limitations,
including subjectivity, limited accuracy, high cost, time-consumption, disruption to op-
erations, and a lack of continuous monitoring. These limitations emphasize the need for
automated and accurate crack detection methods that can provide reliable and continuous
monitoring of structural health.

The emergence of deep learning and robotic vision technology has revolutionized the
field of crack detection and assessment by significantly improving accuracy, speed, and
efficiency. By training deep learning algorithms on large datasets of images and videos
collected by robotic vision systems, these algorithms can detect cracks even in complex
crack patterns or low contrast images. Robotic vision systems can access difficult-to-reach
areas and provide a comprehensive view of the structure’s condition, reducing the need
for manual inspections. Combining these technologies provides real-time and continuous
monitoring of structural health, enabling early identification of cracks to prevent safety
hazards and reduce costs.

Table 1 discusses the literature survey for research done on crack detection. As shown
in Table 1, many DL algorithms are being used for crack detection in the literature and
there is more scope for using robotic techniques to provide automated and less human-
interrupted solutions for the same.
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Table 1. Literature survey for research conducted on crack detection.

Ref. Aim of Study DL Algorithm Used Robotics Technique Used

[16] Using digital picture processing driven by a UAV, find
concrete cracks N/A UAV-powered digital

image processing

[17] To offer a rigorous evaluation and critique of image processing’s
use of crack detection N/A N/A

[18] To investigate methods for detecting road cracks N/A N/A

[19] To review current deep CNN architectures Deep convolutional neural networks N/A

[20] Employing image processing to get cracked concrete properties
during bridge inspection N/A Image processing

[21] Utilising a deep CNN to find road cracks Deep convolutional neural network N/A

[22] To test how well several pre-trained CNN detect
construction cracks

Pre-trained convolutional neural
networks N/A

[23] Applying a trained DL model to UAV photos of civil infrastructure
to find crack damage Pre-trained deep learning model UAV imaging

[24] Deep CNN will be used to automatically detect road cracks. Deep convolutional neural network N/A

[25] To provide a collection of annotated images for deep CNN to use in
non-contact concrete fracture identification. Deep Convolutional Neural Networks N/A

[26] In order to find concrete fissures where handwriting script
interferences are present

Faster Region-Based Convolutional
Neural Network N/A

[27] Finding asphalt pavement cracks Deep Convolutional Neural Network N/A

[28] To provide an architecture for hierarchical feature learning for
crack segmentation N/A N/A

[29] Using computer vision-based methods, find concrete cracks U-net Fully Convolutional Networks N/A

[30] To create a more effective I-UNet convolutional network for
detecting road cracks I-UNet Convolutional Networks N/A

[31] To create a deep CNN-based transfer learning technique for crack
identification in civil infrastructure Deep Convolutional Neural Network N/A

[32] Picture categorization using classical-quantum transfer learning Classical-Quantum Transfer Learning N/A

[33] The use of artificial multilayer neural networks and non-destructive
tests to evaluate the load-carrying ability of concrete anchor bolts Artificial Multilayer Neural Network N/A

Based on the literature survey provided, the research gaps identified are as follows:

1. The literature suggests that conventional techniques employed for detecting cracks,
such as visual inspection, are susceptible to errors and subjectivity due to human
interpretation, thereby lacking automation. The demand for automated and impartial
methods for detecting cracks is imperative.

2. The efficacy of acoustic testing is restricted, as it is a technique that employs sound
waves to identify cracks that are not discernible through visual inspection. Nonethe-
less, sound wave transmission may be influenced by environmental noise and other
variables. There is a necessity for the development of more rigorous and dependable
techniques for acoustic testing.

3. Various studies have noted the absence of explicit mention of deep learning algo-
rithms and robotics techniques. Specifically, the utilization of deep convolutional
neural networks and image processing techniques is highlighted in the context of
crack detection. The omission of details regarding the DL algorithms and robotics
techniques employed in each study may have implications for the replicability and
lucidity of the research.

4. The current literature on crack detection presents limited coverage of the challenges
that are inherent in this process. While some studies have briefly touched upon
the difficulties and potential avenues for crack detection, a more comprehensive
investigation is required to fully understand the complexities associated with this
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task. These complexities include variations in crack patterns, environmental factors,
and the diverse range of structures that must be examined.

The resolution of these research deficiencies can make a valuable contribution towards
advancing more precise, effective, and economical methods for detecting cracks, which can
enhance the maintenance and safety of infrastructure.

3. Our Proposal: Road System

The proposed ROAD (Robotics-Assisted Onsite Data Collection System) systems
shown in Figure 1 are a novel approach to construction inspection that leverages advanced
robotics, machine learning, and BIM software to provide a comprehensive solution for
construction site monitoring and data collection. The mobile robot platform is the primary
data collection device, equipped with sensors, cameras, and measurement devices to collect
data about the construction site. The robot is autonomous and capable of navigating around
obstacles, making it ideal for use in complex and dynamic construction environments. This
data is then sent to the object detection system on the server for processing, where machine
learning algorithms analyze and classify objects and features within the construction site.
This includes identifying defects, deviations from design specifications, and other issues
that may impact the quality or safety of the construction project [34].
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The object detection system provides real-time feedback to the control room, where
construction managers and engineers can make informed decisions and take appropriate
action as needed. The control room is equipped with BIM software, which provides a
3D model of the construction project, allowing managers and engineers to visualize the
construction project in detail and identify potential issues or problems [35]. The control
room can also be used to monitor the progress of the construction project, track materials
and equipment, and manage project resources.

By combining advanced robotics, machine learning, and BIM software, the ROAD
system can improve the quality and safety of construction projects while reducing costs and
increasing efficiency [36]. The system can provide real-time monitoring and data collection,
allowing for early identification of issues and timely corrective action. Because of its
comprehensive perspective of the construction process and ability to promote the effective
use of resources, the ROAD system has the potential to enhance project management and
planning as well.
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As depicted in Figure 1, the ROAD system proposed for crack detection and assess-
ment combines deep learning and robotic vision technology to provide automated and
accurate monitoring of structural health. The system includes several steps:

1. Image and video capture: A robotic vision system captures images and videos of the
structure from different angles and perspectives, including areas that are difficult
to access.

2. Data pre-processing: The captured images and videos are pre-processed to remove
noise and enhance the contrast of crack features.

3. Training deep learning algorithms: To reliably identify and categorize various types
of cracks, a deep learning system is trained on a sizable collection of cracking images
and videos. The SDNET2018 dataset, which contains images of concrete surfaces with
varied degrees of fractures, has been used to fine-tune the CNN, InceptionResNetV2,
Xception, DenseNet201, MobileNetV2, VGG16, and VGG19 models. For the specific
objective of crack identification, transfer learning is employed to utilize the pre-trained
parameters of the model and speed up the learning process.

4. Crack detection: The trained deep learning algorithm is applied to the preprocessed
images and videos to detect cracks and classify them according to their type and severity.

5. Structural assessment: The detected cracks are analyzed to assess the structure’s
health and identify any potential safety hazards.

6. Reporting and maintenance: Engineers and repair teams are informed of the out-
comes of the crack identification and evaluation so that they can make any repairs or
maintenance tasks required to maintain the material’s safety and durability.

This study describes the creation of the ROAD system, a cutting-edge method for
spotting road cracks using deep learning and robots. The suggested solution makes use
of a robotic vision system’s capabilities to gather high-quality data about the road surface
and incorporates deep learning methods for automatically identifying cracks. The device
can function under a variety of circumstances, including various weather and lighting
situations, and it can detect cracks on a variety of surfaces, including concrete and asphalt.
The suggested approach might considerably increase the effectiveness and efficiency of
crack identification on highways, resulting in more timely and effective maintenance
interventions and a safer driving environment for all road users. The device has successfully
detected cracks on a variety of road surfaces during testing. The effectiveness of various
deep neural networks for picture classification and object recognition tasks is evaluated
in this study. The suggested method has a number of benefits, including high accuracy
and speed, real-time monitoring, ongoing assessment, decreased expenses, and minimal
interference with routine activities [37].

Deep learning and robotic vision technologies can be used by engineers to identify
cracks early, stop additional damage, and assure the durability and safety of structures.
A useful resource for training, verifying, and benchmarking deep learning algorithms for
concrete crack detection is the SDNET2018 [25]. The dataset encompasses a wide range
of crack widths and types, ranging from thin cracks as small as 0.06 mm to wider ones as
large as 25 mm, and contains over 56,000 annotated pictures of cracked and non-cracked
concrete bridge decks, walls, and pavements.

The SDNET2018 dataset offers a complete set of training data for researchers to
create and improve crack detection algorithms based on deep learning convolutional neural
networks by taking into account six different classes to specifically classify decks, walls, and
pavements with or without cracks. However, the camera quality used to capture pictures
may produce some bias or limitations, which may impact the accuracy and generalizability
of the models. The Tensor Flow and Keras frameworks were used to create the Python crack
detection model known as the ROAD system. The model is trained and tested in the Google
Colab environment and is based on the CNN, Xception, DenseNet201, InceptionResNetV2,
MobileNetV2, and VGG16 and VGG19 architectures. The first algorithm describes how the
model was trained and tested [38].
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The proposed approach for crack detection and classification involves using deep learn-
ing models, specifically CNN, Xception, DenseNet201, InceptionResNetV2, MobileNetV2,
VGG16, EfficientNetV2, and VGG19, trained on large datasets of images and videos of
structures with cracks, as shown in Figure 2.
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Robotic vision technology, which consists of cameras mounted on robotic arms that
can capture images and videos from different angles and perspectives, is used for data
collection. This technology allows for real-time monitoring of structural health and can
reduce variability in the data, improving the accuracy of crack detection and assessment.
The integration of deep learning and robotics involves several steps, including data collec-
tion using robotic vision systems, training deep learning models on the collected data, and
deploying the models for automated crack detection and assessment.

The proposed model for crack detection and classification goes through the follow-
ing steps:

Firstly, robotic vision systems are used to collect images and videos of structures with
and without cracks using the SDNET2018 dataset.

Secondly, the collected data is pre-processed, including resizing, normalization, and
augmentation, to ensure that the deep learning models can learn from the data effectively.

Thirdly, the pre-processed data is used to train deep learning models (CNN, Xception,
DenseNet201, InceptionResNetV2, MobileNetV2, VGG16, and VGG19) to detect and classify
cracks accurately.

Fourthly, the trained deep learning models are integrated with robotic vision systems
to enable real-time crack detection and classification.

In the fifth step, the detected cracks are analyzed to assess the structure’s health and
identify any potential safety hazards.

Finally, the results of crack detection and assessment are reported to engineers and
stakeholders, who can visualize the data using dashboards, graphs, and other visualization
tools. The integration of deep learning and robotics can provide an automated and efficient
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solution for crack detection and assessment, reducing the need for manual inspection and
improving the safety and lifespan of structures [39,40].

4. Experimental Results

The proposed approach for crack detection and assessment involves a robotic vision
system consisting of a camera mounted on a robotic arm that captures images and videos
of structures with and without cracks. For real-time crack detection and classification,
deep learning models are connected with the robotic vision system once the gathered data
has been pre-processed and utilized to train them. Using visualization tools, the severity
of discovered cracks is evaluated, and the findings are communicated to engineers and
stakeholders. Using a different testing dataset, numerous assessment measures, cross-
validation techniques, and comparisons with conventional methods, the performance of the
deep learning models is assessed. To guarantee the models’ dependability for automated
crack detection and evaluation, their performance is confirmed in real-world circumstances.

The performance analysis of a robotic vision system can be a complex task, as it
involves evaluating various aspects of the system’s performance, such as accuracy, speed,
robustness, and reliability. Here are some steps that can help in conducting a performance
analysis of a robotic vision system: The first step is to clearly define the task that the robotic
vision system is expected to perform. For example, is it object detection, recognition, or
tracking? This will help in determining the appropriate evaluation metrics.

Once the task is defined, appropriate evaluation metrics should be selected. For
instance, for object detection, metrics such as accuracy, MSE (Mean Squared Error) [41],
precision, and recall can be used. For object tracking, metrics such as tracking accuracy,
tracking speed, and smoothness of the trajectory can be used. The next step is to collect
data to evaluate the system’s performance. The data should be representative of the task
and cover various scenarios that the system is expected to handle. The system should
be trained on the collected data and tested on a separate set of data. The testing data
should be different from the training data to ensure that the system can generalize to new
data. Once the system has been tested, the results should be analyzed to evaluate the
system’s performance.

The results can be compared to the evaluation metrics selected in step 2 to determine
whether the system meets the desired performance criteria. If the system does not meet the
desired performance criteria, it may be necessary to fine-tune it. This can involve adjusting
parameters, retraining the system on additional data, or improving the algorithms used.
The performance analysis process may need to be repeated several times until the system
meets the desired performance criteria [42]. The performance analysis of a robotic vision
system involves defining the task, selecting appropriate evaluation metrics, collecting data,
training and testing the system, analyzing the results, fine-tuning the system, and repeating
the process until the desired performance criteria are met.

The results of the integrated approach for crack detection and assessment can vary
depending on the specific approach and methodology used. The integrated approach for
crack detection and assessment has the potential to improve the accuracy, efficiency, and
safety of crack detection and assessment in various applications, such as civil engineering,
aerospace, and manufacturing.

Figure 3 presents the acquired results for the performance parameters such as accuracy,
MSE, precision, and recall of the deep neuronal network formed by Xception, DenseNet201,
InceptionResNetV2, MobileNetV2, VGG16, and VGG19, and Table 2 presents values for
the performance parameters for CNN, Xception, DenseNet201, InceptionResNetV2, Mo-
bileNetV2, VGG16, and VGG19 for crack detection models.
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Figure 3. Performance of the deep neural network (accuracy, MSE, precision, and recall for the deep
neural network).

Table 2. Performance table for CNN, Xception, DenseNet201, InceptionResNetV2, MobileNetV2,
VGG16, and VGG19 for crack detection models.

Accuracy
Epoch’s CNN DenseNet201 InceptionResNetV2 MobileNetV2 VGG16 VGG19 Xception

1 66.5775 52.6344 80.6098 38.7358 60.1676 38.7358 74.5921
2 66.5597 61.8615 74.5297 39.0479 72.8626 40.6615 85.6735
3 60.0428 50.9940 86.0301 30.8995 75.3499 52.1797 81.1447
4 58.5183 57.8675 86.1460 41.9809 64.8302 65.4007 82.2323
5 70.1168 64.6519 74.9131 60.3281 81.8044 75.9651 90.2469
6 65.4542 70.9815 78.8624 51.5468 81.9916 74.1999 86.9930
7 73.2549 76.2860 88.9097 45.6004 80.5830 78.9873 89.8814
8 78.4702 56.9582 88.0806 59.3474 73.4867 78.2027 88.2767
9 77.5876 73.9681 84.9782 45.2082 82.7227 78.3008 89.7388
10 77.8996 57.1989 87.6438 40.7774 80.6187 81.4300 86.9751
11 73.2549 70.6606 89.3911 50.9227 74.5832 82.2502 80.5296
12 72.9785 53.1069 84.7820 42.6050 82.6959 80.6098 86.7790
13 77.1775 66.6845 49.2199 47.5974 81.7331 78.0333 86.9127
14 76.2414 44.7178 85.9321 64.7143 82.8029 80.1462 80.6187
15 75.6887 41.5976 78.3097 60.9432 80.1997 82.1610 88.3124
16 75.3410 65.2670 85.3704 70.5982 79.0051 70.9726 90.5322
17 74.2355 42.8813 85.0049 58.4470 81.2160 79.2725 90.1489
18 72.6843 72.9072 86.9038 49.1932 80.4315 77.0884 87.9112
19 73.4510 64.1972 84.5502 80.9575 81.3141 81.6618 88.3748
20 73.6382 63.4929 84.7107 68.5388 72.1227 81.0734 89.9706
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Table 2. Cont.

Loss
Epoch’s CNN DenseNet201 InceptionResNetV2 MobileNetV2 VGG16 VGG19 Xception
1 0.0775 0.1115 0.0478 0.2042 0.0845 0.1224 0.0661
2 0.0801 0.0924 0.0731 0.1988 0.0769 0.1155 0.0381
3 0.0906 0.1491 0.0365 0.2168 0.0639 0.1076 0.0490
4 0.0906 0.1094 0.0350 0.1820 0.0781 0.0796 0.0463
5 0.0704 0.0946 0.0669 0.1249 0.0478 0.0607 0.0260
6 0.0859 0.0735 0.0559 0.1516 0.0471 0.0631 0.0363
7 0.0665 0.0654 0.0301 0.1774 0.0498 0.0534 0.0276
8 0.0573 0.1191 0.0322 0.1328 0.0616 0.0563 0.0335
9 0.0587 0.0716 0.0396 0.1781 0.0451 0.0549 0.0284
10 0.0565 0.1223 0.0336 0.1969 0.0494 0.0479 0.0344
11 0.0674 0.0796 0.0290 0.1604 0.0637 0.0471 0.0555
12 0.0684 0.1501 0.0407 0.1907 0.0458 0.0492 0.0394
13 0.0602 0.0997 0.1286 0.1734 0.0472 0.0542 0.0390
14 0.0636 0.1753 0.0376 0.1154 0.0453 0.0513 0.0549
15 0.0662 0.1825 0.0589 0.1288 0.0524 0.0471 0.0349
16 0.0675 0.1042 0.0383 0.0939 0.0533 0.0689 0.0278
17 0.0712 0.1849 0.0397 0.1377 0.0516 0.0526 0.0286
18 0.0755 0.0770 0.0356 0.1659 0.0538 0.0554 0.0350
19 0.0731 0.1039 0.0412 0.0597 0.0517 0.0480 0.0327
20 0.0744 0.0985 0.0420 0.0963 0.0802 0.0486 0.0301

Precision
Epoch’s CNN DenseNet201 InceptionResNetV2 MobileNetV2 VGG16 VGG19 Xception
1 72.7496 57.4463 83.0615 38.7358 87.1830 0.0000 75.9108
2 78.7134 66.9144 75.6462 39.1033 82.4393 87.4785 86.5855
3 63.0467 51.0730 86.7354 30.9808 81.1182 63.8872 82.3788
4 66.6667 59.2572 86.8192 42.0516 72.9645 86.1176 82.7596
5 73.2454 65.9912 76.0318 60.4254 84.6228 79.7475 90.3765
6 69.1520 72.6900 80.3527 51.7756 83.7563 78.8481 87.3239
7 77.7636 76.9001 89.1256 45.6266 82.5322 82.0426 90.0572
8 82.6985 57.0150 88.3435 59.3633 78.0363 80.2758 88.4615
9 81.5405 74.5844 85.6768 45.2969 84.7576 79.8565 89.8285
10 80.9801 57.8230 88.0600 40.7774 82.6499 82.9683 87.1545
11 76.1155 71.3818 89.6320 50.9272 78.2683 84.4735 80.9190
12 74.9858 53.1459 85.1393 42.6202 84.0336 82.0412 86.9830
13 79.0208 66.9088 50.3478 47.6097 84.5687 80.9248 87.0020
14 77.8453 44.8356 86.3690 64.7195 84.4664 83.8642 81.2692
15 76.9658 41.7316 79.4142 60.9506 83.6102 84.1112 88.3376
16 76.2179 65.5284 85.8950 70.7271 82.2721 74.0648 90.6016
17 75.2725 42.8890 85.5954 58.4470 85.1226 81.3498 90.1767
18 73.4575 73.4121 87.2344 49.2407 83.4361 82.3676 87.9561
19 74.5433 64.6942 85.0979 80.9774 84.3397 83.8065 88.6262
20 74.5493 64.1787 85.1169 68.7058 86.3548 82.9129 90.0268

Recall
Epoch’s CNN DenseNet201 InceptionResNetV2 MobileNetV2 VGG16 VGG19 Xception
1 60.8095 47.4904 78.0779 38.7358 33.7167 0.0000 73.7452
2 49.4161 60.9967 73.0498 39.0300 42.0612 13.5776 84.9336
3 56.9314 50.9227 85.4596 30.7212 65.8376 37.7730 80.2710
4 45.1814 56.6105 85.5576 41.8829 62.0754 36.1683 81.8668
5 66.8004 64.4557 74.2355 60.2746 78.0066 71.5075 90.0865
6 59.0354 69.5017 77.5876 51.3417 80.0303 68.5923 86.7790
7 65.1600 75.6798 88.7760 45.5737 78.2206 75.8402 89.7923
8 71.0350 56.8066 87.7686 59.3474 69.3679 75.7600 88.1697
9 71.1598 73.2014 84.3630 45.1636 80.9040 77.4004 89.6764
10 74.3960 55.9775 87.4476 40.7774 77.8015 80.0392 86.8592
11 70.2594 69.9563 89.2485 50.9227 69.3858 79.5935 80.2264
12 70.6339 53.0891 84.4789 42.6050 81.1269 79.6202 86.6185
13 75.2518 66.5151 48.3908 47.5885 78.3186 74.7348 86.8236
14 74.2088 44.5039 85.5220 64.6964 80.8594 74.8774 80.2621
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Table 2. Cont.

Recall
Epoch’s CNN DenseNet201 InceptionResNetV2 MobileNetV2 VGG16 VGG19 Xception
15 74.1731 41.5084 77.5876 60.9343 74.4941 79.8520 88.2589
16 74.1999 65.1779 84.7464 70.5001 75.2162 68.3070 90.4966
17 73.2727 42.8546 84.3363 58.4470 74.5743 77.6946 90.1043
18 71.7482 72.5417 86.3867 49.1397 74.8150 73.5045 87.8934
19 72.3901 63.6445 84.0510 80.9486 74.4673 78.1582 88.2232
20 72.9874 62.6282 84.3809 68.3873 35.7136 78.8179 89.8903

Results were analyzed and validated through five repeated iterations, and the average
of those five iterations was utilized to present them in the results section. Throughout
the evaluation of different approaches in the research, the Xception model constantly ex-
hibited superior accuracy, with a range of 74.59% to 90.53% across epochs. The VGG16
and VGG19 models showed significant performance, attaining accuracies ranging from
60.17% to 82.80% and 38.74% to 82.16%, respectively. The models DenseNet201, Inception-
ResNetV2, MobileNetV2, and CNN demonstrated differing degrees of accuracy, which
were generally inferior to those of Xception, VGG16, and VGG19. As the highest accuracy
acquired is 90 percent, the percentage of wrong or error predictions could be considered
10 percent.

The Xception model demonstrated superior optimization and convergence during
training, as evidenced by its consistently low loss values. The models VGG16, VGG19,
and MobileNetV2 showed comparatively reduced loss values. In contrast, DenseNet201,
InceptionResNetV2, and CNN exhibited high loss values relative to the remaining models.

The precision and recall metrics were also evaluated. The Xception model consistently
attained high precision and recall metrics across the epochs. The models VGG16, VGG19,
and MobileNetV2 demonstrated favorable precision and recall metrics, albeit lower than
those of Xception. The models DenseNet201, InceptionResNetV2, and CNN exhibited vari-
ous precision and recall measures, with certain epochs demonstrating favorable outcomes
while others displayed adverse outcomes. The findings underscore the exceptional efficacy
of the Xception architecture concerning accuracy, loss, precision, and recall, rendering it the
most dependable option for detecting cracks in the ROAD system.

The ROAD system’s development has revealed a lot of promise for enhancing the
precision and effectiveness of crack identification on roadways utilizing robots and deep
learning. With a validation accuracy of over 90% and a low mean square error of 0.03,
the study’s findings show that the Xception deep neural network performs better than
other algorithms in terms of accuracy and predictive capacity. Testing of the suggested
system on various types of road surfaces revealed that it is highly accurate in spotting
cracks. The technology has a 90% accuracy rate for crack detection down to 1 mm. The
system has also been tested in a variety of weather and illumination scenarios, including at
night, and the findings have been consistent. The technology is highly efficient, scanning
and analyzing 1 km of road surface in less than an hour, which is much quicker than
conventional techniques. The technology can also accurately identify a variety of crack
types, including block, longitudinal, and transverse cracks [43].

5. Discussion

The system proposal for, Robotics-Assisted Onsite Data Collection and Deep Learning-
Enabled Robotic Vision System for the Identification of Cracks on Diverse Surfaces, may
encounter various challenges and limitations, as mentioned below:

1. Real-time processing: Real-time processing is critical in on-site crack detection, par-
ticularly when prompt decision-making or action is necessary. To ensure prompt
results, it is imperative that the system efficiently processes the collected data and
conducts the crack detection on time. Achieving real-time performance necessitates
the assurance of efficient computational resources and optimized algorithms [41].
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2. Environmental factors: The robotic vision system’s image quality can be impacted
by a range of environmental factors, including but not limited to lighting conditions,
shadows, reflections, and weather conditions like rain and fog. Various factors may
impact cracks’ apparent presence and clarity, resulting in erroneous outcomes in
detecting cracks, either false positives or false negatives. The system must be de-
vised to consider and address environmental factors’ influence to guarantee precise
detection [42].

3. Surface variations and textures: Various surfaces, including but not limited to concrete,
asphalt, and different building materials, may display differences in texture, hue, and
design. The presence of diverse surface characteristics and the inherent complexity
and variation in crack patterns across various surfaces can present challenges for
crack detection methods, which may require adaptation to handle these variations
effectively [43].

4. Generalization to unseen data: The system’s deep learning models depend on the
training data to acquire knowledge of patterns and characteristics linked to cracks,
thereby enabling generalization to unseen data. Nevertheless, the efficacy of these
models on unobserved data or surfaces that exhibit substantial dissimilarities from
the training data may need to be clarified. The system is recommended to undergo
evaluation and validation procedures using a range of datasets and be tested on
multiple surfaces to determine its generalizability and reliability.

5. False positives and negatives: The challenge of crack detection lies in achieving a bal-
ance between minimizing false positives, which refer to the identification of non-crack
areas as cracks, and false negatives, which refer to the failure to detect actual cracks. In
certain instances, deep learning models may generate erroneous identifications owing
to factors such as noise, surface irregularities, or intricate patterns resembling cracks.
The occurrence of inconspicuous or diminutive fissures may lead to erroneous adverse
outcomes. The implementation of continuous model refinement, optimization, and
training, along with the utilization of diverse datasets, can aid in the alleviation of
these challenges.

6. Hardware limitations: The robotic system’s hardware components, including sensors
and cameras, must satisfy criteria to capture top-notch images and data, presenting
hardware limitations. The efficacy of crack detection can be influenced by various
factors, such as the camera’s resolution, field of view, and image stabilization features,
along with the precision and dependability of other sensors. It is imperative to
guarantee the appropriateness and dependability of the hardware constituents to
optimize the system’s overall functionality.

7. Scalability and adaptability: The system under consideration must possess the ability
to scale and adapt to diverse scenarios and applications. The system must effectively
manage various crack types, from minor fissures to more substantial structural im-
pairments. Additionally, the system should be capable of seamless deployment and
compatibility with various robotic platforms to cater to a wide range of inspection
environments and structures [43].

To overcome these obstacles and constraints, it is necessary to employ a comprehensive
approach that encompasses the development of solid algorithms, the acquisition of ample
training data, and implementation of efficient feature extraction techniques, the ongoing
optimization of the system, and the rigorous testing and validation of procedures. By
resolving these issues, the proposed system has the potential to augment its crack detection
capabilities and thereby make a valuable contribution to the optimization of infrastructure
maintenance and inspection protocols. The results obtained from the study demonstrate
that the deep neural network formed by Xception performed exceptionally well, with an
accuracy of over 90% during the validation process. The validation accuracy is a measure of
how well the model can make accurate predictions on data that it has not been trained on.
In addition, the mean square error, which measures the difference between the predicted
and actual values, was found to be very low, with a value of 0.03. On the other hand, when
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compared to Xception, several other deep neuronal networks, including DenseNet201,
InceptionResNetV2, MobileNetV2, VGG16, and VGG19, resulted in inferior accuracy with
higher losses. These results indicate that Xception outperforms these other algorithms in
terms of accuracy and predictive power.

Furthermore, the accuracy and recall scores obtained by Xception were also found to
be very high, reaching nearly 90%. Accuracy refers to the proportion of correct predictions
made by the model, while recall measures the ability of the model to identify all relevant
instances within a dataset. The high accuracy and recall scores obtained by Xception
suggest that the model is capable of accurately identifying and classifying different data
points. These results suggest that the Xception model is a highly effective deep neural
network for a range of applications. Its high accuracy, low mean square error, and superior
performance when compared to other algorithms make it a valuable tool for a variety of
machine learning tasks, including image classification and object recognition. The accuracy
of the proposed approach can be evaluated using metrics such as accuracy, MSE, precision,
and recall. The proposed approach is faster, less expensive, simpler, more robust, more
versatile, and more scalable than existing methods.

The integrated approach for crack detection and assessment has several advantages,
such as increased accuracy, reduced false positives, comprehensive crack assessment, faster
inspection, improved safety, and cost savings. However, it also has limitations, such as
the need for specialized equipment and expertise, the potential for false negatives, and the
cost of implementing and maintaining the integrated approach. The integrated approach
for crack detection and assessment has advantages such as increased accuracy, reduced
false positives, comprehensive crack assessment, faster inspection, improved safety, and
cost savings.

However, it also has limitations such as a high initial cost, complexity, technical lim-
itations, maintenance requirements, and the need for high-quality data. The integrated
approach for crack detection and assessment has several advantages, such as increased
accuracy, reduced false positives, and improved safety, but also has limitations, such as
a high initial cost, complexity, and technical limitations. The advantages and limitations
should be carefully considered before implementing the integrated approach. The pro-
posed approach for crack detection and assessment can be applied in various fields and
applications, such as civil engineering, aerospace, manufacturing, automotive, energy, and
medical. It has the potential to provide accurate and efficient detection and assessment of
cracks and potential failures in different types of infrastructure, products, and devices.

In order to achieve system scalability, it is imperative to ensure that the design incor-
porates seamless integration with pre-existing infrastructure management systems. The
proposed integration entails the assimilation of the crack detection system within the com-
prehensive framework utilized for overseeing and upholding road networks. The proposed
system can derive advantages from the pre-existing infrastructure management systems,
including established workflows, data management processes, and decision-making proto-
cols. Drawing from the discourse and evaluation of the proposed framework for detecting
and evaluating cracks in road networks, the subsequent recommendations can be posited
to augment the study:

1. In order to enhance the resilience and versatility of deep learning models, it is advis-
able to augment the dataset utilized for both training and testing purposes.

2. The proposed system places emphasis on visual data obtained through cameras.
However, the inclusion of other sensor data, such as LiDAR or infrared imaging,
can offer supplementary information to enhance the precision of crack detection
and evaluation.

3. Incorporating real-time anomaly detection algorithms can be advantageous in con-
junction with crack detection.

4. In order to guarantee the effective execution and acceptance of the suggested system, it
is imperative to engage in partnerships with infrastructure management organizations,
road authorities, and industry stakeholders.
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5. In order to ascertain the efficacy and dependability of the suggested system in practical
scenarios, it is advisable to carry out comprehensive field experiments on diverse
road networks.

6. Given that the proposed system entails the collection and processing of visual data, it
is imperative to address any potential privacy and security concerns.

7. Perform an exhaustive evaluation of the costs and benefits to determine the financial
feasibility of expanding the proposed system to a broader scope.

6. Conclusions

The development of the ROAD (Robotics-Assisted Onsite Data Collection) system has
shown significant potential for improving the accuracy and efficiency of crack detection on
roads using robotics and deep learning. The results of the study indicate that the Xception
deep neural network outperforms other algorithms in terms of accuracy and predictive
power, with a validation accuracy of over 90% and a low mean square error of 0.03. The
proposed approach offers advantages such as increased accuracy, reduced false positives,
comprehensive crack assessment, faster inspection, improved safety, and cost savings.
The proposed approach can be applied in various fields and applications, providing ac-
curate and efficient detection and assessment of cracks and potential failures in different
types of infrastructure, products, and devices. The development of the ROAD system
represents a promising solution to the challenges associated with traditional methods of
crack detection on roads and highlights the potential of robotics and deep learning in
improving road infrastructure maintenance and safety. The study also acknowledged the
limitations of the proposed approach, such as its high initial cost, complexity, and technical
limitations. Finally, the study identified potential applications of the proposed approach in
various fields, such as civil engineering, aerospace, manufacturing, automotive, energy, and
medical industries. Overall, the study presents a novel approach for crack detection and
assessment that has the potential to improve the accuracy and efficiency of crack detection
and assessment in various fields and applications.

7. Future Directions

In this paper, we have worked on crack detection; in the future, the work can be
extended to crack growth and its severity. Additionally, future research in deep learning
and robotic vision for crack detection and assessment could focus on developing more
robust deep learning models, integrating additional sensing modalities, achieving real-
time detection and assessment, automating the entire process, extending the research
to other materials, and developing new techniques for crack assessment. Furthermore,
optimization algorithms can be employed in crack detection in buildings to enhance the
accuracy and efficiency of the process [44–49]. Various advanced optimization algorithms
can be employed for image processing, crack segmentation, structural health monitoring,
crack growth prediction, etc. Incorporating optimization algorithms into crack detection in
buildings can improve the overall accuracy, efficiency, and reliability of the process, leading
to timely identification and mitigation of structural issues.
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