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Abstract: Considering its superior engineering properties, ultrahigh performance concrete (UHPC)
has emerged as a strong contender to replace normal strength concrete (NSC) in diverse construction
applications. While the mechanical properties of UHPC have been thoroughly explored, there is still
dearth of studies that quantify the durability of UHPC, especially for sustainable mixtures made
with local materials. Therefore, this research aims at investigating the alkali-silica reactivity (ASR)
potential in sustainable UHPC in comparison with that of NSC. Sustainable UHPC mixtures were
prepared using waste untreated coal ash (CA), raw slag (RS), and locally produced steel fibers. UHPC
and benchmark NSC specimens were cast for assessing the compressive strength, flexural strength,
and ASR expansion. Specimens were exposed to two curing regimes: accelerated ASR conditions
(as per ASTM C1260) and normal water curing. UHPC specimens incorporating RS achieved higher
compressive and flexural strengths in comparison with that of identical UHPC specimens made
with CA. ASR expansion of control NSC specimens exceeded the ASTM C1260 limits (>0.20% at
28 days). Conversely, experimental results demonstrate that UHPC specimens incurred much less
ASR expansion, well below the ASTM C1260 limits. Moreover, UHPC specimens incorporating
steel fibers exhibited lower expansion compared to that of companion UHPC specimens without
fibers. It was also observed that the mechanical properties of NSC specimens suffered more drastic
degradation under accelerated ASR exposure compared to UHPC specimens. Interestingly, UHPC
specimens exposed to accelerated ASR conditions attained higher mechanical properties compared
to that of reference identical specimens cured in normal water. Therefore, it can be concluded that
ASR exposure had insignificant effect on sustainable UHPC incorporating CA and RS, especially for
specimens incorporating fibers. Results indicate that UHPC is a robust competitor to NSC for the
construction of mega-scale projects where exposure to ASR conducive conditions prevails.

Keywords: ultrahigh performance concrete; normal strength concrete; alkali-silica reaction; expan-
sion; strength degradation; coal ash; raw slag; steel fiber

1. Introduction

Recent developments and advances in chemical and mineral admixtures have led to the
introduction of various types of ultra-durable cement based materials. A noteworthy innova-
tion in concrete technology is the development of ultrahigh performance concrete (UHPC)
incorporating various supplementary cementitious materials (SCMs) and fibers [1]. It can be
defined as a cement-based composite having a minimum compressive strength of 150 MPa
and superior tensile and flexural strengths, enhanced durability and toughness [2–4]. Typi-
cally, UHPC consists of a high dosage of Portland cement, silica fume, fine sand (normally
quartz), chemical admixture (new generation superplasticizer), and fibers, and is produced
at a very low water to binder ratio (i.e., 0.15–0.25) [4]. Microstructural improvement, en-
hanced homogeneity of the mixture, reduced porosity through improved particle packing
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density, excellent hydration, and better toughness are the important principles to produce
UHPC on large scale [4,5]. Unlike normal strength concrete (NSC), coarse aggregates are
not normally included in UHPC mixtures. Consequently, eliminating microcracks present
in coarse aggregates and the typically weak aggregate-cement paste interfacial transition
zone help attaining ultrahigh strength properties [6]. The superior mechanical strength of
UHPC makes it a material of choice for producing prefabricated structural members that
are slenderer, occupying less space, and having reduced weight [6,7].

Moreover, the excellent durability characteristics of UHPC mixtures make it a pre-
ferred option for longer service life performance, especially in severe exposure condi-
tions [5,8]. On the other hand, the self-healing characteristics owing to the abundantly
available un-hydrated cement particles in UHPC can lead to the development of more
sustainable and resilient infrastructure in comparison to that made of NSC [8,9].

Extensive research has been carried out on the design of UHPC mixtures [10–12], its
rheological properties [13,14], fiber matrix interaction properties [15–17], mechanical prop-
erties, along with dimensional stability [18–21] and microstructural characterization [22,23].
Similarly, various governmental agencies have supported large-scale research projects for
the development of UHPC guidelines, such as the French Association of Civil Engineers,
Japan Society of Civil Engineers, and the American Concrete Institute [4,24,25]. Further,
various mega-structures have already been constructed using this innovative UHPC mate-
rial, including various buildings, bridges, utilities for the oil and gas industry, hydraulic
structures, and in the repair of existing structures [26,27].

However, research on the alkali-silica reaction (ASR) in UHPC is still limited. ASR
is one of the major durability concerns leading to premature degradation and costly
maintenance and repair in concrete structures. It consists of a reaction between alkalis
in the concrete and reactive silica in aggregates in the presence of moisture, leading to
the formation of ASR gel [28]. This gel absorbs the surrounding water and expands in
volume, which exerts tensile stresses on the surrounding concrete, and causes cracking and
spalling [29–31]. The major factors affecting ASR include the type and amount of reactive
silica (amorphous, cryptocrystalline or crystalline silica) in the aggregate, concentration of
alkalis in the pore solution, and the availability of sufficient water [32].

Various structures have been severely damaged by ASR around the globe. The first
ASR damaged structure reported was the Parker Dam in Arizona in 1941 [33]. Later, vari-
ous structures were diagnosed to be affected by ASR, including for instance the turbine
foundation of the Ikata power plant in Japan [34], Bibb Graves Bridge in Albama, USA [35],
Seabrook Nuclear Power Plant in New Hampshire, USA [36], Vosnasvej Bridge in Den-
mark [37], Robert-Bourassa/Charest overpass in Quebec, Canada [38], and the Warsak
Dam in Pakistan [39,40]. The deleterious effects of ASR in concrete structures can be mini-
mized by controlling the alkali content, minimizing reactive silica, reducing the exposure
to water, and addition of alkali-silica expansion inhibitor admixtures. Moreover, the partial
replacement of cement with an adequate amount and type of supplementary cementitious
materials can be highly effective in controlling ASR expansion and the associated dam-
age [41–43]. For instance, Shafaatian et al. (2013) [44] reported that the replacement of
cement with supplementary cementitious materials (SCMs) limits the amount of alkalis in
the paste, thus reducing the ASR expansion.

It can be argued that the durability of concrete structures is an important parameter
that affects and dictates the overall service life of structures. Moreover, the life cycle cost of
structures is a function of durability indicators. It was reported that the use of SCMs can
reduce the overall porosity of the mixture, which inhibits the intrusion of moisture and
other aggressive species inside the concrete, thus helping to mitigate the ASR associated
durability aspects [45,46]. Another method to improve the durability related issues of
concrete is to apply coatings such as epoxy at the external concrete surfaces, which act as a
barrier against the intrusion of harmful materials inside the concrete [47].

Limited studies have investigated the ASR potential of UHPC. For instance, Graybeal et al.
(2006) [48] explored the ASR potential of UHPC specimens having 25 × 25 × 280 mm in
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size and exposed to a sodium hydroxide (NaOH) solution for 28 days at 80 ◦C, as per the
ASTM C1260 guidelines. The expansion reported after 28 days was 0.012% and 0.004% for air
and steam cured specimens, respectively, which is below the ASTM C1260 specified limits
(<0.2%) [48]. It was also reported that upon incorporating various contents of quartz sand (0%,
50%, and 100% as aggregate replacement) in UHPC, the expansion of specimens was around
0.03% at 16 days [49]. Moser et al. (2008) [50] reported that the expansion of pre-damaged
and undamaged UHPC specimens showed ASR expansion of 0.02% after 600 days [50].

The original contribution of this study consists of the production of sustainable UHPC
incorporating locally available raw materials and using the normal curing regime adopted
in industrial precast plants instead of high thermal curing. Moreover, there is dearth of
studies on the ASR potential of UHPC incorporating untreated coal ash (CA) and raw slag
(RS). In addition, the steel fibers used in the present study were cut from long recyclable
steel wires, rather than the costly conventional steel fibers that are commercially available.
Hence, this research program was planned to investigate the ASR expansion and its pos-
sible deleterious damage in this sustainable and locally produced UHPC incorporating
untreated waste materials. Furthermore, the novelty of this study lies in evaluating the
mechanical properties of the produced UHPC specimens exposed to ASR conducive con-
dition (1N NaOH at 80 ◦C) as compared to that of identical control specimens cured in
water. The comparison of the performance of UHPC with that of NSC under ASR condi-
tions can provide insight into the potential application of sustainable UHPC in large-scale
construction exposed to ASR conducive conditions. This study was envisioned to assist
stakeholders and decision makers in appraising UHPC incorporating local waste materials
for the design of sustainable, resilient and durable civil infrastructure under severe ASR
exposure conditions. The outcome of this study will benefit researchers and other con-
struction stakeholders for better understanding the improved durability performance of
sustainable UHPC mixtures, especially in aggressive exposures. Moreover, the utilization
of sustainable UHPC mixtures incorporating waste materials reduces the environmental
overburden due to the deposition of byproducts in open landfills.

2. Materials and Methods
2.1. Materials and Specimen Preparation

Ordinary Portland cement was used. Untreated coal ash (CA) was acquired from
a local thermal power plant. Raw slag (RS) was also procured from local steel industry.
Fibers of 10 mm long were prepared by cutting long-recycled steel wire (Figure 1).
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(a) Untreated coal ash (CA) (b) Raw slag (RS) (c) Steel fibers 

Figure 1. Raw materials used.

Scanning electron microscopy (SEM) images of CA and RS are shown in Figure 2. It
was observed that CA particles were porous in nature, while RS particles were denser
and more compact. Table 1 provides chemical analysis of the used cement, CA and RS.
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Both CA and RS showed loss on ignition (LOI) higher than 10%. Table 2 shows the
physical properties of used cement, CA and RS. Silica sand was obtained from the local
glass industry, having SiO2 greater than 98%. Quartz powder having grain size of 450
to 500 microns was also used. Polycarboxylate based superplasticizer (SP) was added to
control the workability of mixtures.
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Table 1. Chemical properties of used raw materials.

Materials CaO Al2O3 Fe2O3 SiO2 MgO SO3 LOI

Cement
(%) 60.05 3.79 5.54 20.15 3.10 2.76 2.90

CA (%) 9.45 12.27 4.63 36.85 1.52 3.96 11.05
RS (%) 7.65 11.15 4.78 32.85 0.51 4.88 10.85

Table 2. Physical properties of used raw materials.

Properties Cement CA RS

Unit weight (kg/m3) 1542 360 1208
Fineness (Passing 200 sieve) (%) >95 >95 >95

Blaine fineness (cm2/g) 3010 4344 4536
Specific gravity 3.10 2.32 2.27

Table 3 shows the mixture design of the tested UHPC mixtures. Initially, cement along
with CA, RS, and sand were dry mixed for one minute in a high-speed rotating shear mixer.
Before adding the dry ingredients of UHPC, the mixer bowl was rinsed with wet cloth.
Half of the amount of the calculated water was progressively added in the mixture. The
remaining water was mixed with the superplasticizer and added into the mixture, followed
by continuous high-shear mixing for another three minutes. Steel fibers were added last in
the mixture and mixing resumed till a homogenized mixture with well dispersed fibers
and fiber clumping was achieved. Afterwards, specimens for compressive and flexural
strengths and expansion measurements were prepared and consolidated on a vibrating
table. Cube, prism, and mortar bar specimens were made with five replicates for each
test at each desired test age. All specimens were covered with plastic sheets and placed
in a moist curing chamber at 45 ◦C and relative humidity greater than 95%. After 24 h,
specimens were taken out from their respective molds and cured in water at 45 ◦C for
another 24 h. Thereafter, specimens were separated in two exposure conditions. The first



Sustainability 2021, 13, 5680 5 of 17

set of specimens (cube, prism, and mortar bars) were exposed to 1N NaOH solution at
80 ± 5 ◦C, while the remaining specimens were cured in water at 20 ◦C ± 2.

Table 3. Mixture design of tested UHPC.

Materials
Mass/Cement Mass

UHPC1 UHPC2 UHPFRC1 UHPFRC2

Cement 1.00 1.00 1.00 1.00
Fine sand 0.50 0.50 0.50 0.50
Silica sand 0.55 0.55 0.55 0.55

Quartz powder 0.28 0.28 0.28 0.28
Untreated coal ash 0.20 - 0.20 -

Raw slag - 0.20 - 0.20
Steel fibers - - 0.20 0.20

SP 0.04 0.04 0.04 0.04

Cement = 780 kg/m3; water to binder ratio = 0.28.

Furthermore, cube, prism, and mortar bar specimens of normal strength concrete (NSC)
were also made for comparison with the ultrahigh performance concrete (UHPC). For prepar-
ing the NSC specimens, aggregates were procured from a local crush quarry. Specimens were
prepared using a cement-to-aggregate ratio of 1 to 2.25 as per the ASTM C1260 guidelines [51].
Furthermore, the grading of the aggregate used for preparing the specimens was similar
to that in ASTM C1260. The water-to-cement ratio was 0.475. These NSC specimens were
also placed in the two previously mentioned curing regimes. Table 4 shows the number of
specimens and their coefficient of variance (COV) for various conducted tests.

Table 4. Number of specimens and their coefficient of variance for various tests.

Mixtures Age (Days) Number of
Specimens

Compressive Strength Flexural Strength Expansion

Water ASR Water ASR ASR

UHPC1
14 5 1.12 1.51 0.90 0.76 0.74
28 5 1.76 1.42 1.14 1.41 0.61
90 5 1.36 1.13 1.21 1.48 0.56

UHPC2
14 5 1.21 1.39 0.78 0.91 0.69
28 5 1.82 1.72 1.21 1.71 0.52
90 5 1.41 1.83 1.34 1.47 0.47

UHPFRC1
14 5 1.81 1.74 1.32 1.98 0.76
28 5 1.92 1.81 1.45 1.68 0.62
90 5 1.98 1.89 1.64 2.10 0.39

UHPFRC2
14 5 1.91 1.92 1.76 2.05 0.69
28 5 1.79 1.79 1.81 1.84 0.56
90 5 1.87 1.82 1.91 1.95 0.41

NSC
14 5 1.92 1.95 2.15 2.23 0.92
28 5 2.01 1.89 2.05 2.08 0.77
90 5 1.98 2.02 2.24 2.19 0.83

2.2. Test Procedures

The flowability of fresh UHPC mixtures was measured using a flow table in accordance
with ASTM C230 [52]. The compressive strength of UHPC mixtures was determined on
cube specimens having 50 × 50 × 50 mm in size, as per ASTM C109 [53]. The loading
rate on specimens was 1.10 MPa/sec. The flexural strength of UHPC was measured
on prism specimens having size 40 × 40 × 160 mm in size, in accordance with ASTM
C348 [54]. The loading rate for flexural strength testing was 2.70 kN/min. Mortar bars of
25 × 25 × 285 mm in size were used to measure the expansion following ASTM C1260
provisions. At the desired age (3, 7, 14, 21, 28, 56, and 90 days), specimens were taken
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out from the ASR exposure and water curing conditions and tested. For measuring
each expansion reading, a digital length comparator was calibrated using a reference rod.
The expansion measurements were conducted following the ASTM C490 procedure [55].
Each specimen was visually inspected prior to testing for investigating the presence of
any surface distress or initiation of cracks. Furthermore, microstructural analysis was
conducted on selected specimens using scanning electron microscope.

3. Results and Discussion
3.1. Flowability of UHPC

Table 5 shows the flow results of the tested UHPC mixtures. It was observed that
the UHPC mixture incorporating CA attained lower values of flow compared to that of
the UHPC mixture with RS. Relatively decreased flow of the UHPC mixture with CA was
mainly attributed to its high loss on ignition content primarily consisting of unburnt carbon,
which tends to compromise the effect of the superplasticizer. UHPC mixtures incorporating
CA attained less flow also due to its porous microstructure, leading to increased water
absorption during mixing [56]. Similar findings were reported in previous study [57].

Table 5. Flow of tested UHPC mixtures.

Mixtures UHPC1 UHPC2 UHPFRC1 UHPFRC2

Flow (mm) 186 195 169 177

Furthermore, the results indicate that the addition of steel fibers reduced the flowabil-
ity of UHPC mixtures, as expected. There was a reduction of around 10% in the flowability
of UHPC mixtures incorporating steel fibers. These results agree with other previous
findings [58,59]. The reduction in flow of UHPC mixtures incorporating steel fibers can be
attributed to altering the skeleton structure of granular particles. This will cause increased
friction and obstruction and hindrance of flow. Further, steel fibers act as a barrier to reduce
the free-flowing velocity of fresh UHPC mixtures [59,60].

3.2. Compressive and Flexural Strength

Figure 3a depicts the compressive strength results of UHPC incorporating CA, RS,
and steel fibers up to 90 days. The results show the average value obtained on five
identical specimens with a coefficient of variance (COV) less than 2%. It was observed
that the compressive strength of UHPC mixture incorporating fiber (UHPFRC2) was 141
and 150 MPa at 28 and 90 days, respectively. The compressive strength at 3, 7, 14, 21,
28, 56, and 90 days for the UHPC mixture incorporating CA (UHPC1) was 58, 81, 86, 95,
104, 109, and 114 MPa, respectively. This gain in compressive strength with time was
due to continuous hydration of cement, as expected. The results revealed that the UHPC
mixture incorporating CA (UHPC1) achieved 59% of the 28 days compressive strength
at an early age of 3 days. This rate of gain in compressive strength is comparable with
previous findings [58,61]. UHPC mixtures are well known to exhibit higher rate of gain
in strength at early age [62]. Bahedh and Jaafar (2018) reported around 60% of 28 days
compressive strength at 3 days for a mixture incorporating 20% of fly ash [61]. The UHPC
mixture made with CA (UHPC1) achieved around 80% of the 28 days compressive strength
at 7 days. Furthermore, the compressive was enhanced by 5% and 10% at 56 and 90 days,
respectively, compared to that of at 28 days. This can be attributed to densification of the
pore structure in the presence of CA particles at later age owing to pozzolanic reactions
and the filing of micropores owing to formation of secondary calcium silicate hydrates
(CSH) at later ages, leading to increased compressive strength [61,63]. Furthermore, it was
observed that UHPC mixture made with RS (UHPC2) attained compressive strength values
of 65, 90, 96, 110, 119, 123, and 126 MPa at 3, 7, 14, 21, 28, 56, and 90 days, respectively.
The results show that UHPC2 achieved higher compressive strength compared to that
of UHPC1. For example, UHPC2 attained 119 MPa compared to 104 MPa for UHPC1 at
28 days. The enhanced compressive strength of UHPC mixtures incorporating RS can be
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attributed to higher fineness of RS particles in comparison with CA. SEM images of CA
and RS confirm that RS had denser and more compact microstructure as compared to the
porous and spongy structure of CA (Figure 2).
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An increase in compressive strength was observed for mixtures incorporating steel fibers.
For instance, the compressive strength of UHPFRC1 and UHPFRC2 was 67 MPa and 76 MPa
at 3 days, respectively, corresponding to 16% increase compared to that of identical specimen
without steel fibers. Similarly, the compressive strength of UHPFRC1 and UHPFRC2 was
92 MPa and 103 MPa at 7 days, respectively, similar to findings reported by others [62].
Such increase in compressive strength owing to steel fiber addition can be ascribed to
enhanced confinement, leading to restrained lateral deformation [62]. Furthermore, a strong
fiber–matrix bond was observed through SEM analysis (Figure 4), indicating the ability to
reduce stress concentrations, and restraining internal material degradation, thus leading to
improved strength.
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Wu et al. (2019) [21] reported an increase in compressive strength of around 20% for
UHPC mixtures incorporating steel fibers at 28 days compared to that of the mixtures
without steel fibers [21]. This increase in compressive strength can be attributed to the fact
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that steel fibers increase the rigidity of the matrix by restricting the initiation of micro-cracks
prior to the peak load [64–66]. It was observed that UHPC specimens without steel fibers
failed in an abrupt manner with sudden loud sound; however, specimens incorporating
fibers remained intact without any concrete splitting or breaking.

Figure 3b also shows the flexural strength of UHPC mixtures incorporating CA and RS
with and without fibers at different ages. Each result depicted in the figure is the average
value of five specimens with COV of less than 3%. It can be observed that the flexural
strength of UHPC mixtures increased with the curing age, as expected owing to continuous
hydration of cement and pozzolanic reaction of CA and RS. For mixture UHPC1, the
flexural strength at 7 and 28 days was 12.1 and 19.5 MPa, respectively. Similarly, the
flexural strength of UHPC2 at 7 and 28 days was 13.3 and 20.4 MPa, respectively. The
results indicate that UHPC mixtures incorporating CA and RS achieved around 65% of the
28 days flexural strength at 7 days. The UHPC mixture incorporating CA attained lower
flexural strength in comparison with that of the UHPC mixture made with RS. Similar
trend was observed earlier for the compressive strength results.

It was also observed that the addition of steel fibers increased the flexural strength
for UHPC mixtures incorporating CA and RS. The flexural strength of UHPFRC1 at 7 and
28 days was 15 and 23 MPa, respectively. Similarly, UHPFRC2 achieved flexural strength
at 7 and 28 days of 16 and 24 MPa, respectively. There was an increase in flexural strength
of around 20% owing to addition of steel fibers in UHPC mixtures. Similar findings have
been reported in previous studies [67,68]. The increase in flexural strength via addition of
steel fibers can be ascribed to the strong bond of fibers to the cementitious matrix (Figure 4),
leading to enhanced control of the initiation and propagation of microcracks as reported
by others [56,62,67]. The presence of fibers in the matrix permits to bridge micro-cracks
and restrain their growth before the initial peak load, ultimately contributing towards
mechanical strength enhancement of UHPC [15]. Furthermore, Wu et al. (2016) [15]
reported that increased development of CSH and strengthened interfacial transition zone
around fibers enhanced microhardness of the matrix, thus improving the bond strength of
steel fibers.

3.3. ASR Expansion Results

Figure 5 shows the ASR induced expansion results of the tested UHPC mixtures. All
results reported in Figure 5 show the average value obtained on five identical specimens
with COV of less than 2%, which is within the ASTM C1260 limits. Mortar bar specimens
incorporating CA (UHPC1) incurred 0.049% and 0.080% expansion at 14 and 28 days,
respectively. Similarly, mortar bar specimens made with RS exhibited expansion of 0.045%
and 0.070% at 14 and 28 days, respectively. The lower expansion of UHPC specimens
can be attributed to its denser microstructure exhibiting negligible permeability, leading
to restricted intrusion of external alkalis into the cementitious matrix. This can mitigate
the formation of ASR gel and the associated damage propagation [48,69]. Further, the
incorporation of CA and RS reduced the porosity by converting unstable calcium hydroxide
(CH) into more stable secondary CSH [57,70,71]. It was observed that the incorporation of
steel fibers in UHPC specimens resulted in remarkably lower ASR expansion compared to
that of identical specimens without steel fibers. For instance, specimens incorporating CA
and steel fibers (UHPFRC1) attained expansion of 0.0042% and 0.0071% at 14 and 28 days,
respectively. Similarly, 0.0038% and 0.0065% expansion at 14 and 28 days, respectively, was
observed for specimens made with RS and steel fibers (UHPFRC2). This corresponds to
ten times lower expansion of UHPC specimens made with steel fibers than that of identical
UHPC specimen without steel fiber.
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Figure 5. Expansion results for various UHPC mixtures.

Normally, steel fibers provide a restraint against the deterioration caused by the
expansive ASR materials, which restrained the formation and propagation of microcracks.
Moreover, the confinement provided by the fibers to the surrounding matrix restrains the
distress caused by ASR gel, leading to localization of associated reactive spots and limiting
the silica dissolution [72]. Moreover, the chemo-mechanical confinement effect of steel
fibers further restricts the transportation of the developed aggressive ASR products to other
locations and the change of the concentration of soluble ions [73]. Since, no significant
evidence related to ASR associated damage has been observed in UHPC specimens owing
to its denser and more compact microstructure, additional benefits of steel fibers inclusion
leads to further enhanced material characteristics of UHPC against severe ASR exposure
conditions. Furthermore, all the tested UHPC mixtures exhibited expansion of less than
0.01% at 90 days under ASR conducive exposure conditions. This indicates the superior
long-term durability performance of the sustainable UHPC mixtures investigated.

According to ASTM C1260 [51], mortar bar specimens which exhibit expansion greater
than 0.10% and 0.20% at 14 and 28 days, respectively, are considered as ASR reactive. For
concrete mixture incorporating cement and other pozzolanic materials, expansion greater
than 0.10% at 14 days are likely to be potentially reactive as per ASTM C1567 (2013) [74].
Similarly, according to RILEM AAR2 (2003) [75], accelerated mortar bar specimens showing
expansion of less than 0.10% at 14 days of exposure are considered as non-reactive, while
specimens exhibiting expansion greater than 0.20% are considered as reactive. According
to AS 1141.60.1 (2014) [76], if the mortar bar expansion is greater than 0.10% and 0.30% at
10 and 21 days of exposure to NaOH solution at 80 ◦C, respectively, the aggregates can
be considered as reactive. In the present study, all the tested UHPC specimens showed
expansion of less than 0.014% and 0.030% at 28 days and 90 days, respectively. Therefore, it
can be argued that UHPC showed no significant potential of ASR and associated damages.
Similar findings were reported in previous study conducted on UHPC. For instance, An
(2017) reported expansion of 0.0031% and 0.0041% at 14 and 28 days respectively, for an
UHPC mixture incorporating rice husk ash [69].
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3.4. Effect of ASR Exposure on Residual Compressive and Flexural Strength

Figure 6 depicts the effects of exposure to accelerated ASR conditions on the residual
compressive and flexural strengths of the tested UHPC mixtures. It can be observed that
the compressive strength of UHPC specimens subjected to accelerated ASR conditions in-
creased, rather than the expected decrease expected for NSC. For example, the compressive
strength of the UHPFRC2 specimens exposed to the water curing condition was 141 MPa in
comparison to 150 MPa for identical specimens subjected to ASR conditions at 28 days. The
results reveal that there was relatively higher increase in compressive strength at early age
(i.e., 3 days) for UHPC mixtures subjected to accelerated ASR conditions as compared to
that at later ages (i.e., 90 days). For instance, around 20% increase in compressive strength
was observed at early age in comparison to 5% increase in compressive strength at later
ages. This gain in compressive strength due to ASR exposure is mainly related to its expo-
sure at higher temperature (80 ◦C) [56]. Higher temperature expedites the hydration and
pozzolanic reactions process, leading to enhanced early gain in strength [77–79]. It should
be noted that normally ASR exposure conditions have detrimental effect on the mechanical
properties of concrete [42,43]. However, due to the near zero porosity of UHPC, the alkalis
from the external source will be inhibited from entering inside the matrix, which mitigates
their effect the internal microstructure. Similar results were observed for the flexural
strength of tested UHPC mixtures, which improved upon accelerated ASR exposure. There-
fore, the sustainable UHPC tested in this study is a promising alternative for construction
in severe ASR conditions to achieve more durable and sustainable infrastructure.
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Figure 6. Effect of ASR conditions on compressive and flexural strength of UHPC mixtures.

3.5. Comparison of Ultra-High Perfromance Concrete with Normal Strength Concrete

Table 6 illustrates a comparison between the compressive and flexural strengths, and
ASR expansion values for the tested UHPC mixtures and a benchmark NSC at different
ages. The NSC specimens suffered expansion of 0.23, 0.28, and 0.36 at 14, 28, and 90 days,
respectively, which is higher than the specified limits of ASTM C1260, indicating its
vulnerability to ASR damage. On the other hand, UHPFRC2 specimens attained one order
of magnitude lower expansion values of 0.0038, 0.0065, and 0.0080 at 14, 28, and 90 days,
respectively. The expansion of UHPC specimens is also well below the specified limits by
various standards [51,75,76]. It should be noted that UHPFRC2 showed negligible porosity
in comparison with NSC, leading to decreased penetration of alkalis from the external
NaOH solution to form ASR gel, thus inhibiting expansion and associate cracks [48].
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Table 6. Comparison of mechanical strength and expansion results for UHPC and NSC.

Properties Exposure UHPFRC2 (Days) NSC (Days)

14 28 90 14 28 90

Expansion * (%) ASR 0.0038 0.0065 0.0080 0.230 0.280 0.361

Compressive
strength (MPa)

Water 111 141 150 26.8 29.1 37.2

ASR ¶ 121 150 160 24.5 26.5 33

Flexural
strength (MPa)

Water 20 24 27 8.4 10.1 11.5

ASR ¶ 21.7 25.4 28 8.0 9.5 10.0

* Expansion was measured for specimens subjected to accelerated ASR conducive conditions. ¶ ASR = Condition in which specimens were
exposed to 1N NaOH solution at 80 ◦C.

The NSC specimens attained compressive strength of 26.8 MPa, 29.1 MPa, and
37.2 MPa at 14, 28, and 90 days, respectively. The respective values decreased to 24.5 MPa,
26.5 MPa, and 33 MPa when NSC specimens were subjected to accelerated ASR conditions,
indicating the damaging effect of ASR expansive products on NSC. Furthermore, surface
map cracks were visually observed on the tested NSC specimens (Figure 7a), confirming
the formation of expansive ASR products. The ASR gel formed due to the reaction of alkalis
and reactive silica causes localized swelling, leading to internal micro-cracking and de-
creasing the strength properties of concrete [43]. Further, Simen et al. [80] reported that the
anisotropic stress caused by swelling due to ASR leads to crack formation and early failure
of specimens. In another study, 10 micron sized cracks were observed, which propagated
from the aggregate to matrix due to ASR [43]. The degradation of the compressive strength
of NSC due to ASR have been well documented in previous studies [42,43]. On the other
hand, interestingly, an increase in compressive strength of UHPFRC2 specimens exposed
to ASR conditions was observed, demonstrating the insignificant effect of accelerated ASR
exposure conditions. Further, no cracks could be observed at the surface of the tested
UHPC specimens exposed to the accelerated ASR condition (Figure 7b).

The flexural strength of NSC specimens also decreased from 8.4, 10.1, and 11.5 MPa
to 8.0, 9.5, and 10 MPa at 14, 28, and 90 days, respectively, upon exposure to accelerated
ASR conditions. The reduction in flexural strength due to ASR exposure was primarily
due to the additional tensile stresses exerted by the expansion of the ASR gel [42,43].
However, similar to compressive strength, an increase in flexural strength was observed
for UHPC specimens exposed to accelerated ASR conditions. This increase in mechanical
strength properties of UHPC subjected to accelerated ASR conditions can be related to the
development of denser microstructure owing to the formation of more CSH products at
elevated temperature [81]. SEM analysis showed the development of microcracks and ASR
gel network in the tested NSC specimens subjected to ASR conditions (Figure 8). However,
no microcracks or ASR gel could be retrieved in the UHPC specimens.
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4. Conclusions

The present study explored the mechanical and durability performance of sustainable
UHPC mixtures incorporating CA and RS and made with locally recycled steel fibers under
water and accelerated ASR conditions. The performance of UHPC mixtures was further
compared with that of benchmark NSC. Based on the experimental results, the following
conclusions can be drawn:

(1) Flowability of UHPC mixtures incorporating CA and RS was 186 and 195 mm, respec-
tively. This decrease in flow of UHPC mixture with CA was mainly attributed to the
porous structure of CA. Moreover, a decrease of around 10% in flow was observed for
similar mixture due to incorporation of steel fibers.

(2) UHPC specimen with CA showed compressive strength of around 104 MPa at 28 days.
UHPC specimen incorporating RS has higher compressive strength as compared to
UHPC specimen with CA. For instance, compressive strength of UHPC specimen
incorporating RS was around 14% higher than the UHPC mixture with CA at 28
days. Furthermore, compressive strength of UHPC specimens incorporating CA and
RS improved with addition of locally produced steel fibers. It was observed that
compressive strength of NSC specimen decreased under ASR conditions. However,
interestingly, an increase in compressive strength of UHPC mixtures incorporating
CA and RS exposed to accelerated ASR conditions was observed due to increased
pozzolanic activity and negligible porosity of matrix with enhanced packing density
at elevated temperature.

(3) The flexural strength of UHPC specimens made with CA was higher than 19 MPa
at 28 days. It was observed that the flexural strength of UHPC specimens at 28 days
increased by around 20% with the addition of recycled steel fibers owing to restraining
microcracks via fiber bridging and strong fiber–matrix interaction, as confirmed by
microstructural analysis.

(4) Results show that the flexural strength of UHPC specimens incorporating RS and CA
and made with steel fibers under accelerated ASR conditions was 6% higher than that
of identical specimens cured under normal water condition.

(5) The expansion of UHPC mortar bar specimens incorporating CA and RS under
accelerated ASR conditions was well below the specified limits of various standards
(ASTM C1260, RILEM AAR2, AS 1141.60.1). For example, all the tested UHPC
specimens exhibited expansion of less than 0.014% at 28 days (which is lower than
the specified limit of 0.20% by ASTM C1260, in comparison to the expansion of 0.28%
for the benchmark NSC specimens.

(6) Microstructural analysis of NSC specimens subjected to accelerated ASR conditions
showed micro-cracks due to ASR expansion. Conversely, no microcracking was
detected for the tested UHPC. Rather, a strong fiber–matrix interaction was observed
through SEM analysis under ASR exposure.

(7) The comparison between the performance of the UHPC and NSC specimens revealed
that UHPC mixtures exposed to accelerated ASR conditions exhibited excellent char-
acteristics owing to its improved microstructure and negligible porosity. While NSR
incurred strength degradation and visual surface damage, sustainable UHPC speci-
mens gained enhanced mechanical properties and exhibited no signs of damage.

(8) Therefore, sustainable UHPC mixtures incorporating recycled local waste materials
along with locally produced steel fibers from recycled steel wire can be a strong
contender as an eco-efficient and resilient construction material for sustainable and
economical infrastructure developments. However, a detailed investigation of full-
scale sustainable UHPC structural members under long exposure to aggressive envi-
ronmental conditions is warranted in future investigations to give the local industry
confidence in the advantages of this construction alternative.

(9) This study provides a benchmark, motivation and confidence to the construction
industry for utilizing UHPC made from local recycled waste materials for use in
full-scale structures, leading to durable and sustainable infrastructure development,
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especially under aggressive ASR conditions. Furthermore, due to its remarkable
mechanical and durability performance, UHPC requires low maintenance and repair
expenses, leading to significant reduction in structural life cycle cost.
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