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Abstract: Road quality commonly decreases due to aging and deterioration of road surfaces. As the
number of roads that need to be surveyed increases, general maintenance—particularly surveillance—
can be quite costly if carried out using traditional methods. Therefore, using unmanned aerial vehicles
(UAVs) and deep learning to detect changes via surveys is a promising strategy. This study proposes
a method for detecting changes on road surfaces using pairs of UAV images captured at different
times. First, a convolutional Siamese network is introduced to extract the features of an image pair
and a Euclidean distance function is applied to calculate the distance between two features. Then,
a contrastive loss function is used to enlarge the distance between changed feature pairs and reduce
the distance between unchanged feature pairs. Finally, the initial change map is improved based
on the preliminary differences between the two input images. Our experimental results confirm the
effectiveness of this approach.
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1. Introduction

The quality of road surfaces will decrease during use due to aging and deterioration. Some damage
will always appear on a road surface, such as potholes and cracks—the two most common categories
of road surface damage. To ensure safety for traffic, maintaining road surface quality is both necessary
and urgent. The number of roads to survey is increasing, which poses a real challenge for managers
using traditional surveying methods as it leads to increasing costs. Usually, an inspector needs to go
outside to collect information about the position and condition of the surface, then plan to repair the
damaged location. Currently, the use of an unmanned aerial vehicle (UAV) supported by a high-level
computing device and artificial neural network makes this surveying aspect more efficient and more
cost-effective than traditional methods.

Image change detection aims to detect the changed areas in images of the same scene taken at
different points in time [1,2]. Over the last three decades, many different methods have been reported for
detecting a changing area [3–7]. Alcantarilla et al. proposed a novel approach to change detection in
Google Street View using monocular video sequences [8]. The method combines geometric methods
with the learning made possible with an efficient convolutional network to discriminate between actual
and nuisance changes. Guo et al. proposed a method based on convolutional neural network (CNN)
architecture. It measures changes to a region using an implicitly learned metric, then develops a
contrastive loss threshold to overcome noisy changes using a different viewpoint [9]. To detect temporal
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changes in a scene from a pair of images, a new method that integrates CNN features with superpixel
segmentation has been introduced [10]. Superpixel segmentation is integrated to estimate the precise
segmentation boundaries of the changes. Nemmour and Chibani proposed that the combination of fuzzy
sets and neural networks provides complete information on changes in a remotely sensed image [11].
A fuzzy membership model classifies multi-temporal images into changed and unchanged classes, and
newly urbanized areas are detected based on an artificial neural network with the input of two Landsat
Thematic Mapper images obtained at different times. The result of the method is effective, and detailed
classes are created [12]. On the other hand, Wang et al. investigated the uncertainty in detecting the
change of images. According to the authors, there is a need to be transparent in assessing that uncertainty.
Therefore, they proposed a framework for evaluating binary land change utilizing remote sensing images.
First, changed and unchanged classes are classified by two widely adopted image change detection
methods. Second, binary decisions are reached through thresholding on change maps. Finally, two
sampling designs (i.e., stratified sampling and random sampling) are used to evaluate the results [13].

There are also many studies on change detection in UAV images. Zhan et al. proposed a novel
model for change detection in optical aerial images, which is based on the supervised deep Siamese
CNN [14]. A multi-temporal change detection framework proposed by Song et al. covers changes to
cultivated land in mountainous terrain [15]. The data in the paper, with very fine spatial and temporal
resolutions, was collected by small UAVs. Shi et al. introduced an object-based method to detect
change using multi-temporal images obtained by UAV [16]. This method can overcome distortion
effects and can fully use the high resolution of UAV images [17]. Changes to urban areas in the city of
Konya, Turkey are detected by finding the difference in digital elevation models based on comparisons
of time-series point cloud data from aerial images taken at different times [17].

In this study, a change detection method considering road surface as a property was presented using
high-resolution UAV images acquired for road surface inspection. First, a convolutional Siamese network
(ConsimNet) was proposed to extract the features of image pairs, and a Euclidean distance function was
applied to calculate the distance between two features. Then, the contrastive loss function [14,18] was
used to pull the unchanged pairs together and push the changed pairs apart. Finally, an edge detection
technique was applied to improve the detected area in the initial change map. The edge detection finds
the boundary of changed areas, and the detected area in the initial change map is adjusted based on
this boundary.

ConsimNet has proven effective at overcoming certain problems encountered in detecting changes
in high-resolution images, such as differences in an object due to a different viewpoint, wrong detection
due to the shadow of an object, and inaccurate geometric correction. However, the limitation of
ConsimNet is that it can only detect areas of significant change; it is difficult to detect changes that
are unclear or blurry. Of an entire changed area, ConsimNet often detects only the central part of
the change region, neglecting the rest because the former is usually the area with the most major
changes and thus has clearer differences than the surrounding region (the area in the process of being
broken up). Therefore, the area of the change is not fully detected. In this study, edge detection was
used to overcome this issue and ensure that such changes, specifically the boundary of the changing
region, would be found. Using this range as a standard reference for the initial change map means it
would be able to detect exact defects and the range of defects. With this method, the locations of the
changing regions were identified while ensuring that the entire area of those regions was detected.
This method can be used in pre-warnings of road conditions in road inspections, even if existing
conditions are not bad. Small potholes, indentations, or other abnormal features of the road surface can
be detected. The rest of this paper is structured as follows. The methodology is described in Section 2.
The experiment is presented in Section 3. The results and discussion are shown in Section 4. Finally,
the conclusion from this study is drawn in Section 5.
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2. Methodology

The schematic of the proposed method is shown in Figure 1. A pair of images is input through a
convolutional Siamese network (ConsimNet) [19] to obtain feature pairs. A simple predefined distance
metric (Euclidean distance function—L2) is then used to measure the dissimilarity of the feature pairs.
The contrastive loss function is applied to bring together unchanged pairs and separate changed pairs.
However, the initial change map results are not commensurate with the real changed area; the extent
of the changing area is not fully detectable. To obtain full coverage, the boundary of the real changing
area needs to be obtained as a reference value from which to adjust the range of the changing area.
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Figure 1. Schematic of the proposed method: image pair is fed to the convolutional Siamese network
(ConsimNet) to obtain feature pairs. After obtaining the dissimilarity of feature pairs, contrastive loss
is applied to pull unchanged pairs together and push changed pairs apart; this is then used to improve
the accuracy of the change map.

2.1. Convolutional Siamese Metric Network

Siamese networks are neural networks containing two or more identical sub-network components [19].
The networks have the same configuration, parameters, and weights. There are three types of layers in
conventional CNNs: convolutional, pooling, and fully connected as demonstrated in Figure 2.
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The convolutional layers can extract the hierarchical features from the input image. The functionalities
of the pooling layers consist of receptive field enlargement and dimensionality reduction, which means
to reduce the size of the output feature maps. The fully connected layers are used as a classifier, which
outputs the probabilities predicting the input image to each class.

2.2. Contrastive Loss Function

The contrastive loss function was used to enlarge the distance between changed pairs and reduce
the distance between unchanged pairs simultaneously. Let X =

{
x(i, j)

∣∣∣1 ≤ i ≤ h, 1 ≤ j ≤ w
}

be an
aerial image, and X1 and X2 be two input images each with a size of h × w × 3, where w and h are
spatial dimensions and 3 is the channel dimension (RGB channels). Define the parameterized distance
function to be learned DW between X1 and X2 as the Euclidean distance between the outputs of GW:

DW(X1, X2)i,j =
∣∣∣∣∣∣∣∣GW(X1)i,j −GW(X2)i,j

∣∣∣∣∣∣∣∣
2

(1)

GW(X1), GW(X2) is the output vector tensor, GW(X1)i,j, GW(X1)i,j is the feature vector of the pixel
with location (i, j) in the image X. To shorten the notation, DW(X1, X2)i,j is written as Di,j. Then, the
loss function in its most general form is:

l(W) =
P∑

k=1

L
(
W, (Y, X1, X2)

k
)
=

P∑
k=1

∑
i,j

(1− yk
i,j)LU

(
Dk

i,j

)
+ yk

i,jLC

(
Dk

i,j

)
(2)

where Y is a binary ground-truth map assigned to the input image pair and y(i, j) = 0 if the
corresponding pixel pair is deemed similar or y(i, j) = 1 if it is deemed dissimilar. LC is the partial loss
function for a pair of dissimilar points and LU is the partial loss function for a pair of similar points.

LC and LU must be designed such that minimizing L with respect to Di,j produces a low value
for a pair of unchanged pixels and a high value for a pair of changed pixels. LC and LU are defined
as follows:

LU(Dk
i,j) =

1
2
(Dk

i,j)
2

(3)

LC(Dk
i,j) =

1
2

{
max(0, m−Dk

i,j)
2
}

(4)

where m is a margin. Change pixel pairs contribute to the loss function only if their parameterized
distance is within this margin. In the experiment, m was set to 2. Thus, the final loss function is:

L
(
W, (Y, X1, X2)

k
)
=

∑
i,j

(1− yk
i,j)

1
2
(Dk

i,j)
2
+ yk

i,j
1
2

{
max(0, m−Dk

i,j)
2
}

(5)

2.3. Improvement of the Results

The purpose of this step is to find results that improve on the initial results based on the preliminary
difference between the two input images. Therefore, it is necessary to find the boundaries of the areas
of difference of the two images. This boundary is considered the standard range within which to
expand the initial detected area in the previous step until touching the boundary.

The steps are as follows:
Step 1: Find the difference between two images I1, I2 in each RGB color channel:

RedI1−I2 = RedI1 −RedI2

GreenI1−I2 = GreenI1 −GreenI2

BlueI1−I2 = BlueI1 − BlueI2 .

Step 2: Detect the edges of the two images I1, I2 by Canny edge detection, and by combining this
with the result in the above step we obtain a result such as that shown in Figure 3c.
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Step 3: Group all the adjacent pixels, and fill into the group that has a closed pixel area (Figure 3d).
Step 4: Remove the small region and determine the boundary location (Figure 3e,f).
Step 5: Based on this boundary, expand the initial change map.
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Figure 3. The boundary of the changed area was found: (a) image at time t0; (b) image at time t1, (c) the
changed area between the two images; (d) after filling holes in the closed pixel area; (e) after removing
the small region; and (f) the locations of different areas were detected.

Figure 3f is the preliminary difference between the two input images (white pixels). The result
not only includes real changes (red box) with the whole area covered, but also road lane marks and
some other areas (blue box) because of edge detection. However, the initial change map detected
by ConsimNet does not include this noisy object. Therefore, the edge map can be considered as a
reference of the initial change map to improve the accuracy of the result.

2.4. Evaluation Metrics

In this study, the accuracy of the method was defined using three different performance metrics [5,20,21].

Recall : Re =
TP

TP+FN
(6)

Precision : Pr =
TP

TP+FP
. (7)

F−measure : F = 2
Pr∗Re

Pr+Re
(8)

where TP is the number of true positives (i.e., the cases that were correctly classified), FP is the number
of false positives (i.e., the negative pixels that were incorrectly classified as positive pixels), and FN is
the number of false negatives (i.e., the positive pixels that were incorrectly classified as negative).

3. Experiment

3.1. Study Area and Devices

The object of the survey was the Deokyang Bridge (Figure 4) in Yeosu City, Korea. Deokyang
Bridge is 530 m long and 25 m wide. To detect the surface changes, data were taken at different times
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by a Drone Phantom 4 RTK (Table 1). The first recording was conducted on 11 January 2019, and the
second was on 17 April 2019. An orthomosaic whose average ground resolution was 14 mm/pixel was
generated through photogrammetric processing. The bridge area was selected as the test area of the
orthomosaic image. That area was divided into our computer-processable size, and the same area of
two period images was selected to finally generate 163 comparison pairs.
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Table 1. Phantom 4 RTK and mounted camera specifications (DJI Corporation).

Phantom 4 RTK Parameters

Maximum speed 58 km/h
Flight time 30 mins

Camera Parameters

Lens FOV 84◦; 8.8 mm/24 mm
Sensors 1” CMOS; Effective Pixels: 20M

Image sizes 4864 × 3648 (4:3); 5472 × 3648 (3:2)
Gimbal Stabilization: 3-axis Pitch: –90◦ to +30◦

3.2. Implementation Details

To train the proposed network, this study used a CDnet dataset [20,21]. This dataset has already
been used in [9,22]. The CDnet dataset consists of 31 videos with 91,595 image pairs depicting indoor
and outdoor scenes with pedestrians, boats, and trucks captured at different times. The dataset
represents various challenges divided into categories such as dynamic backgrounds, camera jitter,
shadow, night video, challenging weather, and internal object motion. A background image with no
feature object was selected for the reference image at time t0, and other images were taken at time t1.
A total of 91,595 image pairs were used for the training, comprising 73,276 pairs for the training set and
18,319 for the validation set. All images were scaled to 512 × 512 during the training. The proposed
Siamese network was implemented using the PyTorch framework [23]. In the training procedure, the
learning rate was set to 0.00001, and the weight decay and momentum were set to 0.00005 and 0.9,
respectively. The batch size was set to 32. The entire process of training, testing, and checking the
results was performed in Python on a PyTorch platform [23] running a Linux 18.04 operating system.
The training hardware used the NVidia Titan Xp graphics processing unit.

4. Results

To determine whether the method was a true detection method, 163 pairs of small images were
used to preliminarily determine how many locations the detection method identified, that is, the
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number of correct locations and the number of incorrect locations. The results are shown in Table 2
and Figure 5.

Table 2. Change detection results.

True Detection False Detection

True Negative True Positive False Negative False Positive

91 47 11 14

138 25

163
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Given the results above, we can see that out of the 163 images, 138 images provided good results,
equivalent to 84.7%; and 25 images provided incorrect results, equivalent to 15.3%. Thus, these results
reflect the accuracy of the method.

For a more detailed evaluation, seven image pairs were used for testing. An image-to-image
registration process was used to ensure that the image pairs were matched and located. The results are
shown in Figures 6–12, which represent tests 1 to 7, respectively. Each figure contains smaller images,
labeled (a)–(f). Image (a) is the image at time t0 captured on 11 January 2019 and image (b) is the
image at time t1 captured on 17 April 2019. Image (c) is the initial unimproved result, and image (d)
is the blended result between the image at time t1 and the initial results. Images (e) and (f) are the
preliminary differences between the two input images. Image (g) is the result after improving, and
image (h) is the blended result between the improved result and the image at time t1.
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As can be seen in images (c), (d), (g), and (h) of Figures 6–12, there are various colors in the
detected area, including green, yellow, orange, and red. This is a result of the different distances
between the two feature pairs, which were calculated by the Euclidean distance and contrastive loss
functions. Change distance images between the feature pairs were enhanced with a rainbow color map
for visualization contrast.
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As seen in the blended image (d), all potholes were correctly detected; however, the extents of the
detected area and the real changed area in image t1 were unequal. Figure 6d—Test 1, Figure 7d—Test 2,
Figure 9d—Test 4, and Figure 11d—Test 6 show that, before improvement, the extents of the detected
areas were smaller than those of the real damaged areas. However, looking at Figures 6h, 7h, 9h and
11h, after improvement, the full extent of the damaged areas could be detected. The effectiveness of
the method is shown numerically in Table 3.
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Table 3. Number of changed areas detected by the proposed method. Pr: precision; Re: recall; F: F-measure.

Image Pairs
ConsimNet ConsimNet with Improvement

Pr (%) Re (%) F (%) Pr (%) Re (%) F (%)

Test 1 67.88 1.71 3.33 74.86 2.30 4.47
Test 2 51.12 0.8 1.58 78.74 1.56 3.05
Test 3 65.19 0.1 0.2 76.24 0.29 0.58
Test 4 20.86 0.45 0.87 83.20 2.11 4.11
Test 5 87.21 0.29 0.58 88.18 0.39 0.77
Test 6 72.71 0.57 1.13 70.3 0.86 1.71
Test 7 58.43 0.1 0.2 79.39 0.23 0.47

Average 60.49 0.57 1.13 78.7 1.10 2.17

To evaluate the performance of the proposed method, the precision (Pr) was calculated as the
division of the correctly classified changed area (Tp, true positive) by the sum of the correctly classified
changed area (Tp) and incorrectly classified unchanged area (Fp, false positive). As (Re) was the result
of the correctly classified changed area (Tp) divided by the sum of the correctly classified changed area
(Tp) and correctly classified unchanged area (Fp), the F-measure rate (F) was the harmonic mean of the
precision (Pr) and the recall (Re).

Seven image pairs were used for the test; in general, the values of Pr, Re, and F for the results after
improvement were improved. Across all seven tests, before the adjustment, the average value of Pr
was 60.49%, Re was 0.57%, and F was 1.13%; after adjustment, the values of Pr, Re, and F were 78.7%,
1.10%, and 2.17%, respectively.

5. Conclusions

In this study, a change detection method based on a convolutional Siamese network was introduced
for UAV-obtained road surface images. The feature pairs of two UAV images taken at different times
were extracted by the convolutional Siamese network. Then, the distance between the features was
generated to detect changes between image pairs. The contrastive loss was applied to push changed
pairs apart and pull unchanged pairs together. Finally, edge detection was used to obtain the boundaries
of changed areas, and based on these boundaries, it was possible to adjust the detected area in the
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initial change map. This method can help to warn managers experts about road surface conditions.
The method not only determined the location of the changing area, it also ensured that the full extent
of the changing area was detected. Once the defect was detected, countable values like area or position
of the defect could be obtained based on the pixel size. If a classification by damage type is added in
the future, we could further develop this method into a pavement management system along with
damage location.

However, there are still some difficulties caused by noise-generating objects, as some unwanted
objects can still be detected and cause confusion. The most unwanted noise in this research is caused by
severe shadows. Although shadows themselves were not detected as changes in the images, the actual
defects lying beneath these shadows can remain undetected. If the view geometry of the cameras
at different times is significantly different (e.g., with a difference of 30◦ or more, the detection rate is
lowered. Standing water on roads also causes errors. Therefore, it is recommended to shoot the road
almost vertically when the sun is high, or when the weather is slightly cloudy.

Determining the type and size of the detected damage depends on the ground spatial resolution
of the images. That is, in high-resolution images, it is possible to detect changes of minute linear
cracks, etc.; however, in centimeter-level low-resolution images, it is possible to detect the presence
of potholes on roads. It is necessary to use sub-millimeter resolution images to detect minute linear
cracks and crack changes at the millimeter level. In the future, we will study the change detection of
small features due to seasonal variation or deterioration.
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