
sustainability

Article

Innovative Artificial Intelligence Approach for Hearing-Loss
Symptoms Identification Model Using Machine
Learning Techniques

Mohd Khanapi Abd Ghani 1, Nasir G. Noma 2, Mazin Abed Mohammed 3,* , Karrar Hameed Abdulkareem 4 ,
Begonya Garcia-Zapirain 5,* , Mashael S. Maashi 6 and Salama A. Mostafa 7

����������
�������

Citation: Abd Ghani, M.K.; Noma,

N.G.; Mohammed, M.A.;

Abdulkareem, K.H.; Garcia-Zapirain,

B.; Maashi, M.S.; Mostafa, S.A.

Innovative Artificial Intelligence

Approach for Hearing-Loss

Symptoms Identification Model

Using Machine Learning Techniques.

Sustainability 2021, 13, 5406. https://

doi.org/10.3390/su13105406

Academic Editors: Maxim

A. Dulebenets, Zhiwu Li,

Alireza Fallahpour and Amir

M. Fathollahi-Fard

Received: 19 March 2021

Accepted: 9 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biomedical Computing and Engineering Technologies (BIOCORE) Applied Research Group,
Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka,
Melaka 76100, Malaysia; khanapi@utem.edu.my

2 Research & Development Department, Nigerian Communications Commission, Abuja FCT 257776, Nigeria;
nnoma@ncc.gov.ng

3 Information Systems Department, College of Computer Science and Information Technology,
University of Anbar, Ramadi, Anbar 31001, Iraq

4 College of Agriculture, Al-Muthanna University, Samawah 66001, Iraq; khak9784@mu.edu.iq
5 eVIDA Lab, University of Deusto, Avda/Universidades 24, 48007 Bilbao, Spain
6 Software Engineering Department, College of Computer and Information Sciences, King Saud University,

Riyadh 11451, Saudi Arabia; mmaashi@ksu.edu.sa
7 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia,

Batu Pahat 86400, Malaysia; salama@uthm.edu.my
* Correspondence: mazinalshujeary@uoanbar.edu.iq (M.A.M.); mbgarciazapi@deusto.es (B.G.-Z.)

Abstract: Physicians depend on their insight and experience and on a fundamentally indicative or
symptomatic approach to decide on the possible ailment of a patient. However, numerous phases
of problem identification and longer strategies can prompt a longer time for consulting and can
subsequently cause other patients that require attention to wait for longer. This can bring about
pressure and tension concerning those patients. In this study, we focus on developing a decision-
support system for diagnosing the symptoms as a result of hearing loss. The model is implemented by
utilizing machine learning techniques. The Frequent Pattern Growth (FP-Growth) algorithm is used
as a feature transformation method and the multivariate Bernoulli naïve Bayes classification model
as the classifier. To find the correlation that exists between the hearing thresholds and symptoms of
hearing loss, the FP-Growth and association rule algorithms were first used to experiment with small
sample and large sample datasets. The result of these two experiments showed the existence of this
relationship, and that the performance of the hybrid of the FP-Growth and naïve Bayes algorithms
in identifying hearing-loss symptoms was found to be efficient, with a very small error rate. The
average accuracy rate and average error rate for the multivariate Bernoulli model with FP-Growth
feature transformation, using five training sets, are 98.25% and 1.73%, respectively.

Keywords: hearing-loss symptoms; frequent pattern growth; multivariate Bernoulli naïve Bayes;
machine learning techniques; identification model

1. Introduction

More than 5 percent (466 million) of the world’s population is affected by hearing loss
(432 million adults, 34 million children). It is predicted that over 900 million people, or one
out of ten, will experience hearing loss by 2050 [1]. Restricted hearing loss is more than
40 decibels (dB) in the better ear of an adult and more than 30 dB in that of a child. Most
people living in low- and middle-income countries suffer from hearing loss [1]. Around
a third of people over the age of 65 suffer from disabling hearing loss. In South Asia, the
Asia Pacific and sub-Saharan Africa, the frequency of this age group is greatly increased.
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Statistics show that in the Asia Pacific, an area of which Malaysia is part, the occurrence
of affected hearing loss is very high [2]. About 31,000 hearing loss cases were reported in
Malaysia alone during 1980. In 2005, national survey disorder statistics indicate that the
population prevalence was 17.4%, and during this time about 3,962,879 cases were reported.
The Ministry of Health of Malaysia reported hearing loss as one of the top 10 illnesses [3].

Hearing loss is among the most prominent diseases harming children as well as
younger and older adults, and can contribute to impairment if they are not properly
diagnosed early. An otorhinolaryngologist categorizes the symptoms of a patient according
to his/her expertise and after the specific evaluation of the symptoms of hearing loss. Such
procedures include five steps followed by an order, which include a collection of patient
case history, otoscopy, audiometric hearing tests, tympanometry and acoustic reflex. Given
the number of patients who usually visit ENT departments of various hospitals to get
their hearing problem treated and the amount of time it takes for each procedure to be
performed during a consultation with the otorhinolaryngologist, these phases may delay
treatment process and makes patients leaving the hospital because they already waited
for a long time [4]. A long waiting time can cause anxiety and stress in the patients in
the queue [5]. The patients’ understanding of the health system, therefore, tampers with
possible solutions, and thus it is important to reduce the average waiting time of patients
so that the overall cost of consulting hearing-loss patients is reduced [6–8]. Procedures or
measures to evaluate hearing loss in patients are available. The first step in the investigation
is pure tone audiometry [9]. Hearing tests are carried out in a room that is very quiet
and noise-free. Sounds are conveyed by audiologists on earphones at various frequencies
(250–8000 Hz) and sound intensities (−10–140 dB), who advises the patient to hit the button
for the least possible-to-hear sound. The test results are recorded on a soundtrack.

Figure 1 displays the hearing loss investigation approach. On a patient’s first appoint-
ment, physicians refer him to an ENT specialist. Once hearing issues begin, the physician
will ask for the case history of one of the most common and basic audiological tests for
hearing loss, making differential diagnoses possible with the patient’s case history [10].
The following test will be done using an otoscope; the physician will then visually examine
the external auditory channel [11]. The ENT professional then refers the patient to an
audiologist who examines the patient’s hearing loss by using an audiometer, integrating
clarity of tone at various frequencies. In conjunction with an examination, tympanometry
helps physicians to assess how well the conducting pathway passes sounds to the inner ear.
Acoustic reflexes test stapedial muscle contraction in the middle ear to respond to severe
sound [12]. During all of the following examination stages, the physician can diagnose
whether it is conductive hearing loss, sensorineural or mixed hearing loss or normal hear-
ing sensitivity to the illnesses or diseases that cause patients to lose their hearing ability. If
conductive or mixed hearing loss occurs, the patient must go for a follow-up audiological
evaluation after therapy by an ENT specialist. The ENT practitioner should create an
auditory aid trail for the patient that is influenced by the way it is used and managed
concerning sensorineural hearing loss. The ENT physician also organizes schedules with
the patient after a few months or weeks for further evaluation [13]. The basic diagnosis
and assessment protocol of hearing-loss symptoms for a patient with a hearing problem is
illustrated in Figure 2.
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Figure 1. Investigation protocol for hearing loss.

Figure 2. Hearing-loss symptoms diagnostic procedure.

Figure 2 illustrates the basic diagnosis and assessment protocol of hearing-loss symp-
toms for a patient with a hearing problem. Without these fundamental procedures, every
audiological evaluation process is incomplete to determine the symptoms and type of hear-
ing loss experienced by the patient [14]. Such five medical symptoms of hearing loss listed
above are essential and fundamental clinical audiological medical techniques. One should
disregard the amount of time spent on the procedures given their significance in diagnosing
the forms and symptoms of hearing loss. The study carried out by [15] demonstrates that it
takes a great deal of time to collect case history alone but offers interesting information.
To treat certain waiting patients, the diagnostic process must always be accelerated. If a
variety of tests are needed before the diagnosis findings are obtained by the specialist, then
this may directly impact certain patients to be treated. Another study by [16] implies that
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a physician can classify signs of hearing loss considerably based on the case history and
otoscopy. This reveals that the diagnostic protocol can be minimized and yet the expert can
understand the issue by following all processes. Because numerous studies have shown
how symptoms of hearing loss are linked to certain variations in the audiogram, a specialist
may determine the form and symptoms of the hearing loss without necessarily performing
all the diagnostic procedures using air and bone transmission.

The main objective of the study is to identify signs of hearing loss efficacy from the
threshold of pure-tone air and bone conduction so that hearing loss is easier to investigate.
This method includes identifying and using associations between pure sound audiometry
and the signs and other features in the patient’s health audiology datasets to classify
symptoms of hearing loss. The symptoms can indeed be precisely predicted using a
diagnosis model that uses hybrid machine learning approaches, which can predict a
class of pure audiometric data for the input air or bone conduction. Vast quantities of
untapped and potentially useful data produced by healthcare providers have potential
information. In determining the symptoms of a disease, medical professionals depend on
their experience and knowledge and a practical diagnostic mechanism. Many diagnostic
stages and longer procedures will lead to longer appointments, which means that those
waiting to be treated have a longer time to wait. This can contribute to anxiety and stress
in these patients. However, the contribution of our study can be seen as follows:

• This work provides an important opportunity to boost the diagnostic process of
hearing-loss symptoms by proposing a model of symptom detection to accurately
classify symptoms of hearing loss based on pure audiometry data from air and bone
conduction. The symptoms can indeed be precisely predicted using a diagnosis model
that uses hybrid machine learning approaches, which can predict a class of pure
audiometric data for the input air or bone conduction.

• The model is implemented using Frequent Pattern Growth (FP-Growth) and the naïve
Bayes (NB) algorithm, where FP-Growth is an unsupervised method that used for the
feature extraction purpose while NB models are supervised models that are hired for
the classification target.

• FP-Growth was first applied with small sample and large sample datasets to analyze
the correlation among both the hearing thresholds and symptoms of hearing loss.
The results of these experiments showed hybridization of the FP-Growth and NB
models, shown to work effectively with a very low error rate to determine hearing-
loss symptoms.

The organization of this paper is as follows: Section 2 presents the related work
for hearing loss identification. Section 3 describes the Materials and Methods for the
classification of the hearing-loss symptoms identification model. The experimental results
obtained are discussed in Section 4. The study constraints and limitations are discussed in
Section 5. The conclusion of this study is made in Section 6.

2. Related Work

Numerous studies have developed hearing loss strategies or techniques that can
boost or ease the role of otolaryngology clinicians. To aid physicians with hearing loss
diagnosis [17], cluster forms of audiograms in homogenous and inhomogeneous clusters
are applied using the K-mean technique for diagnosing hearing loss. Their research used
pure tone data from 1633 individuals. The audiogram format was categorized by the
K-means clustering algorithm in different cluster numbers, namely, 4, 5, 6, 7, 8, 9, 10 and
11. ANOVA, to test the presumption of homogeneity between the audiogram styles, was
used to evaluate the clusters and the results were tested using the mentioned tool. The
researchers in this study show that the judgment of a clinician during the diagnosis is
based on their personal experiences that are not free of errors. Besides, there is a need for a
consistent audiogram classification that can aid doctors in the diagnosis. The researchers
did not reveal any pathology, signs, or frequency in relation to the classification of these
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audiograms. This correlation allows clinicians to understand the connection between other
audiogram types and the characteristics of certain patients.

Moein et al. [18] has built a decision-support system for the evaluation of symptoms of
hearing loss. Throughout their study, 150 patients from an otolaryngology clinic had been
gathered. The Multi-Layer Perceptron Neural Network (MLP) and Support Vector Machine
(SVM) were used for classification of hearing loss signs in six classes, namely, serous otitis
media, otitis media, conductive fixation, cochlear age, cochlear noise and normal. The ear
condition frequency in the dataset and the given labels for the MLP and SVM are displayed
in Table 1.

Table 1. The assigned labels and absolute frequencies for the six classes in the database.

Diagnostic Category Number
Assigned Label

MLP SVM

Normal 21 1 1
Cochlear Noise 24 0.5 2
Cochlear Age 36 0.25 3

Conductive Fixation 26 −0.25 4
Otitis media 23 −0.5 5

Serous Otitis media 20 −1 6

Table 1 displays each ear condition frequency in the dataset and the given labels for
the MLP and SVM. According to the results of the study, in the data classification, the
SVM is stronger than the MLP, where SVM help achieving a 92.5% accuracy compared to
MLP, with an accuracy of 77.5%. Despite the high SVM accuracy that can enhance patient
diagnosis, only patients with particular or few symptoms or a disorder numbering to six
were included in the experiments for small datasets. A dataset that would contain more
typical signs would be more fitting and would have been better tested to determine the
efficacy of the SVM on hearing-loss symptoms. Additionally, the Otoneurological System
was created by [19] to help identify vertigo hearing-loss symptoms. To assess the accuracy
of the machine training techniques and the accuracy of classification, the combination of
the knowledge learned from machine learning techniques with expert knowledge to obtain
information from the patient data, which will help with the diagnosis, the researchers
focused on testing the mechanism of nearest K and naive Bayes classification techniques.
An otoneurological dataset consisting of 815 experimental cases were collected. The data
collection reveals acoustic neurinoma, Meniere’s disease, benign positional vertigo, sudden
deafness, traumatic vertigo and vestibular neuritis. The researchers have used an extra
1030 cases of a vertigo dataset collected from the Helsinki University Central Hospital
in the process of evaluating the accuracy of these techniques. In the study, two vertigo
datasets were used for the technique of knowledge exploration and a comparison was
made with the otolaryngologist’s knowledge. To assess the influence of both the otolaryn-
gology information and the results of the machine learning technology, the classification
accuracy is often combined in different ways. The findings showed the highest accuracy
of classification by combining otolaryngologist knowledge with professional knowledge.
The system was intended only for diagnosis of vertigo symptoms and more focus was
put on testing the dataset system that only comprises vertigo cases. The method used
to estimate the predictive accuracy of the information gained from the learning method
was another drawback of this experiment. Approximately 70% of cases were used for
algorithms training and only 30% were used for testing [19]. Thompson et al. [20] used a
medical records database to find information on the causes and treatments of tinnitus to
enhance tinnitus detection, interpretation of outcomes and an overall understanding. This
is also the study that established a diagnostic method for the diagnosis of a single hearing
loss symptom.

The diagnostic model for the identification of vestibular schwannomas from audio-
metric data has been developed and validated by [21], a company that provides an online
audiometric hearing test service, by using an online application to play a range of tones
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at varying levels to the users whom will be asked to select the particular tones they can
hear. A report of the result will be sent to them to view in AudioGen, which is a method
that contains machine learning techniques to determine the genetic cause of hearing loss in
people segregating autosomal prevalent non-individual hearing loss using phenotypical
information derived from audiometric data. The study results show the predictability of
the causative gene within the three top predictions, with an algorithm accuracy at 68%.
However, the study by [21] only provides an audiometric hearing test, a process that is
only one out of the five of the procedures of diagnosing hearing loss. Although AudioGene
is a step forward in this regard, because of the immense importance of understanding the
genetic cause of hearing loss, understanding other symptoms are also very important and
a prediction accuracy of 68% is a level of accuracy that has to be applied with caution in
healthcare [22–24].

Bing et al. [1] proposed a predictive model for the hearing result in sudden sen-
sorineural hearing misfortune through machine learning techniques. The SSHL may be
a multifactorial disease with tall heterogeneity, hence the results change broadly. Their
research aided to create prescient models based on four machine learning strategies for
SSHL, recognizing the most excellent entertainer for clinical application. The deep learning
method has been used with support vector machine, logistic regression and neural network,
and were created to classify the dichotomized hearing result of SSHL by contributing six
features collected from 149 potential indicators. Precision, accuracy, review, F-score, recall
and ROC curve were used to compare the predictive execution of the diverse methods.
Generally, excellent predictive capacity was achieved by the DBN approach when tested
within the crude information set with 149 factors, accomplishing a precision of 77.58% and
AUC of 0.84. Shew and Staecker [25] utilized ML to construct disease-specific methods
to anticipate different degrees of SNHL in numerous inward ear pathologies based on a
perilymph-derived miRNA expression profile alone. They collected 2–5 µL of perilymph
from patients whose internal ears were opened as part of the cochlear implantation and
stapedectomy method. At that point, they analyzed the miRNA dataset special to inter-
nal ear pathologies, employing a directed machine learning classification, showing and
considering multiple-choice models, counting multiclass decision forest, decision jungle,
calculated relapse and neural systems. They made the demonstration by employing a
70/30 part, where 70% of the patients were utilized to build the demonstration and the
other 30% were utilized to test the ML demonstration. The stage of highlighting the of
significance in ML allows it to get which component, and at what weighted esteem that
component was utilized, to be attained.

Nisar et al. [26] presented a new model that naturally identifies hearing impedance
based on a cognitively inspired features extraction and discourse identification method. In
the proposed approach, the client is inquired to rehash words articulated by the machine.
Client reaction is first captured through the discourse signal, and the framework identifies
right and off-base surmises articulated by the client, to create an audiogram and discourse
identification limit naturally. Several machine learning-based classification methods were
finally utilized, including the Hidden Markov Model (HMM), k-NN, SVM, and AdaBoost.
Generally, the large absolute error of the proposed approach when compared with the
specialized audiologist testing is less than 4.9 dB and 4.4 dB for the pure tone and discourse
audiometry testing, respectively, accomplishing a precision up to 96.67% utilizing the Hid-
den Markov model. Cárdenas et al. [27] also displayed a machine learning implementation
to consequently distinguish and classify hearing loss conditions based on feature extraction
from artificially created brainstem sound-related evoked possibilities, a need given the
shortage of fully fledged databases. The method is based on a multi-layer perceptron,
which has illustrated to be a valuable and effective instrument in this field. Preparatory
outcomes appear to have exceptionally empowering outcomes, with precision outcomes
over 90% for an assortment of hearing loss conditions; this framework is to be conveyed
as equipment execution for making a reasonable and convenient therapeutic gadget, as
detailed in past work.
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In the related works, many studies have proposed many computerized hearing loss
testing strategies [28,29]. The main aim of the related works was to precisely analyze the
hearing disability by minimizing the absolute error rate and maximizing the precision.
However, the method is confined to air conduction audiometry, and in this way, the total
assessment of the patient is not conceivable without getting to other testing modalities, such
as bone conduction and discourse audiometry. Famously, most of the previously mentioned
mechanized techniques suffer from issues such as wrong outcomes at lower frequencies,
surrounding noise, difficulty in recognizing conductive and sensorineural hearing losses,
less precision and effectivity because of nonappearance of the discourse audiometry, etc.
This work provides an important opportunity to boost the diagnostic process of hearing-
loss symptoms by proposing a model of symptom detection to accurately classify symptoms
of hearing loss based on pure audiometry data from air and bone conduction. The model
is implemented using FP-Growth and NB, where FP-Growth is an unsupervised method
that is used for the feature extraction purposes while NB models are supervised models
hired for the classification target. For this purpose, FP-Growth was first applied with small
sample and large sample datasets to analyze the correlation among both hearing thresholds
and symptoms of hearing loss.

3. Materials and Methods

3.1. Proposed Identification Model

In this section, we introduce and discuss in detail our proposed detection model for
hearing-loss symptoms. The model diagram shows the components of the proposed model
and how each component processes the data. The NB algorithms and Frequent Pattern
(FP Growth) were employed in the model as machine learning (ML) methods. A full
description of those methods with the reasons behind employing them in the model is
provided in this section. In healthcare literature [30–32], these methods are commonly used
for similar illness and they were reasonably efficient and successful. This has motivated us
to utilize these methods in our proposed model. In Figure 3, our proposed classification
model for hearing-loss symptoms, and how the extracted data are frequently processed
using the FP-Growth algorithm, is illustrated.

Each item set from the dataset reflect several features, each feature is a part of the
vocabulary. In this model, the FP-Growth algorithm, utilized for processing the feature
transformation after the process of selection and extraction of the feature, was conducted.
The NB classification method was used for training a subset of frequent item sets that
achieved the minimum support threshold, as shown in Figure 3. In this example, 242 train-
ing item sets out of total 399 training item sets achieved the minimum support threshold to
be within the training set in the NB classifiers. Our model can minimize the data dimen-
sionality and requirement repository for the classification methods. Besides, it can enhance
the performance of the classification methods and eliminate redundancies. In a specific
condition, the dimensionality of the whole training data is minimized and added to the
training set for the classification method. Therefore, each training example should include
some frequent features that achieve the minimum support threshold considered within the
training set for the neural network classification method.

The requirement repository of the classification method is reduced in case frequent
features are composed. This is opposite to the traditional method when consisting of the
entire features of the training dataset. The common characteristics of the datasets are
redundancies and noise. The redundancies can be removed when choosing one frequent
item set in the data. It is obvious that the algorithm’s speed and performance can be
increased once the dataset becomes small. In our proposed model, feature transformation
advantages can be obtained, including construction, selection and extraction. New features
can be created through all these feature transformation forms [33]. Functional mapping is
used to extract new features from old ones [34]. The most important method in the dataset
is a frequent feature extraction. Another important method in the dataset is a feature
construction that generates additional features to replace the missing data. In this study,
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we employ the FP-Growth algorithm as linear and non-linear spaces to offer a feature
construction process to minimize the data dimensionality and recovering the missing
information [33]. Less data dimensionality makes the process easier and faster. However,
feature selection can reduce the requirement repository and enhance the performance of
the algorithm by removing the redundancies and noise [34].

Figure 3. The identification model for hearing-loss symptoms.

An associative classification, which is a combination of unsupervised learning meth-
ods, such as the FP-Growth algorithm or association rule and NB classifiers, performs
much better than the standalone classification method [35]. The hybrid of the FP-Growth
algorithm and K-nearest neighbor (KNN) can obtain a high classification accuracy [36]. Our
hearing loss detection model has utilized a combination of unsupervised and supervised
learning ML methods, particularly the FP-Growth algorithm and NB classifier. The two
versions of the naïve Bayes classification models, which are the multivariate Bernoulli and
multinomial model, were explained. The multivariate Bernoulli naïve Bayes model was
the model of choice for the classifier as the implementation with the FP-Growth algorithm
has proven to be more efficient than the multinomial model. This is against the argument
by other researchers that indicate that the multinomial model outperforms the multivariate
Bernoulli in every respect, as depicted in the chapter using different kinds of datasets.
The justifications for adopting these as the techniques for implementing the model are
explained using various research in healthcare that uses a similar method with varying
degree of success, as well as by the literature that support the efficiency of these techniques.
The identification model for hearing-loss symptoms was depicted in a diagram and all
the components that make up the model explained. The FP-Growth algorithm serves
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as a pre-processing mechanism that provides all the elements of data transformation to
the data before it becomes part of the classifier’s vocabulary. With that, the advantages
inherent in data extraction, selection and construction techniques were all achieved. These
advantages include discarding redundant and noisy features in the data, reducing storage
requirements and improving the classification algorithm’s performance.

The calculation of these parameters for the prior can be represented as follows:
From the union of all item sets that meets the minimum threshold, extract the vocabu-

lary (V) for each class and get the training cases that have that class:
Calculate P(Cj)terms
For each Cj in C do
Training cases tj ← All the training cases with class = Cj

PCj =
/tj/

/Total# training cases/

The algorithm shows the steps used to calculate the prior probability. The vocabulary
of the classifier is extracted from the union of all the features in the item sets generated by
the FP-Growth algorithm. Then, for every class of the training examples that qualifies to
be in the training set, which in this case is the 242 training examples from the 399 in the
dataset, calculate the probability of each particular class P(Cj) by getting all the training
examples with class Cj among all the classes and divide it by the total number of all the
training examples.

The calculation of these parameters for the multinomial likelihood can be represented
as follows:

Calculate P(tk/Cj)terms
Thresholdsj← single set containing union of all frequent items sets (vocabulary)
For each tk in vocabulary
nk← # of occurrence of tk in the training cases of class = Cj

Ptk/Cj =
/nk + α/

/n + α\vocabulary/

The algorithm shows the steps for calculating the parameters for multinomial likeli-
hood. To calculate the probability of a class given a particular training example.

P(tk/Cj), the vocabulary, is formed from the union of item sets of the thresholds.
Then the number of occurrences of the threshold tk in the training examples of class Cj
is calculated plus the alpha (α) divided by the total number of tokens (n) in class Cj plus
additive smoothing alpha (α).

The calculation of these parameters for the multivariate Bernoulli likelihood can be
represented as follows:

Calculate P(dk/Cj)terms
Thresholdsj← single set containing union of all frequent items sets (vocabulary)
For each tk in vocabulary
nk← # of training cases where tk is present

Pdk/Cj =
nk + α

n + α\vocabulary

The algorithm shows the steps for calculating the parameters for the multivariate
Bernoulli likelihood. To calculate the probability of a class given a particular training
example Pdk/Cj, the number of training examples nk where the threshold tk is present is
added to the smoothing parameter alpha (α) and divided by total number of tokens plus
the alpha (α).
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3.2. Identifying the Relationship with Association Analysis Algorithms

Unsupervised learning methods, such as association analysis algorithms, have the
capability to find a correlation with invisible datasets [37]. Frequent features (item sets)
and association rules can be found using this method as discovered segments. If there is a
strong relationship between more than two item sets in the dataset, then this is a suggestion
of an association rule, which is represented by A→ B, where A and B are distinct item sets.
The support and confidence metrics are used to measure the correlation of the item set
elements in a dataset. Support metric reflects the frequent number of a rule that is used in
the dataset at hand. ADi audiology data compresses the S item set where S is a subset of
ADi, mathematically formulated as follows:

σ(S) = |{ADi|S ⊆ ADi, ADi ∈ D}| (1)

σ(S) represents support for an itemset S. ADi represents individual audiology data
with S as its subset (SADi). This is means that each item of S is can be an item in ADi,
where ADi is also an element of the dataset (D). A confidence metric is used to measure the
interface reliability of an association rule. It suggests a strong correlation between items
within an itemset in the preceding and succession of the rule. In instance, the rule TNTS
→ 2000:30 shows a big confidence value with a big probability hearing threshold between
2000 and 30 in the individual audiology data ADi that included TNTS. The confidence met-
ric reflects the frequency of a number of elements in the S itemset in ADi data that compress
the T item. The Confidence and Support measurements can be formulated as follows:

Support(S) = (e(s))/(N(ADi)) (2)

Con f idence(S → T) = (e(s ∪ T))/(e(s)) (3)

The combination of the FP-Growth algorithm and association analysis is powerful
and have a capability of item extraction from the dataset [38]. The FP-Growth algorithm
is used to generate a frequent itemset within a dataset for patients with hearing loss. The
FP-Growth algorithm represents the dataset in a tree data structure known as the FP-tree.
Each FP-tree has a path that maps to certain training example after it is scanned by the
FP-Growth algorithm [39]. Different features can be reflected by various training examples.
The deep interference of the structure of the FP-tree leads to better dataset compression for
the FP-tree. Table 2 illustrate the structure of the dataset in details.

Table 2. The dataset details.

Training Examples ID Features

1 {Tinnitus, Vertigo}
2 {Vertigo, Giddiness, Otorrhea}
3 {Vertigo, Giddiness, Otorrhea, Otalgia}
4 {Tinnitus, Otorrhea, Otalgia}
5 {Tinnitus, Vertigo, Giddiness}
6 {Tinnitus, Vertigo, Giddiness, Otorrhea}
7 {Tinnitus}
8 {Tinnitus, Vertigo, Giddiness}
9 {Tinnitus, Vertigo, Giddiness}

10 {Vertigo, Giddiness, Otalgia}

Figure 4 illustrates the FP-tree structure of the dataset where each consists of five
features and ten training examples, including (a) TID 1, (b) TID 2, (c) TID 3 and (d) TID 10.
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Figure 4. FP-tree (a) TID 1, (b) TID 2, (c) TID 3 and (d) TID 10 construction after reading.

In the FP-tree, for each given path, each node represents a feature with a counter
for the training example number that is mapped to this path. In the FP-tree, null is the
root node, representing the starting point of the FP-tree. Firstly, the FP-Growth algorithm
scans the number of frequencies for each item in the dataset and then it removes the item
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with no frequency count. Thus, an infrequent item leads to infrequency as well. Then the
FP-Growth algorithm rescans the number of frequencies to build the structure of FP-tree to
extract the frequent item sets [40]. For example, tinnitus is the most frequent item set in
our dataset, followed by vertigo and then giddiness, otorrhea and lastly otalgia. After the
FP-Growth algorithm generates an FP-tree structure, it crosses the first training example
to generate the nodes as Tinnitus→ Vertigo. Initially, the FP-tree start from the null node
then the other path will be created by the training example as null→ Tinnitus→ Vertigo.
In the example, each node in this path has a frequency count equal to 1. In the second
training example, another path will be created from nodes the Vertigo, Vertigo, Giddiness
and Otorrhea as null→ Vertigo→ Giddiness→ Otorrhea. The second path is created due
to there being no overlap with the first training example that represents the first feature
(tinnitus). However, in the third training example, there is an overlap with the first training
example in the first feature (tinnitus). So, for the path of null→ Tinnitus→ Giddiness→
Otorrhea→ Otalgia, the count feature (tinnitus) becomes two as it is overlapping with the
third training example.

FP-Growth algorithm repeats this process until to reach the tenth training example.
In addition, frequent item sets are generated by the FP-Growth algorithm to build a
conditional branch of FP-tree in a bottom–top approach. The FP-Growth algorithm finds
the frequent item sets ending with otalgia, and then it looks for another itemset that ends
with otorrhea, giddiness, vertigo and tinnitus. This process is reasonable as each branch in
the FB-tree is mapped to each training example. Therefore, for a given feature, a path is
traversing to generate frequent item sets. We used settings 0.1 and 0.7 for the minimum
support threshold and confidence thresholds, respectively, on the sample audiology dataset
of 50 patients. Furthermore, we used settings of 0.2 and 0.7 for the minimum support
threshold and confidence thresholds, respectively, on the sample audiology dataset of
339 patients. It is hard to find lower values for the minimum support and confidence
threshold measurements. Therefore, we chose 0.2 (20%) and 0.7 (70%) for the minimum
support and confidence threshold values as it could achieve the result at an acceptable
level. Setting the values to less than 0.1 (10%) of the dataset leads to an undesired result.

3.3. Feature Transformation with FP-Growth Algorithm

The FP-Growth algorithm was applied on an audiometry dataset of 399 patients using
air and bone conduction audiology medical records. The FP-Growth algorithm acts as a
frequent item set extraction algorithm with a setting of 0.4 (40%), the minimum support
threshold. Each item set in the training examples that pass the minimum threshold is
integrated into the training set for the NB as a classification method. Opposite to the
traditional method, which extracts the vocabulary form of all item sets (features) in the
training examples, the NB extracts the item sets from a union set of item sets. Only 242 out
of 399 training examples were found after the process of the item set generation. Those
training examples do not belong to their subset of the generated item sets. Only three
symptom types were found from the extracted item sets. From 242 training examples,
there are tinnitus symptoms and some symptoms of both tinnitus and vertigo and other
symptoms with tinnitus, vertigo and giddiness. The FP-Growth algorithm is fed by the
neural network by three labels to identify the symptom of the air and bone conduction
audiometry. The first label is tinnitus, the second label is tinnitus and vertigo and the
third label a collection of tinnitus, giddiness and vertigo. The air and bone conduction
thresholds could consist of undesired frequent aspects for the same frequency or decibel
for hearing in both ears of the patient. This can lead to increasing the dataset and features’
dimensionality and resulting in noisy features. The FP-Growth algorithm extracts features
patterns to build up the classification vocabulary. New features can be created by one of the
common feature transformations, such as feature construction, selection and extraction [41].
The feature extraction method is used to extract the frequent item sets from the dataset.
The feature construction method is a pre-processing method used to reduce the dataset
dimensionality. It is a very critical method as the success of machine learning approaches
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depends on this process. The feature selection method is used to select features from
the dataset to reduce the requirements repository and enhance the performance of the
classification algorithm [42].

In this study, we employed all three feature transformation techniques. Extracted
item sets (features) were used to build up the vocabulary. This leads to minimizing
the feature number for vocabulary. Thus, this minimizes the feature dimensionality as
well, which helps the vocabulary keeping the relevant data. The vocabulary consists of
a number of disjoint item sets (features) in the training examples [43]. Thus, the three
feature transformations, extraction, selection and construction, are attained. Reducing
the requirements repository, removing the noisy feature and lowering the computational
complexity result in enhancing the performance of the classification algorithm, and a lower
feature number means higher speed processing. Factor analysis, independent component
analysis and principal component are the most common techniques used to reduce the
feature dimensionality [44]. In this research, we employ the FP-Growth algorithm in our
detection model to offer a feature construction process to minimize the data dimensionality
and recovering the missing information [45].

3.4. Patterns Evaluation

A large number of item sets and form patterns can be generated by the FP-Growth
algorithm within the minimum support threshold. The FP-Growth algorithm tends to
generate a huge number of patterns since the size of the dataset is very big. The issue is that
some of these generated patterns are undesirable. It is not a trivial process to identify the
desirable patterns and undesirable ones as this decision depends on many aspects. Thus,
using standard evaluation methods for pattern quality is a necessity. Statistical methods
are one of these methods used to evaluate the quality of the generated patterns [46]. It
can be considered that the item sets that have a lower number of items or are discovered
in less of the training examples are undesirable item sets. An objective interestingness
metric can be used to remove these item sets. An objective interestingness metric is based
on statistical analysis that identifies which item set should be removed. In the literature,
several objective interestingness metrics is proposed to discover the desirable item sets
concerning specific aspects. An aggregating method is proposed in [47] to discover the
desirable association rules using an advanced aggregator. The ranking method comprises
two processes. The first process is based on the chi-square test technique while the second
process is measuring the objective interestingness. Objective interestingness measurement
is commonly used in the literature. It relies on the relationship of the confidence threshold
and minimum support threshold [48].

A study on the objective interestingness measurement was conducted by [49], demon-
strating that some interestingness measurements can reduce the association rules number
efficiently. However, the accuracy quality is not improved. In addition, no individual
interestingness metric is superior to others. Another standard evaluation method in the
evaluation of desirable item set quality is subjective arguments. In this method, the itemset
can be desired if it offers unpredicted beneficial information for the discovered data. In
this study, we employed subjective knowledge arguments as an evaluation method. This is
because of the advanced knowledge obtained from the patients’ medical audiology data.
The template-based method is employed as a subjective knowledge evaluator to evaluate
the extracted item set quality. Thus, the generated item set using the FP-Growth algorithm
is allowed to be restricted as all the items are filtered, keeping only the itemset that has one
or more symptoms, such as vertigo, tinnitus, otalgia, Meniere, and others. In this paper,
the template-based method is used because of its advantages that has been demonstrated
in many recent studies. Besides, it can enhance the search of keywords using semantic
data [50]. Researchers and scientists who are experts in this domain can only use their
knowledge and experience to discover the important patterns. So, the patterns selected by
the expert template only were extracted.
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3.5. Symptoms Identification with the Naïve Bayes Algorithm

We performed the classification process on the output of the training set obtained from
the recurrent item sets when applied on the FP-growth algorithm. We used two common
methods of naïve Bayes, including a multinomial model [17] and multivariate Bernoulli,
to find out the most accurate solution. The naïve Bayes method is applied to the hearing
loss classification problem to detect the symptoms for the thresholds of bone conduction
audiology and the pure-tone air. In the multivariate Bernoulli method, the vocabulary and
a training example act as inputs, after which they are processed to obtain the binary output
classification. The binary classification can be represented by a vector of ones to reflect the
condition of the existing hearing threshold while it can be represented by a vector of zeros
to reflect the condition of the absence hearing threshold. The vocabulary consists of several
different features that form the training examples [18]. The vocabulary length binary
should be the same length as the binary vector. The vocabulary results contain various
features and thresholds. For a given class, the multinomial model produces the portion of
times that the threshold values of the training examples appear. In our proposed model,
the threshold value of the frequent item set is insignificant compared to the threshold value
state, whether in existence or absent in the training example. Therefore, we employed
the multivariate Bernoulli for this purpose. The training example was divided into a
number of feature sets to extract the features, including the bone conduction audiology
thresholds and symbols of air from the dataset. The threshold of audiology hearing reflects
the given frequency level and decibel at the point of hearing the pure tone. A vector of
ones and zeros symbols represent every training example. A one value indicates that
the symbols are available in the training example while the zero values indicate that the
symbols are unavailable the training example. The estimated training examples of the
probabilities and conditional probabilities for the given class feature were used to train
the classification methods [19]. The naïve Bays process is formulated in the mathematical
equations as follows:

The Bayes rule is formulated as in [17,20]:

P(C|D) = (P(D|C)P(C))/(P(D)) (4)

This is applied in the classification method and formulated as

C_map = argmax P(C/D) c ∈ C (5)

C_map represents the best class, which is the one excluded from all classes that
maximize the values argmax and P(C/D). Using the Bayes rule, every class is maximized
by Equations (4) and (5):

C_map = P(D/C) P(C) c ∈ C (6)

The class that could maximize the product of P(D/C) P(C) is most likely to be selected.
The goal is selecting the class that is associated with the probability bigger than the specific
audiology thresholds that have the symptom or set of symptoms.

Equation (6) can be reformulated as

C_map = argmax P(x_1, x_2, x_3 . . . . . . . . . x_n/C)P(C) c ∈ C (7)

The common probability of x_1 via xn conditioned on a class can be symbolized as the
product of independent probabilities P(x_1/C)• P(x_2/C)• P(x_3/C)• . . . . . . . . . .. P(x_n/C).

To calculate the most likely class, the probability of the initial of likelihood features is
multiplied by the class probability. This can be reformulated as

C_NB = argmax P(C_j)∏ P(x/C_j) c ∈ C x ∈ X (8)

C_NB is the best class that maximizes the advance class probability P(Cj) multiplied
by each probability of the feature in the given feature class. In the data, for each hearing
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threshold position in the given class probability, the class is computed and assigned the
best probability. The frequent item sets in the data were computed for classification
training purposes.

For the advance training example (t) that is available in a class (Cj), the number of
training examples in class (Cj) was divided by all training examples counted, as represented
by the following equation:

Sustainability 2021, 13, x FOR PEER REVIEW 15 of 31 
 

(ܦ|ܥ)ܲ = (4) ((ܦ)ܲ)/((ܥ)ܲ(ܥ|ܦ)ܲ)

This is applied in the classification method and formulated as ݌ܽ݉_ܥ = ܲ ݔܽ݉݃ݎܽ ܿ (ܦ/ܥ) ∈ (5) ܥ

C_map represents the best class, which is the one excluded from all classes that maximize 
the values argmax and P(C/D). Using the Bayes rule, every class is maximized by Equa-
tions (4) and (5): ݌ܽ݉_ܥ = ܿ (ܥ)ܲ (ܥ/ܦ)ܲ ∈ (6) ܥ

The class that could maximize the product of P(D/C) P(C) is most likely to be se-
lected. The goal is selecting the class that is associated with the probability bigger than 
the specific audiology thresholds that have the symptom or set of symptoms. 

Equation (6) can be reformulated as ݌ܽ݉_ܥ = ܲ ݔܽ݉݃ݎܽ ,1_ݔ) ,2_ݔ 3_ݔ … … … ܿ (ܥ)ܲ(ܥ/݊_ݔ ∈ (7) ܥ

The common probability of x_1 via xn conditioned on a class can be symbolized as 
the product of independent probabilities ܲ(ܥ/1_ݔ) • (ܥ/2_ݔ)ܲ  • (ܥ/3_ݔ)ܲ  •… … … . .  .(ܥ/݊_ݔ)ܲ

To calculate the most likely class, the probability of the initial of likelihood features 
is multiplied by the class probability. This can be reformulated as ܤܰ_ܥ = ܲ ݔܽ݉݃ݎܽ ܿ (݆_ܥ/ݔ)ܲ∏(݆_ܥ) ∈ ݔ ܥ ∈ ܺ (8)

C_NB is the best class that maximizes the advance class probability P(Cj) multiplied 
by each probability of the feature in the given feature class. In the data, for each hearing 
threshold position in the given class probability, the class is computed and assigned the 
best probability. The frequent item sets in the data were computed for classification 
training purposes. 

For the advance training example (t) that is available in a class (Cj), the number of 
training examples in class (Cj) was divided by all training examples counted, as repre-
sented by the following equation: ܲ^^ (ܥ_݆) = ܿ) ݐ݊ݑ݋ܿݐ) = (9) ݐܰ/((௝ܥ

In in multinomial model, the likelihood and the threshold probability i (ti) for the 
given class (Cj) can be calculated by the number of times the threshold of i (ti) is counted 
for the given class (Cj) in the training example and then dividing it by the overall thresh-
old number across all training examples of class (Cj), as represented in the following 
equation: ܲ^^ (ܥ|݅ݐ௝) = ,݅ݐ) ݐ݊ݑ݋ܿ)  ,ݐ) ݐ݊ݑ݋ܿ∑)/((௝ܥ ܹ ((௝ܥ ∈ ܸ (10)

The portion of training examples of class (Cj) of the appeared threshold in the mul-
tivariate Bernoulli method is divided by the overall training examples number in class 
(Cj), as represented in the following equation: ܲ^^ (݀݅|ܥ௝) = ,݅݀) ݐ݊ݑ݋ܿ)  ,݀) ݐ݊ݑ݋ܿ∑)/((௝ܥ ܹ ((௝ܥ ∈ ܸ (11)

4. Results 
This section discusses the first and second experimental results of the study that is 

aimed at finding a relationship between the audiometry thresholds and attributes in 
hearing-loss patient medical records, using association analysis. The section also presents 
the results of the implementation of the identification for hearing-loss symptoms using 
the FP-Growth feature transformation and the performance of the two naïve Bayes clas-
sification models; multivariate Bernoulli and multinomial models with and without the 
FP-growth feature transformation technique. The reason why the multivariate Bernoulli 

(C_j) =
(
tcount

(
c = Cj

))
/Nt (9)

In in multinomial model, the likelihood and the threshold probability i (ti) for the
given class (Cj) can be calculated by the number of times the threshold of i (ti) is counted
for the given class (Cj) in the training example and then dividing it by the overall threshold
number across all training examples of class (Cj), as represented in the following equation:

Sustainability 2021, 13, x FOR PEER REVIEW 15 of 31 
 

(ܦ|ܥ)ܲ = (4) ((ܦ)ܲ)/((ܥ)ܲ(ܥ|ܦ)ܲ)

This is applied in the classification method and formulated as ݌ܽ݉_ܥ = ܲ ݔܽ݉݃ݎܽ ܿ (ܦ/ܥ) ∈ (5) ܥ

C_map represents the best class, which is the one excluded from all classes that maximize 
the values argmax and P(C/D). Using the Bayes rule, every class is maximized by Equa-
tions (4) and (5): ݌ܽ݉_ܥ = ܿ (ܥ)ܲ (ܥ/ܦ)ܲ ∈ (6) ܥ

The class that could maximize the product of P(D/C) P(C) is most likely to be se-
lected. The goal is selecting the class that is associated with the probability bigger than 
the specific audiology thresholds that have the symptom or set of symptoms. 

Equation (6) can be reformulated as ݌ܽ݉_ܥ = ܲ ݔܽ݉݃ݎܽ ,1_ݔ) ,2_ݔ 3_ݔ … … … ܿ (ܥ)ܲ(ܥ/݊_ݔ ∈ (7) ܥ

The common probability of x_1 via xn conditioned on a class can be symbolized as 
the product of independent probabilities ܲ(ܥ/1_ݔ) • (ܥ/2_ݔ)ܲ  • (ܥ/3_ݔ)ܲ  •… … … . .  .(ܥ/݊_ݔ)ܲ

To calculate the most likely class, the probability of the initial of likelihood features 
is multiplied by the class probability. This can be reformulated as ܤܰ_ܥ = ܲ ݔܽ݉݃ݎܽ ܿ (݆_ܥ/ݔ)ܲ∏(݆_ܥ) ∈ ݔ ܥ ∈ ܺ (8)

C_NB is the best class that maximizes the advance class probability P(Cj) multiplied 
by each probability of the feature in the given feature class. In the data, for each hearing 
threshold position in the given class probability, the class is computed and assigned the 
best probability. The frequent item sets in the data were computed for classification 
training purposes. 

For the advance training example (t) that is available in a class (Cj), the number of 
training examples in class (Cj) was divided by all training examples counted, as repre-
sented by the following equation: ܲ^^ (ܥ_݆) = ܿ) ݐ݊ݑ݋ܿݐ) = (9) ݐܰ/((௝ܥ

In in multinomial model, the likelihood and the threshold probability i (ti) for the 
given class (Cj) can be calculated by the number of times the threshold of i (ti) is counted 
for the given class (Cj) in the training example and then dividing it by the overall thresh-
old number across all training examples of class (Cj), as represented in the following 
equation: ܲ^^ (ܥ|݅ݐ௝) = ,݅ݐ) ݐ݊ݑ݋ܿ)  ,ݐ) ݐ݊ݑ݋ܿ∑)/((௝ܥ ܹ ((௝ܥ ∈ ܸ (10)

The portion of training examples of class (Cj) of the appeared threshold in the mul-
tivariate Bernoulli method is divided by the overall training examples number in class 
(Cj), as represented in the following equation: ܲ^^ (݀݅|ܥ௝) = ,݅݀) ݐ݊ݑ݋ܿ)  ,݀) ݐ݊ݑ݋ܿ∑)/((௝ܥ ܹ ((௝ܥ ∈ ܸ (11)

4. Results 
This section discusses the first and second experimental results of the study that is 

aimed at finding a relationship between the audiometry thresholds and attributes in 
hearing-loss patient medical records, using association analysis. The section also presents 
the results of the implementation of the identification for hearing-loss symptoms using 
the FP-Growth feature transformation and the performance of the two naïve Bayes clas-
sification models; multivariate Bernoulli and multinomial models with and without the 
FP-growth feature transformation technique. The reason why the multivariate Bernoulli 

(ti|Cj) =
(
count

(
ti, Cj

))
/
(
∑ count

(
t, Cj

))
W ∈ V (10)

The portion of training examples of class (Cj) of the appeared threshold in the multi-
variate Bernoulli method is divided by the overall training examples number in class (Cj),
as represented in the following equation:

Sustainability 2021, 13, x FOR PEER REVIEW 15 of 31 
 

(ܦ|ܥ)ܲ = (4) ((ܦ)ܲ)/((ܥ)ܲ(ܥ|ܦ)ܲ)

This is applied in the classification method and formulated as ݌ܽ݉_ܥ = ܲ ݔܽ݉݃ݎܽ ܿ (ܦ/ܥ) ∈ (5) ܥ

C_map represents the best class, which is the one excluded from all classes that maximize 
the values argmax and P(C/D). Using the Bayes rule, every class is maximized by Equa-
tions (4) and (5): ݌ܽ݉_ܥ = ܿ (ܥ)ܲ (ܥ/ܦ)ܲ ∈ (6) ܥ

The class that could maximize the product of P(D/C) P(C) is most likely to be se-
lected. The goal is selecting the class that is associated with the probability bigger than 
the specific audiology thresholds that have the symptom or set of symptoms. 

Equation (6) can be reformulated as ݌ܽ݉_ܥ = ܲ ݔܽ݉݃ݎܽ ,1_ݔ) ,2_ݔ 3_ݔ … … … ܿ (ܥ)ܲ(ܥ/݊_ݔ ∈ (7) ܥ

The common probability of x_1 via xn conditioned on a class can be symbolized as 
the product of independent probabilities ܲ(ܥ/1_ݔ) • (ܥ/2_ݔ)ܲ  • (ܥ/3_ݔ)ܲ  •… … … . .  .(ܥ/݊_ݔ)ܲ

To calculate the most likely class, the probability of the initial of likelihood features 
is multiplied by the class probability. This can be reformulated as ܤܰ_ܥ = ܲ ݔܽ݉݃ݎܽ ܿ (݆_ܥ/ݔ)ܲ∏(݆_ܥ) ∈ ݔ ܥ ∈ ܺ (8)

C_NB is the best class that maximizes the advance class probability P(Cj) multiplied 
by each probability of the feature in the given feature class. In the data, for each hearing 
threshold position in the given class probability, the class is computed and assigned the 
best probability. The frequent item sets in the data were computed for classification 
training purposes. 

For the advance training example (t) that is available in a class (Cj), the number of 
training examples in class (Cj) was divided by all training examples counted, as repre-
sented by the following equation: ܲ^^ (ܥ_݆) = ܿ) ݐ݊ݑ݋ܿݐ) = (9) ݐܰ/((௝ܥ

In in multinomial model, the likelihood and the threshold probability i (ti) for the 
given class (Cj) can be calculated by the number of times the threshold of i (ti) is counted 
for the given class (Cj) in the training example and then dividing it by the overall thresh-
old number across all training examples of class (Cj), as represented in the following 
equation: ܲ^^ (ܥ|݅ݐ௝) = ,݅ݐ) ݐ݊ݑ݋ܿ)  ,ݐ) ݐ݊ݑ݋ܿ∑)/((௝ܥ ܹ ((௝ܥ ∈ ܸ (10)

The portion of training examples of class (Cj) of the appeared threshold in the mul-
tivariate Bernoulli method is divided by the overall training examples number in class 
(Cj), as represented in the following equation: ܲ^^ (݀݅|ܥ௝) = ,݅݀) ݐ݊ݑ݋ܿ)  ,݀) ݐ݊ݑ݋ܿ∑)/((௝ܥ ܹ ((௝ܥ ∈ ܸ (11)

4. Results 
This section discusses the first and second experimental results of the study that is 

aimed at finding a relationship between the audiometry thresholds and attributes in 
hearing-loss patient medical records, using association analysis. The section also presents 
the results of the implementation of the identification for hearing-loss symptoms using 
the FP-Growth feature transformation and the performance of the two naïve Bayes clas-
sification models; multivariate Bernoulli and multinomial models with and without the 
FP-growth feature transformation technique. The reason why the multivariate Bernoulli 

(di|Cj) =
(
count

(
di, Cj

))
/
(
∑ count

(
d, Cj

))
W ∈ V (11)

4. Results

This section discusses the first and second experimental results of the study that
is aimed at finding a relationship between the audiometry thresholds and attributes in
hearing-loss patient medical records, using association analysis. The section also presents
the results of the implementation of the identification for hearing-loss symptoms using the
FP-Growth feature transformation and the performance of the two naïve Bayes classification
models; multivariate Bernoulli and multinomial models with and without the FP-growth
feature transformation technique. The reason why the multivariate Bernoulli naïve classifier
model is adopted for the implementation of the proposed model is also explained in
this section.

4.1. Dataset Used

The National Medical Research Register (NMRR) in Malaysia is considered the official
data bank in the medical field. Researchers can register their medical research online at
NMRR for review and get approval for sample data collection by the concerned authorities.
Our research has obtained NMRR registration and sample data collection approval. The
type of data used for this research is secondary data. The type of secondary data collected
for the research is the medical records of hearing-loss patients, including their audiom-
etry data. This type of data is typically recorded by the audiologist and otolaryngology
specialists in the course of diagnosing the patient during consultation. A collection of
the audiometric data from the period between 2003 and 2012 were obtained from an oto-
laryngology department in a Malaysian local hospital. The collection data belonged to 399
patients with hearing difficulties aged from 3 to 88 years old. The data collection ranged
from 0.125 kHz to 8 kHz for 11 frequencies measurements. To find out the link between
the symptoms of hearing loss and audiometry threshold of pure-tone air conduction, a
Frequent Pattern Growth algorithm (FP-Growth) combined with rule mining algorithm
were used on a sample dataset of 50 patients with hearing difficulties with a setting of
0.7 and 0.1 for the confidence thresholds and the support threshold, respectively. The FP-
Growth and rule mining algorithm were also employed on another bigger sample dataset
of 399 patients with hearing difficulties with the setting of 0.7 and 0.2 for the confidence
thresholds and the minimum support of the item set generation, respectively. Both studies
reveal that there is a correlation between the audiometry thresholds and the symptoms of
hearing loss, such as dizziness, vertigo, tinnitus and other medical information.
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The small dataset: FP-Growth algorithm combined with the rule algorithm were
employed to find the correlation of audiometric configuration and the characteristic of
patients with hearing difficulties on a sample of pure-tone air conduction audiometry
data, collected from 50 medical records of patients with hearing loss. The hearing loss
characteristics included data structures of age, gender and symptoms. The confidence
thresholds were set to 0.7 and the minimum support was 0.1, as the association rule that
set to 0.1 (10% of the dataset) or more is more motivated than an association rule that
is set to less than 10% of the dataset. The dataset included a collection of data of pure-
tone audiometry thresholds and the characteristic of hearing loss from medical records.
Around 349 frequent item sets were generated using the FP-Growth algorithm based on
the association rules mentioned above.

Large sample dataset: Using the same method, the experiment is repeated on the
entire dataset that contains data of 399 hearing-loss patients, including the sample data that
applied in the initial experiment. The value of the confidence thresholds has not changed,
which is equal to 0.7, while the value of the minimum support is increased to 0.2.

4.2. Data Preparation

We prepared the dataset in a way that is easier for the algorithm to read and apply
it. Discrete data are more likely to be chosen because of the sorting way of the item
sets. Some symptoms of the hearing loss were abbreviated, including vertigo as (VTG)
and tinnitus (TNTS), while other symptoms were not abbreviated, including rhinitis,
prescubysis, otalgia, giddiness and otorrhea. The patient’s characteristics and attributes
also were abbreviated, including gender represented male as (M) and female as (F). The
patient’s age was abbreviated as early (E), mid (M) and (L) late. For instance, 5 M (the mid
50 s) is representing a male of 55 years old and 8 L (the late 80 s) is representing a male
of 89 years old. We used a colon (:) in the hearing thresholds as a separator between the
sound frequencies and the sound dB. For instance, hearing thresholds of 500:45 R represent
a 500 Hz frequency and 45 sound dB for the right ear, while 8000:80 L represents 80,000 Hz
frequency and 80 sound dB for the left ear. In another study [30], symptoms of hearing
loss, attributes and structured data, such as date of birth, gender, type of hearing device
and other medical information, were abbreviated and applied on statistical and neural
methods for patients classification to help in selecting the most beneficial hearing device
for the appropriate patients. It is necessary to change the data format to be acceptable for
the given algorithm.

4.3. Performance Evaluation and Validation

The error rate metric was used to measure the performance of our detection model.
To calculate the error rate, a cross-validation technique was applied, and the random
sub-sampling validation method was used to repeatedly divide the dataset into two sets:
one used for the training while the other used for the validation. To validate our model, a
validation technique was applied to randomly divide the dataset to obtain training and test
sets during the execution time. The validation technique was iteratively repeated ten times
and then the average error rate was computed. For each training example, this method
was applied to select the sets for the test and training. Each grouped training example
was chosen randomly after was divided at each iteration. The errors rate was averaged
after a number of iterations for each partition group. It suggested applying the NB on
the dataset prior to the pre-processing step to make a performance comparison using a
different representation. It also suggested taking the risk of using the whole information
and data rather than the risk of reduced information. Our model was implemented by the
Python programming language. The testing also was conducted in the same programming
language. Python was chosen as it is a powerful and efficient programming language for
mathematical computation [51–54]. Otorhinolaryngology specialists are involved in the
validation process in the first and second experiments for the results confirmation purpose.
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These experiments were based on the extracted patterns that reflect the correlation of the
audiology thresholds and symptoms of hearing-loss symptoms.

4.4. Results from the Association Analysis Using the Small Sample Dataset

The pure-tone air conduction audiometry data for 50 hearing-loss patients were col-
lected to find any possible connection between the audiogram configuration and attributes
in the hearing-loss patients’ medical records. These attributes consist of structured data,
such as symptoms, gender and age. The FP-Growth algorithm and association rule algo-
rithm was used for this purpose. The minimum support for item set generation was set to
10% (0.1) and the minimum confidence for the association rule was set to 70% (0.7). The
dataset comprised pure-tone audiometry threshold data in a combined form with addi-
tional characteristics as found in the medical records. The FP-Growth algorithm generates
349 frequent item sets from which association rules are generated. The results of some
association rules are interesting, of which 93 are depicted in the exact format of the output
of the FP-Growth and association rule algorithm (Tables 3–5). Moreover, the association
rules are further summarized in Tables 6–8.

Table 3. Observed tinnitus association rules from the conditional FP-tree.

Min. Support No. of Sets Association Rules (Tinnitus) Confidence

0.1 349 TNTS→ 2000:30 R, F 1.000
TNTS→ 500:55 L, 250:60 L 1.000

1000:30 R, TNTS→ 2000:30 L 0.881
TNTS→ 4000:65 L, F 0.947

500:15 R→ NH, TNTS 0.716
ONOFF TNTS→ 2000:45 L 0.788

500:15 R, 2000:10 R→ ONOFF TNTS 0.711
TNTS, M→ 250:60 L 0.902

500:20 R→ TNTS, 1000:15 R 0.817
TNTS→ 1000:60 L, M 0.891

TNTS, M→ BILATERAL, 500:20 L 0.798
TNTS→ GIDDINESS, 250:35 R, F 0.703

TNTS, M→ NH, 500:20 L, BILATERAL 0.777
TNTS→ 250:30 R, F 0.883

500:15 R,→ ONOFF TNTS 0.799
2000:20 R→ TNTS, M 0.867

Table 4. Observed tinnitus and vertigo association rules from the conditional FP-tree.

Min. Support No. of Sets Association Rules (Tinnitus and Vertigo) Confidence

0.1 349 TNTS, 250:35 R→ VTG, F 0.958
500:15 R, TNTS→ VTG 0.805

2000:20 R, TNTS→ VTG, M 0.809
TNTS, 2000:55 L→ VTG 0.772

TNTS, 2000:55 L→ 1000:60 L, VTG 0.702
TNTS→ 1000:60 L, VTG 0.782

Table 5. Observed vertigo association rules from the conditional FP-tree.

Min. Support No. of Sets Association Rules (Vertigo) Confidence

0.1 349 VTG→ 4000:65 L, F 0.958
VTG→ 1000:10 L, BILATERAL 0.805

VTG→ 1000:10 L, NH 0.809
250:35 R→ VRTG, F 0.772

VTG, M→ 500:20 R, NH, BILATERAL 0.702
VTG→ 1000:10 L, 500:20 L 0.782

VTG→ 500:15 R, F 0.878
2000:20 R→ VTG, M 0.791
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Table 5. Cont.

Min. Support No. of Sets Association Rules (Vertigo) Confidence

VTG→ 1000:10 L, F 0.813
VTG→ 2000:25, F 0.790

500:15 R→ 1000:10 R, VTG 0.761
2000:15 R→ 4000:10 R, VTG 0.707

4000:10 R, VTG→ 500:20 L, NH 0.801
4000:10 R, VERTIGO→ BILATERAL, NH 0.798

2000:15 R→ VTG, F 0.885
250:35 R, VTG→ 500:25, F 0.801

VTG, 1000:10 L→ 1000:15 R, BILATERAL 0.813
1000:60 L→ 2000:55 L, VTG 0.859

Table 6. Summary of tve Vertigo association rules from Table 5.

Symptom Frequency Decibel Gender Ear Confidence
Threshold

Vertigo 4000 65 Female Left 0.958
Vertigo Bilateral 1000 10 Left 0.805

Vertigo Normal Hearing 1000 10 Left 0.809
Vertigo 250 35 Female Right 0.772

Vertigo Bilateral Normal Hearing 500 20 Male Right 0.702
Vertigo 500, 1000 10, 20 Left 0.782
Vertigo 500 15 Female Right 0.878
Vertigo 2000 20 Male Right 0.791
Vertigo 1000 10 Female Left 0.813
Vertigo 2000 25 Female 0.790
Vertigo 500, 1000 10, 15 Right 0.761
Vertigo 2000, 4000 10, 15 Right 0.707

Vertigo, Normal Hearing 500, 4000 10, 20 Left, Right 0.801
Vertigo, Normal Hearing,

Bilateral 4000 10 Right 0.798

Vertigo 2000 15 Female Right 0.885
Vertigo 250, 500 25, 35 Female Right 0.801

Vertigo, Bilateral 1000 10, 15 Left, Right 0.813
Vertigo 1000, 2000 55, 60 Left 0.859

Table 7. Summary of the tinnitus association rules from Table 1.

Symptom Frequency Decibel Gender Ear Confidence
Threshold

Tinnitus 2000 30 Female Right 1.000
Tinnitus 250, 500 55, 60 Left 1.000
Tinnitus 1000, 2000 30, 30 Left, Right 0.881
Tinnitus 4000 65 Female Left 0.947

Tinnitus, Normal Hearing 500 15 Right 0.716
On/Off Tinnitus 2000 45 Left 0.788
On/Off Tinnitus 500, 2000 10, 15 Male Right 0.711

Tinnitus 250 60 Male Left 0.902
Tinnitus 500, 1000 15, 20 Right 0.817
Tinnitus 1000 60 Male Left 0.891

Tinnitus Bilateral 500 20 Male Left 0.798
Tinnitus, Giddiness 250 35 Female Right 0.703

Tinnitus, Normal Hearing, Bilateral 500 20 Male Left 0.777
Tinnitus 250 30 Female Right 0.883

On/Off Tinnitus 500 15 Right 0.779
Tinnitus 2000 20 Male Right 0.867
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Table 8. Summary of the tinnitus and vertigo association rules from Table 4.

Symptom Frequency Decibel Gender Ear Confidence
Threshold

Tinnitus, Vertigo 250 35 Female Right 1.000
Tinnitus, Vertigo 500 15 Right 0.981
Tinnitus, Vertigo 2000 20 Male Right 0.892
Tinnitus, Vertigo 2000 55 Left 0.876
Tinnitus, Vertigo 1000, 2000 55, 60 Left 0.707
Tinnitus, Vertigo 1000 60 Left 0.890

These rules show the hidden relationships in the small sample dataset (50 cases) using
0.1 (10%) as the minimum support threshold. The confidence in the rightmost column is
used to measure the strength of association between items in the dataset. From the item sets
above, the association rule (TNTS→ 2000:30 R, F) denotes a strong correlation between the
symptoms of tinnitus (TNTS) with a 2000:30 hearing threshold in the right (R) ear among
females (F) in the sample dataset of 50 hearing-loss patients. Table 7 provides the summary
and meaning of the abbreviations in Table 3. 2000:30 R is a threshold at the frequency of
2000 Hz at sound decibel of 30 dB. The confidence thresholds on both tables mean the
percentage of the training examples in the dataset containing a given rule. For example,
a 1.000 confidence in the rule (TNTS→ 2000:30 R, F) means that, in 100% of the training
examples in the dataset containing TNTS (Tinnitus), the rule is correct.

The result (TNTS→ 500:55 L, 250:60 L) means a strong relationship between tinnitus
and the hearing threshold at a mid-frequency of 500 Hz and 55 dB (sound decibel). This
rule also shows a possible tinnitus connection with 250 Hz (low frequency) at 60 dB, all
in the left (L) ear. The other generated association rules in the table also show interesting
relationships between tinnitus and hearing thresholds and other attributes in the dataset.
According to evidence from other researchers, flat, cochlear-type hearing impairment can be
detected on the audiogram of tinnitus patients and that low frequencies are most affected.
In addition, the shape of the audiogram is often flat or rising but any configuration is
possible. From the results, a low frequency of 250 Hz can be seen. Moreover, as evidenced
by the literature, the shape of the audiogram is often flat; that is, the hearing thresholds are
mostly at lower sound decibels but at various frequencies. Table 7 shows a summary of all
the discovered rules.

Table 5 shows the association rules for vertigo. One of the symptoms of hearing loss
diagnosed in patients is vertigo. The level of confidence met by the item sets depicts an
interesting relationship between vertigo and hearing threshold and other attributes. The
rule (VTG→ 1000:10 L, 500:20 L) denotes the probability that vertigo patients experience
hearing loss from a mid (500 Hz) to high (1000 kHz) frequency at lower sound decibels
(10–20 dB) in the left ear. Looking at the whole association rules, it can be observed that,
bilaterally, there is a relationship between normal hearing (NH) and vertigo, depicting a
mid to high frequency (1000 kHz, 2000 kHz and 4000 kHz) for normal hearing. The rule
(VTG→ 4000:65 L, F) denotes a possibility of females having hearing loss with an extreme
frequency of 4000 kHz at 65 dB given that vertigo exists. Table 6 shows the summary
of all the discovered rules in Table 5, which includes the symptom of vertigo and some
hearing thresholds.

Table 4 shows the association rules within the item sets consisting of vertigo together
with tinnitus. A correlation between the vertigo and tinnitus and hearing threshold values
are shown by all the rules. As evidenced by other studies, vertigo and tinnitus can also
occur together [55]. Table 8 shows a summary of all the discovered rules in Table 5 that
includes the symptom of tinnitus and vertigo and some hearing thresholds.

Table 9 depicts the relationship between giddiness and the hearing threshold inside
the right ear occurring at a low frequency and low sound decibels in females (GIDDINESS
→ 250:35, F). The other rule (TNTS, GIDDINESS→ 250:35 R, F) shows a similar interesting
relationship between giddiness, tinnitus and a low-frequency threshold among females.
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Table 10 shows the summary of all the discovered rules in Table 9, which includes the
symptom of giddiness and some hearing thresholds.

Table 9. Observed giddiness association rules from the conditional FP-tree.

Min. Support No. of Sets Association Rules (Giddiness) Confidence

0.1 349 GIDDINESS→ 250:35 R, F 0.899
500:20 R→ GIDDINESS 0.790

TNTS, GIDDINESS→ 250:35 R, F 0.840

Table 10. Summary of the giddiness association rules from Table 9.

Symptom Frequency Decibel Gender Ear Confidence
Threshold

Giddiness 250 35 Female Right 0.899
Giddiness 500 20 Right 0.790

Giddiness, Tinnitus 250 35 Female Right 0.840

4.5. Results from Association Analysis Using Large Sample Dataset

Tables 3–5 and Table 9 present the pure-tone audiometry measures obtained from the
dataset of 50 patients involved in a primary study [56]. Correspondingly, Tables 11 and 12
compare the previous results with that of an air and bone conduction audiometry data
carried out on 339 patients. The study by [56] stated that from the dataset of the primary
study involving 50 patients with hearing loss, it was gathered that a correlation exists
between audiometry thresholds, gender and hearing-loss symptoms. Furthermore, each of
Tables 13 and 14 presented results from Tables 11 and 12.

Table 11. Observed tinnitus/vertigo association rules from the conditional FP-tree.

Min. Support No. of Sets Association Rules
(Tinnitus and Vertigo) Confidence

0.2 349 TNTS, VTG→ 500:20 R, M 0.931
TNTS, VTG→ 250:40 R, 400:45 R, F 0.768

Table 12. Observed giddiness association rules from the conditional FP-tree.

Min. Support No. of Sets Association Rules
(Giddiness) Confidence

0.2 349 GIDDINESS→ 1000:10
L,500:20 L,250:25 R 0.755

GIDDINESS, VTG→ 500:20 R 0.890

Table 13. Summary of the tinnitus and vertigo association rules from Table 11.

Symptom Frequency Decibel Gender Ear Confidence
Threshold

Tinnitus, Vertigo 500 20 Male Right 0.931
Tinnitus, Vertigo 250, 400 40, 45 Female Right 0.768

Table 14. Summary of the tinnitus and vertigo association rules from Table 12.

Symptom Frequency Decibel Gender Ear Confidence
Threshold

Giddiness 250, 500, 1000 10, 20, 25 Left, Right 0.755
Giddiness, Vertigo 500 20 Right 0.890
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The outcome of the primary research on the 50-patient dataset and pure-tone au-
diometry processes are illustrated in Tables 3–5 and Table 9. A comparison with the
outcome for the research on 339 patients’ air and bone conduction audiometry data is in
Tables 11 and 12 below. There is a connection between the hearing-loss symptoms, gender
and audiometry thresholds from an initial study on a dataset of 50 hearing-loss patients [26].
The tinnitus was represented as TNTS, vertigo as VTG, normal hearing as NH, BILATERAL
referred to the two ears, M referred to male while F referred to female, L represented left ear
while R represented right ear. The support value for itemset generation was set at 0.1 (10%)
while the confidence value for the association rule was set at 0.7 (70%). The correlations
between pure-tone audiometry thresholds and vertigo, tinnitus and giddiness were an
interesting discovery.

Tables 11 and 12 present the results of the current study on association rules. The
comparison between Table 3 (observed tinnitus association rules) and Table 11 (the latest
observed results of tinnitus and vertigo association rules) reveals the correlation between
tinnitus symptoms and normal hearing threshold occurring at 500 Hz (500:15 R,→ ONOFF
TNTS) inside the right ear—R‖, as presented in Table 3. Table 11 presents the reflection
of this in the results of the current study involving 339 patients depicting a relationship
between tinnitus symptoms and vertigo and normal hearing threshold occurring at 500
Hz (TNTS, VTG → 500:20 R, M) in male patients’ right ears—RI. Akin to this kind of
relationship is that seen between the normal hearing threshold and vertigo (VTG, M→
500:20 R, NH, BILATERAL) and (VTG→ 500:15 R, F) in Table 3 for the initially observed
vertigo association rule. Table 11 presents the results of the association rules (TNTS, VTG
→ 250:40 R, 400:45 R, F). These rules can be likened to those observed in the primary
study as depicted by Table 3 (TNTS → 250:30 R, F), (TNTS, M → 250:60 L) and (TNTS
→ GIDDINESS, 250:35 R, F). A close look at both studies (the primary study and second
study) shows some similarities, as seen in the low-frequency, mild–moderate hearing loss
in patients with the tinnitus condition. Table 5 depicts a reflection of the results (250:35 R
→ VRTG, F).

The correlation between giddiness symptoms and pure-tone thresholds is presented
in Table 12. This signifies a correlation between giddiness and hearing normal at high-
frequency thresholds inside the left ear and right ear (GIDDINESS→ 1000:10 L, 500:20 L,
250:25 R). A related result is reflected in the primary study presented in Table 9 (500:20
R → GIDDINESS). Tables 13 and 14 shows the summary of all the discovered rules in
Tables 11 and 12, respectively, including the symptom of tinnitus/vertigo, giddiness and
some hearing thresholds.

4.6. Symptoms Prediction and Model Evaluation

The significance of the feature extraction methods cannot be overemphasized. It
is significant in the accomplishment of many AI methods [56]. The exhibitions of the
classifiers utilizing both multivariate Bernoulli and multinomial models with and without
features extraction were compared. Our study displays the validation outcomes of the
machine learning assessment used in the dataset with 242 training samples. The validation
outcomes utilizing the multivariate Bernoulli model (MVB-FPG) with FP-Growth feature
transformation appear in Figure 5. Also, further details have provided in Table 15.

Figure 6 display the 10 iterations utilizing 5 unique segments of the cross-approval
method with the average error rate (Repeated Random Sub-Sampling Validation Tech-
nique), a technique that is used to test the accuracy of a classifier. Using 10 training samples,
there is a 100% expectation of exactness utilizing allotment; also, the ratio can be predicated
as 99.5% precision with 20 training samples; in addition, 99% with 30 training samples,
98.25% with 40 training samples and 94.60% prediction with 50 training samples. There-
fore, the average error rates for the five distinct segments were 0, 0.5, 1, 1.75 and 5.4%,
respectively. The ML method work astoundingly with the multivariate Bernoulli model
(MVB) with FP-Growth features processing.
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Figure 5. Validation outcomes utilizing the multivariate Bernoulli model with FP-Growth (MVB-FPG)
feature transformation.

Table 15. Summary of results for the multivariate Bernoulli model with FP-Growth (MVB-FPG)
feature transformation.

Training Set Error Rate (%) Accuracy Rate (%)

10 0 100
20 0.5 99.5
30 1 99
40 1.75 98.25
50 5.4 94.60
AV 0.96 98.27
SD 1.92 1.75

Figure 6. Validation outcomes utilizing the multivariate Bernoulli model (MVB) without FP-Growth
features processing.
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Figure 7 illustrates the validation outcomes above 10 iterations utilizing diverse
segments. The assessment acquired from the multivariate Bernoulli model without FP-
Growth features processing differs from the outcomes acquired with FP-Growth features
processing. Figure 6 displays the average error rates utilizing the multivariate Bernoulli
approach without the features processing. The average error rate for every segment is
a high ratio. The segments with 50 and 40 training samples have the worst average
identification incorrectness with a 57% and 56% average error rates, respectively. The
segments with 10, 20 and 30 training samples have up to 50% error rates. Table 16 shows
the summary of all the percentage error and accuracy rate of the multivariate Bernoulli
naïve Bayes classifier (MN-FPG) model without FP-Growth feature transformation.

Figure 7. Validation results using the multinomial model with FP-Growth (MN-FPG) feature transformation.

Table 16. Summary of results for the multivariate Bernoulli model (MVB) without FP-Growth
features processing.

Training Set Error Rate (%) Accuracy Rate (%)

10 52 48
20 50 50
30 51 49
40 56 44
50 57 43
AV 53.20 46.80
SD 2.78 2.54

Figure 8 shows that the average error rates rely on 10 iterations utilizing the 5 diverse
segments of the validation group, and the outcome of the multinomial NB method with
FP-Growth features processing. The segment with 50 training samples have achieved the
best, with 10% error rates averaged over 10 iterations task. Therefore, the identification
rates were precisely 90%. While, the minimum average error rates were 2%, which is for
the segment with 10 training samples. It can be concluded to use average error rates of 3%,
3.9% and 8.5% for 20, 30 and 40 segments, respectively. Table 17 shows the summary of all
the percentage error and accuracy rates of the multinomial naïve Bayes classifier (MN-FPG)
model with FP-Growth feature transformation.
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Figure 8. Validation outcomes utilizing the multinomial model (MN) without FP-Growth
features processing.

Table 17. Summary of results for the multinomial (MN-FPG) model with FP-Growth feature transformation.

Training Set Error Rate (%) Accuracy Rate (%)

10 2 98
20 3 97
30 3.9 96.1
40 8.5 91.5
50 10 90
AV 5.48 94.52
SD 3.17 2.89

Figure 8 displays the validation outcomes utilizing the multinomial model without
FP-Growth features processing. The segment with 10 training samples have acquired
the minimum average error rate of 42%. While, the maximum value for a segment with
20 training samples achieving a 53% average error rate. The segments with 30, 40 and
50 training samples got error rates of 48%. All the error rates are averaged above 10 it-
erations. Table 18 shows the summary of all the percentage error and accuracy rates of
the multinomial naïve Bayes classifier model without FP-Growth feature transformation.
According to Tables 15–18, the results indicated that a low average (AV) error rate and
high average (AV) accuracy for the proposed models are achieved only when adopting the
FP-Growth feature transformation.

Table 18. Summary of the results for the multinomial model (MN) without FP-Growth feature transformation.

Training Set Error Rate (%) Accuracy Rate (%)

10 42 48
20 53 47
30 48 52
40 48 52
50 48 52
AV 47.80 50.20
SD 3.48 2.03

4.7. Discussion

The results of this study indicate a possible connection between patients’ audiogram
configuration and some attributes in their medical records. These attributes include age,
gender, symptoms, medical history, etc., as evidenced in other studies stated in Section 2 of
this study. This experiment has detected evidence of the relationship between the patient’s
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audiogram configuration and hearing-loss symptoms when experimenting with both a
small sample dataset of 50 hearing-loss patients and a larger dataset of 399 patients. The
initial study using a smaller sample dataset found a relationship among tinnitus symptoms,
vertigo symptoms, giddiness symptoms and hearing thresholds at different frequencies
and sound levels. These include some attributes such as age and gender in the relationship.
The most interesting findings were that the results of the first experiment with the smaller
data sample correlate with the results of the second experiment with a larger dataset
sample of 399 hearing-loss patients. For example, the results in the second experiment
show the symptoms of tinnitus and vertigo to be related with mild hearing loss at lower
frequencies in females (TNTS, VTG→ 250:40 R, 400:45 R, F). There were similar results
seen in the first experiment in Table 1 where the symptoms of tinnitus is related to mild
hearing loss at a low frequency (TNTS→ 250:30 R, F), (TNTS, M→ 250:60 L) and (TNTS
→ GIDDINESS, 250:35 R, F). This implies that a huge similarity exists between the two
results since low-frequency, mild–moderate hearing loss exists among tinnitus patients
in both results. The same was found in the case of symptoms of vertigo. The result is in
Table 3 (250:35 R, VTG→ 500:25, F), and 250:35 R→ VRTG, F is also reflected in Table 5
(250:35 R→ VRTG, F).

A significant result was the correlation of the input data used in the Bayesian classifier
and the high accuracy of predicting hearing-loss symptoms. It shows that the prediction
accuracy is becoming high when the vocabulary of the classification method consists
of item sets with a high frequency. The comparison results show that the multivariate
Bernoulli method is superior to the multinomial method alone or even when combined
with the FP-Growth feature transformation technique in terms of the prediction accuracy.
The multivariate Bernoulli method integrated with the FP-Growth algorithm obtains a
5.4% average error rate on 50 training examples for ten iterations for random sub-sampling.
The multinomial method with FP-Growth obtains a 10% average error rate on the same
number of training examples and iterations. As the testing and validation process that
used a big number of random training examples yields a better accurate result and more
reliable model, we prefer to use 50 partitioned training examples. The experiment results
demonstrate that both the multinomial and multivariate Bernoulli method with no FP-
Growth combination perform badly in a partition with 50 training examples and yields
the biggest average error rates of 48% and 57%, respectively. The absence of a feature
transformation technique affect the performance of both methods negatively with this
size of the dataset. It is surprising to note that the average error rates for both methods
without the feature transformation technique are high in all five partitions at the tenth
iteration. In addition, the average error rate of the multivariate Bernoulli is quite higher
compared to the multinomial method. These findings support the outcome of another study
in [4], which demonstrate the multinomial method is superior to the multivariate Bernoulli
method on four diverse datasets. Other findings show that the multinomial method is
superior to the other four probabilistic methods, including the multivariate Bernoulli
methods on three text classification problems. Despite these findings, the multivariate
Bernoulli method is superior to the multinomial method when combined with the FP-
Growth algorithm. The average error rate of the multivariate Bernoulli method is smaller
than the multinomial method when both combined with the FP-Growth algorithm in the
five partitions. However, these outcomes are in contrast to findings in [4], which indicates
the multinomial method performs better than the multivariate Bernoulli with respect to
the prediction accuracy because of the number of word frequency. In [4], an argument
was based on the vocabulary size, as the multinomial method yields better results on the
smaller size while the multivariate Bernoulli method yields better results on the bigger
size [4].

However, a contradiction to this argument is in [57], as it shows that the word infor-
mation size does not affect the performance of both methods and the multinomial method
is superior to multivariate Bernoulli method regardless of the information count. More-
over, the author of [57] argues that minimization of the word information count lead to
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improvement in classifier performance. Despite all previous studies that reinforced the
multinomial classifier, our study demonstrates that the multivariate Bernoulli method is
better than the multinomial method when the vocabulary formation includes frequent item
sets of subsets that belongs to every training example in our dataset.

According to the SD analysis in Figure 9, overall we found that MVB-FBG and MN-
FPG have scored highest and almost the same values in all training and validation data
splitting approaches; this confirms the stability of the classification performance (accuracy)
of the proposed models.

Figure 9. Validation outcomes of accuracy with SD measures for all types of models.

As shown in Figure 10, of the analysis of the error rate, we found that MVB-FBG and
MN-FPG have scored the lowest and almost the same values in all training and validation
data splitting approaches; this confirms the stability of with a low error rate performance
(misclassification) for the proposed models.

Figure 10. Validation outcomes of error with SD measures for all types of models.

However, we performed the Wilcoxon signed-rank statistical test [58] to verify, on the
one hand, whether a significant difference exists between MVB-FPG and MVB. On the other
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hand, whether there is a difference between MN-FPG and MN. Error rate and accuracy
values for all classifiers with five training sets were the main input for the Wilcoxon
signed-rank statistical test, as shown in Table 19.

Table 19. Wilcoxon signed-rank test evaluation.

Measurement Methods W-Value Mean
Difference

Sum of
Pos. Ranks

Sum of Neg.
Ranks Z-Value T-Sig

Error rate
MVB-FPG & MVB 0 −48.27 15 0 −2.0226 0

MN-FPG & MN 0 −47.52 15 0 −2.0226 0

Accuracy MVB-FPG & MVB 0 48.27 15 0 −2.0226 0
MN-FPG & MN 0 47.52 15 0 −2.0226 0

In the Wilcoxon signed-rank statistical test the main indicator is T-sig. The result
is significant when T-sig < 0.05. According to the Table 19, all of the tested results are
significant and satisfied the Wilcoxon test.

5. Limitations of the Study

This study is not without constraints and limitations. The size of the sample dataset
available for the research is a limitation that cannot be overlooked. The accuracy of the
prediction from a large dataset better shows the efficiency of the algorithm than the accuracy
of prediction from a mid-range or small dataset. It is believed the higher the amount of
training sets and validation data available for machine learning algorithms, the more
reliable the classification or prediction result will be. This limitation is due to the fact that a
lot of patient data collected from the Department of Ear, Nose and Throat at Hospital Pakar
Sultanah Fatimah, Muar, was without an audiogram. This is because some of the patients
were diagnosed with either nose or throat disease. Thus, this does not require any hearing
measurement. Another constraint is the format in which the collected data comes with.
The data collected is in paper format; therefore, there is the need to convert it into a digital
format. This has become tedious work because each and every air and bone conduction
hearing threshold value has to be recorded with the corresponding patient data. One of
the drawbacks of using a small dataset is that not all training examples in a small dataset
can have an itemset as a subset that pass the minimum support value. This can result in
the exclusion of those training examples from those that will be chosen as the training set,
as seen in this study where only 242 were chosen out of the 399 training examples in the
dataset. In the case of a very large dataset, a large percentage of the training examples
can form the training set because most of them will contain an item set that passes the set
minimum support value.

6. Conclusions

The main contribution of this work is proposing a model of symptom detection to
accurately classify symptoms of hearing loss based on hybrid machine learning approaches,
Frequent Pattern Growth (FP-Growth) and naïve Bayes (NB) algorithm, where FP-Growth
is an unsupervised method that is used for the feature extraction purpose while the NB
models are supervised models hired for the classification target. The correlation between
the hearing thresholds and symptoms of hearing loss were identified. Furthermore, the
experiments were conducted based on two scenarios: small sample and large sample
datasets. The proposed model efficiently solved the challenges relevant to diagnosis and
features extraction. This study has shown that FP-Growth and association analysis algo-
rithms can be used to uncover the hidden relationships between the hearing-loss symptoms
and audiometry thresholds in patients with hearing loss. The strong correlation between
some pure-tone audiometry thresholds and tinnitus, giddiness and vertigo symptoms was
discovered in a sample air conduction pure-tone audiometry data of 50 patients. One of the
more significant findings to emerge from this study is the correlation between the results
for the first study on a smaller data sample and that of the extension of that study on a
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dataset sample of 399 hearing-loss patients. These findings suggest that there is a connec-
tion between audiometry thresholds and hearing-loss symptoms. The result of these two
experiments showed the existence of this relationship and the performance of the hybrid
of the FP-Growth and naïve Bayes algorithms in identifying hearing-loss symptoms was
found to be efficient with a very small error rate. The results also presented a high accuracy
rate when adopting the proposed hybrid model. The average accuracy rate and average
error rate for the multivariate Bernoulli model with FP-Growth feature transformation with
five training set is a 98.25% accuracy and 1.73% error rate. The statistical test confirmed
that the proposed model has showed significant performance.

In future work, the dataset samples need to be increases to ensure a better efficiency of
the machine learning techniques. It is believed the more training sets and validation data
available for a machine learning algorithm, the more reliable the classification or prediction
result will be. To obtain a higher accuracy and training process, it is also suggested to use
deep learning methods.
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