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Abstract: Machine Learning (ML) has been applied widely in solving a lot of real-world problems.
However, this approach is very sensitive to the selection of input variables for modeling and simulation.
In this study, the main objective is to analyze the sensitivity of an advanced ML method, namely the
Extreme Learning Machine (ELM) algorithm under different feature selection scenarios for prediction
of shear strength of soil. Feature backward elimination supported by Monte Carlo simulations was
applied to evaluate the importance of factors used for the modeling. A database constructed from 538
samples collected from Long Phu 1 power plant project was used for analysis. Well-known statistical
indicators, such as the correlation coefficient (R), root mean squared error (RMSE), and mean absolute
error (MAE), were utilized to evaluate the performance of the ELM algorithm. In each elimination
step, the majority vote based on six elimination indicators was selected to decide the variable to be
excluded. A number of 30,000 simulations were conducted to find out the most relevant variables in
predicting the shear strength of soil using ELM. The results show that the performance of ELM is
good but very different under different combinations of input factors. The moisture content, liquid
limit, and plastic limit were found as the most critical variables for the prediction of shear strength of
soil using the ML model.

Keywords: extreme learning machine; soil shear strength; monte carlo simulations;
backward elimination

1. Introduction

In the design phase of various large-scale construction projects (highways, roads, high rise
buildings) and geotechnical structures (earth dams, retaining walls), shear strength is an important
factor used to define the capability of soil foundations [1]. The shear strength of soil is determined
using Mohr–Coulomb criteria through two parameters, namely unit cohesion (c) and internal friction
angle (ϕ) in the case of normal soil or only unit cohesion (c) in the case of sandy soil [1]. However,
to determine these parameters, the consuming time and costly experiments are often carried out in
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the laboratory, including direct shear test, triaxial compression tests, or unconfined compression tests
which might increase the cost and prolong the time of completing the projects. Moreover, the test
accuracy depends significantly on the instruments, the meticulous procedures, and the expertise of the
experimenters [1]. Therefore, the development of new advanced techniques for quick and accurate
prediction of shear strength of soil is essential and practical.

Traditionally, the shear strength of soil is often predicted by using traditional formula-based
methods. Garven and Vanapalli [2] summarized and evaluated nineteen empirical techniques that
are available for the prediction of the shear strength of unsaturated soils. Out of these, six techniques
used tool of the soil-water retention curve (SWRC) and the remainder thirteen procedures are based
on mathematical formulations. In these empirical techniques, various parameters of soil were used
to correlate with the shear strength in unsaturated soils such as the texture of soil surface, pore size
distribution, residual suction. In another study, Sheng et al. [3] proposed different empirical equations
for the prediction of shear strength of unsaturated soils using different approaches, which are based on
the independent stress, Bishop’s stress, and constitutive models. Vanapalli and Fredlund [4] compared
different empirical approaches for the prediction of shear strength of unsaturated soils. Various
parameters used for forming the correlation equations such as particle gain distribution, liquid limit,
plasticity indices, water content. Al Aqtash and Bandini [5] used the soil-water characteristic curve to
predict the unsaturated shear strength of an adobe soil. In general, these studies show the suitability of
these approaches for predictions of the shear strength of soil. However, these approaches might not
produce predictive results with satisfactory accuracy as they are based on the linear assumption of the
factors used and non-multivariate models [1].

More recently, advanced data-driven methods based on computational algorithms, like machine
learning (ML) approaches, have been developed and applied for the construction of soil shear strength
prediction models. They are known as excellent models with high predictive capability as they are
useful in discovering the nonlinear relationship inside the data and are capable of considering many
input variables in the prediction of shear strength of soil [1]. These models are also flexible as they
can adjust their model structures to be suitable with the changes in the data. Tien Bui et al. [1]
developed a swarm intelligence-based ML approach (LSSVM-CSO) to predict soil shear strength for
road construction. A number of geotechnical factors were used in the model, such as sample depth,
sand percentage, loam percentage, clay percentage, moisture content, wet density, of soil, specific
gravity, liquid limit, plastic limit, plastic index, and liquid index. The results of this study showed
that the proposed model has a good predictive capability in the prediction of soil shear strength. This
model outperformed other benchmark ML models, namely least squares support vector machine
(LSSVM), artificial neural network (ANN), and regression tree (RT). Pham et al. [6] developed two
hybrid advanced ML techniques, namely GANFIS and PANFIS, for prediction of soil shear strength and
compared these hybrid models with two other benchmark models, namely ANN and Support Vector
Regression (SVR). The results showed that the proposed hybrid models outperformed benchmark
models with outstanding predictive accuracy. Prediction of shear strength using ML approaches is
also an interesting topic of many studies [7,8].

Although advanced ML approaches are good compared with traditional approaches, these models
are very sensitive to the selection of input parameters used in the modeling. Das et al. [9] investigated
the performance of two popular ML methods, namely SVM and ANN, for prediction of soil shear
strength under the effects of different input properties and stated that the performance of SVM and ANN
are good but very different under the effects of different input properties. The study also suggested to
carry out the sensitivity analysis to select the best suitable factors for developing and applying the
ML models. The same observation has been pointed out in other studies of Nguyen et al. [10] and
Pham et al. [11]. However, these studies used a trial-manual process for sensitivity analysis, which
might not cover all the cases of variation of input parameters. Therefore, in this study, the main
objective is to use two advanced computational statistical methods such as Monte Carlo simulation and
Feature Backward Elimination for evaluation of the sensitivity analysis of an advance ML technique,
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namely Extreme Learning Machine (ELM) algorithm for prediction of soil shear strength. The main
contribution of this study to the knowledge body is that (i) it proposes a soft computing technique
(ELM) for quick and accurate prediction of soil shear strength considering more input parameters,
which is limited or not easy to be done by using the empirical correlation equation, (ii) it evaluates for
the first time the performance of ELM under different combination of input parameters using Monte
Carlo simulation and Feature Backward Elimination, which will help in suitable selection of parameters
for prediction of soil shear strength using soft computing techniques. For this aim, data of 538 soil
samples collected from the Long Phu 1 power plant project, Long Phu district, Soc Trang province,
Vietnam were used for generating the datasets used in the modeling. Well-known statistical indicators,
such as the correlation coefficient (R), root mean squared error (RMSE), and mean absolute error (MAE),
were utilized to evaluate the performance of the ELM algorithm under sensitivity analysis.

2. Methodology

In order to address this problem, the methodology of the present study contains several main
steps such as (1) construction of the database: Input parameters, namely the clay content, moisture
content, specific gravity, void ratio, liquid limit, and plastic limit were gathered from technical reports.
The considered output variable of this work is the shear strength of soil, (2) ELM algorithm was firstly
optimized by an analysis concerning the number of neurons used in the model, (3) after the optimal
number of neurons of ELM successfully found, it was used to perform the backward elimination in
combination with Monte Carlo simulation, (4) using six types of criteria, namely the maximum value
of R, minimum values of RMSE and MAE, average values of R, RMSE and MAE, the elimination of
input variables was decided by majority vote.

2.1. Data Collection and Preparation

Data used in this study were collected from the Long Phu 1 power plant project (longitude of
9◦59′07.3”N and latitude of 106◦04′48”E) located at the southern side of the Hau river, Long Duc
commune, Long Phu district, Soc Trang province, Vietnam (Figure 1). Union of Engineering Geology,
Construction and Environment (UGCE) was in charge of the soil investigation works. In addition,
a program of the additional soil investigation was carried out by UGCE in April and August 2011,
including exploratory borings, field testing, and soil laboratory testing to provide the information
relating to the soil conditions of foundation design and construction of the project, and these data were
extracted to generate the datasets for the modeling of soil shear strength prediction in this study.

Datasets of 538 soil samples were extracted from the project and used in this study. In datasets,
variables, such as moisture content (%), clay content (%), void ratio, plastic limit (%), liquid limit (%),
and specific gravity, were used as inputs, and shear strength was used as output.

Table 1 shows the initial statistical analysis of the dataset, including the unit and coding of each
variable. It is seen that statistical information, such as average, standard deviation, and quantiles of all
variables, is fully exposed. For illustration purposes, Figure 2 presents the corresponding histograms of
all variables used in this study, as well as the scatter plot between input variables and output response.
It can be observed that the distribution of clay covered a wide range between 0 and 65 (mm), the liquid
limit from 20 to 65 (%), and the plastic limit from 15 to 35 (%) with a high concentration around 20 (%).
Most of the specific gravity values were in the 2.6–2.7 range, whereas the void ratio covered between
the 0.5–1.0 range and a low concentration of values was around the 1.75 range. It can also be observed
that there is no direct relationship between inputs and output response. Thus, it can be stated that the
choice of variables in this study is relevant and suitable [12].
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Figure 1. Location of the study site: Long Phu 1 power plant (https://www.power-technology.com/

projects/long-phu-1-thermal-power-plant-soc-trang-province/).

In order to validate the efficiency of the developed ML model, a sub-dataset calling testing part
was made, exhibiting 30% (161 samples) of the total 538 configurations. It is worth noticing that such a
rate of testing/training was recommended in the literature when developing ML-based models [13–17].
On the other hand, in order to reduce fluctuations within the dataset in training the ML model, as
the variables have different ranges of values, all variables were scaled into the range of [0, 1] in order
to avoid an unexpected jump in optimizing weight parameters of the models [13,18–20]. The scaling
process of a variable x is expressed by Equation (1), and it involves two parameters, α and β, as
indicated in Table 1. Precisely, α is the minimum value of the dataset and β is the maximum value.

xscaled =
xoriginal

− α
β− α

(1)

https://www.power-technology.com/projects/long-phu-1-thermal-power-plant-soc-trang-province/
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Table 1. Initial analysis of data used in this study.

Parameter Clay Moisture
Content

Specific
Gravity Void Ratio Liquid

Limit
Plastic
Limit

Soil Shear
Strength

Unit mm % - - % % kG/cm2

Coding X1 X2 X3 X4 X5 X6 Y
Min (α) 0.2000 0.7200 0.0100 0.0210 0.7000 0.6000 0.0368
Average 33.2467 31.8336 2.6142 0.9142 42.3649 22.1678 0.4791
Median 33.2000 26.5500 2.6900 0.7870 42.5000 21.4000 0.4964
Max (β) 77.6000 75.1400 2.7500 2.0890 74.9000 41.0000 0.9307

SD* 16.1388 15.2671 0.4271 0.3935 13.2635 6.1376 0.2036
Q25 20.7000 23.6100 2.6700 0.7090 33.5000 18.7000 0.3978
Q50 33.2000 26.5500 2.6900 0.7870 42.5000 21.4000 0.4964
Q75 47.4000 30.9700 2.7100 0.8850 50.4000 24.3000 0.6287

SD* = Standard deviation.
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2.2. Extreme ML-Based Modeling

Extreme Learning Machine (ELM) is a single hidden layer feedforward neural network (SLFN).
The performance of SLFN should be suitable for the system, which can be modeled for data such as
critical value, weight, activation function. Therefore, higher learning can be done. In gradient-based
learning approaches, all of these parameters are reiteratively modified for each appropriate value.
Unlike feedforward neural networks (FNN), which are renewed based on the gradient, in the ELM
process, the output weights are analytically built while the input weights are randomly chosen. For an
analytic learning process, success rate increases thanks to a strong reduction of the resolution time and
the error value. ELM can be introduced to choose a linear function for activating cells in a hidden layer,
maybe use non-linear (such as sigmoid and sinusoidal), non-derivatized, or intermittent activation
functions [21,22]. ELM algorithm can be shown in the following equations:

y(p) =
∑m

j=1 α j g

(∑n

i=1
wi, jxi + a j

)
(2)
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H(wi, j, a j, xi) =


g(w1,1x1 + a1) · · · g(w1,mxm + am)

...
. . .

...
g(wn,1xn + a1) · · · g(wn,mxm + am)

 (3)

y = Hα (4)

where αi is the weights between the input layer and the hidden layer and αj is the weights between
the output layer and the hidden layer, aj is the critical value of the neurons in the hidden layer, g(.)
activation function. Input layer weights (wi,j) and bias (aj) are randomly selected. At the beginning of
the input layer neuron number (n) and hidden-layer neuron number (m), the activation function (g(.))
is selected. To construct the ELM algorithm, the database was split into a training dataset (70% data)
and the remaining data (30%) for building and validation of the ELM model.

2.3. Backward Elimination-Based Sensitivity Analysis

Backward elimination, belonging to the wrapper methods, is basically the opposite of the forward
selection approach [23]. Precisely, all input variables are firstly chosen, then the most unimportant of
the variables are removed one by one in this case [24]. For strategic choices of the process, relative
importance of an input variable can be obtained by eliminating an input variable and assessing the
influence on the model to be retrained without it or by examining the effect of each input variable on
the output by the sensitivity analysis method. In the filtering strategies, the least relevant candidates
will be deleted repeatedly until the optimal criteria are satisfied. The process of backward elimination
can be summarized in Figure 3.
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2.4. Monte Carlo Simulations

Monte Carlo method is one of the most widely used techniques for propagating the input
variability on the output results [25–29]. Regarding, for instance, the field of geotechnical engineering,
Pham et al. [11] applied the Monte Carlo method for accounting variability of various content properties
of soil on the prediction of its mechanical behavior under compression during a highway project. In
another attempt for steel structures, the Monte Carlo technique was employed by Le et al. [15] in order
to quantify the robustness of hybrid ML models for predicting the critical buckling load of structural
members. For typical construction and building materials, such as concrete, many studies involving
Monte Carlo technique were introduced in the literature, taking into account the variability in the
input space. For instance, Wang et al. [30] quantified the size effect of random aggregates and pores on
the mechanical properties of concrete. Jaskulski et al. [31] proposed a probabilistic analysis for concrete
subjected to shear. So far, numerical prediction models involving Monte Carlo method could strongly
explain the variation of the output results through statistical analysis.

Monte Carlo method is extremely robust and efficient for calculating the propagation of the input
variability on the output results, especially using ML models [11,32]. The main idea of the Monte Carlo
method is to repeat realizations randomly in the input space and then calculate the corresponding
output through the simulation model [33,34]. Therefore, this numerical technique exhibits a high
ability in parallel computing [35–38]. A concept of using the Monte Carlo method is presented in
Figure 4, involving a two-dimensional input space with a typical probability distribution.
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fMC(nMC) =
1
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i=1

Gi, (5)
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where G is the mean value of the considered random variable G and nMC is the number of Monte
Carlo runs. This convergence function provides efficient information related to the computational
time, reliability results for further statistical analysis.

2.5. Performance Evaluation

To validate the predictive capability of the models, Mean Absolute Error (MAE), the Pearson
correlation coefficient (R), and Root Mean Squared Error (RMSE) were selected and used, as these
validation criteria are popular in evaluating the ML models. Basically, R indicates the statistical
relationship between the actual values of experiments and the predicted values of the models [41].
Its absolute values range from 0 to 1 where 0 shows an inaccurate correct model and 1 indicates an
accurate model. Higher R values indicate better performance of the models. RMSE indicates the
average squared difference between the actual and predicted values [42]. In the case of MAE, it shows
the average of absolute difference between predicted and actual values [43]. In general, RMSE and
MAE show the error evaluation of the models. Thus, lower RMSE and MAE values indicate better
performance of the models. Calculation of these values (R, RMSE, and MAE) can be carried out using
the following equations:

MAE =

∑m
i=1|ri − ti|

m
(6)

RMSE =

√∑m

i=1

(ri − ti)
2

m
(7)

R =

√√√√ ∑m
i=1 (ri − r)(ti − t)√∑m

i=1 (ri − r)2∑m
i=1 (ti − t)2

(8)

where m is defined as the number of samples, ri and t are defined as the values and means of
the predicted shear strength, respectively, and ti and t are the values and mean of the actual shear
strength, respectively.

3. Results

3.1. Validation of ELM with Various Number of Neurons

Validation of ELM was conducted by performing 1000 simulations to each of 12 ELM architectures,
where the number of neurons varied from 5 to 60 with a step of five neurons. Overall, the total number
of simulations was 12,000, taking into account the random sampling index of the dataset. The results
with respect to R, RMSE, and MAE are plotted in Figure 5, where the red squares represent the average
values, and the blue bars show the standard deviation with respect to 1000 simulations. On the basis of
average values and standard deviation of R, RMSE, and MAE, it is found that the optimal number of
neurons is in the range of 15 to 25. The best performance of ELM is with 20 neurons, where the highest
value of R and lowest values of RMSE and MAE were obtained. Moreover, the standard deviation of
ELM using 20 neurons over 1000 random simulations is also smaller compared to other neuron options.
The obtained values of average and standard deviation of RMSE are 0.1082 and 0.0231, whereas those
of MAE are 0.0857, 0.0231, respectively, and those of R are 0.9218 and 0.0167, respectively. Overall, the
performance of ELM is good for the prediction of shear strength of soil, and the number of 20 neurons
used for training ELM was selected as an optimal choice for further investigations.
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3.2. Sensitivity Analysis Using Backward Elimination and Monte Carlo Simulations

The sensitivity analysis by performing backward elimination with the help of Monte Carlo
simulations is carried out in this section. A number of four scenarios (Scenarios 1 to 4), corresponding
to each input space after the elimination process, was defined. The “Scenario 0” refers to the case using
the initial input space without excluding any variables. The “Scenario 1” consisted of six different input
spaces containing only five variables, in which each variable was excluded from the corresponding
input space. For instance, six input spaces considered in this case were: (i) X2, X3, X4, X5, X6; (ii) X1,
X3, X4, X5, X6; (iii) X1, X2, X4, X5, X6; (iv) X1, X2, X3, X5, X6; (v) X1, X2, X3, X4, X6; (vi) X1, X2, X3, X4,
X5. Similarly, the “Scenario 2”, “Scenario 3”, and “Scenario 4” corresponded to the cases with five,
four, three input spaces, respectively (Figure 3). The summarized input space and the four scenarios
could be illustrated in Figure 3. The following sections are dedicated to each step of the backward
elimination process.

3.2.1. Reduction of the Input Space from 6 to 5 Variables (Scenario 1)

The first step of backward elimination consists of quantifying the performance of ELM in predicting
the shear strength of soil by excluding each variable successively in the input space of the database.
Thus, a number of 6000 simulations (six input spaces x 1000 simulations) were performed in excluding
successively from input X1 to X6. The results are plotted in Figure 6 for average values of R, RMSE, and
MAE (red squares), standard deviation (blue bars) and min, max values (orange bars). Detailed values
with respect to six elimination indicators are summarized in Table 2. For the sake of comparison, the
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discontinuous black lines represent the corresponding values of the criteria for the case of using all
input variables (Scenario 0). On the basis of average values of R, it is observed that the performance
of the ELM algorithm in excluding clay content (X1) slightly decreased from 0.9218 (simulation with
six inputs) to 0.9203 (simulation with five inputs except for clay content). For the remaining cases
(excluding from X2 to X6), the performance of ELM decreased more significantly. Similar observations
were noticed taking the average values of RMSE and MAE. Indeed, it was found that excluding clay
content (X1) reduced the ELM prediction performance with RMSE decrease from 0.1082 to 0.0925, and
MAE decreased from 0.0857 to 0.0722 while comparing the cases of all input variables and without clay
content in the input space. Besides, taking the maximum values of R or minimum value of MAE as an
indicator, plastic limit (X6) was the variable to be excluded. However, taking the minimum value of
RMSE as an indicator, the specific gravity (X3) was the variable to be excluded. Finally, the elimination
decision was made based on the majority vote between indicators, where clay content (X1) was selected
to be a less important variable compared with other variables for predicting soil shear strength.
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Table 2. ELM performance while reducing the input space from six to five input variables.

Excluded X1 X2 X3 X4 X5 X6 Full Decide

Mean (R) 0.9203 0.9121 0.9136 0.9191 0.8858 0.9167 0.9218 X1
Max (R) 0.9581 0.9504 0.9502 0.9604 0.9302 0.9552 - X4

Mean (RMSE) 0.0925 0.0968 0.0944 0.0941 0.1080 0.0961 0.1082 X1
Min (RMSE) 0.0675 0.0662 0.0639 0.0641 0.0797 0.0652 - X3
Mean (MAE) 0.0722 0.0762 0.0740 0.0743 0.0867 0.0753 0.0857 X1
Min (MAE) 0.0506 0.0500 0.0489 0.0502 0.0601 0.0482 - X6

3.2.2. Reduction of the Input Space from Five to Four Variables (Scenario 2)

The second step of backward elimination consists of the assessment of ELM capability in predicting
the shear strength of soil by excluding each of the remaining inputs (X2 to X6). Thus, a number of 5000
simulations (5 input spaces × 1000 simulations) were performed. The results of average and standard
deviation values of R, RMSE and MAE are displayed in Figure 7. Detailed values with respect to six
indicators are summarized in Table 3. The discontinuous black lines represent the error criteria values
for the case without using clay content (X1) as input variable. On the basis of average values of R, it
is observed that the performance of the ELM algorithm in excluding void ratio (X4) decreased from
0.9203 (simulation with five inputs except clay content) to 0.9188 (simulation with four inputs except
clay content and void ratio). For the remaining cases (excluding X2, X3, X5, and X6), the performance
of ELM exhibited lower values (Table 3). Similar remarks were observed for the average values of
RMSE and MAE. Indeed, it was found that excluding the void ratio made inconsiderable changes
with RMSE (increase from 0.0925 to 0.0957) and MAE (increase from 0.0722 to 0.0751) with respect to
the cases of all input variables without clay content as a variable. Interestingly, taking the maximum
values of R, or minimum values of RMSE and MAE as indicators, the void ratio was also the variable
to be excluded. The elimination at this stage revealed that void ratio (X4) is a less important variable
compared with other variables (X2, X3, X5 and X6) in predicting the soil shear strength.
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Table 3. ELM performance while reducing the input space from five to four input variables.

Excluded X2 X3 X4 X5 X6 Full Decide

Mean (R) 0.9089 0.9149 0.9188 0.8868 0.9113 0.9203 X4
Max (R) 0.9528 0.9503 0.9533 0.9333 0.9503 - X4

Mean (RMSE) 0.0957 0.0969 0.0931 0.1083 0.1002 0.0925 X4
Min (RMSE) 0.0694 0.0683 0.0644 0.0772 0.0650 - X4
Mean (MAE) 0.0751 0.0760 0.0732 0.0861 0.0793 0.0722 X4
Min (MAE) 0.0508 0.0507 0.0495 0.0593 0.0511 - X4

3.2.3. Reduction of the Input Space from Four to Three Variables (Scenario 3)

The third step of backward elimination consists of predicting the shear strength of soil by
successively excluding the remaining inputs (X2, X3, X5, and X6). This induces a total number of 4000
simulations (4 input spaces × 1000 simulations) to be performed. The results of average and standard
deviation values of R, RMSE, and MAE are plotted in Figure 8. Detailed simulation results with respect
to six indicators are summarized in Table 4. The discontinuous black lines represent the error criteria
values for the simulation without using clay content (X1) and void ratio (X4) as input variables. With
respect to the average values of R, it is observed that the performance of ELM algorithm in excluding
plastic limit (X6) slightly decreased from 0.9188 (simulation with four inputs without clay content and
void ratio) to 0.9164 (simulation with three inputs except for clay content, void ratio, and plastic limit).
On the contrary, different remarks were observed for the average values of RMSE and MAE. Precisely,
it was found that excluding specific gravity made inconsiderable changes with RMSE (increase from
0.0931 to 0.0993) and MAE (increase from 0.0732 to 0.0778). More importantly, taking the maximum
values of R, or minimum values of RMSE and MAE as indicators, specific gravity was the variable
need to be eliminated. The backward elimination at this stage revealed that the specific gravity (X3) is
less important input variable compared with other variables (X2, X5, and X6) in predicting the shear
strength of soil.
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for the case of (a) R; (b) probability density function of R; (c) RMSE; (d) probability density function of
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Table 4. ELM performance while reducing the input space from four to three input variables.

Excluded X2 X3 X5 X6 Full Decide

Mean (R) 0.7985 0.9138 0.8897 0.9164 0.9188 X6
Max (R) 0.8864 0.9574 0.9360 0.9535 - X3

Mean (RMSE) 0.1722 0.0993 0.1219 0.1031 0.0931 X3
Min (RMSE) 0.0990 0.0633 0.0792 0.0670 - X3
Mean (MAE) 0.1429 0.0778 0.1002 0.0827 0.0732 X3
Min (MAE) 0.0758 0.0480 0.0591 0.0516 - X3

3.2.4. Final Input Space with Three Variables (Scenario 4)

The final step of backward elimination in this study consists of performing the prediction by
excluding one of the remaining inputs (X2, X5, and X6). At this stage, the total number of 3000
simulations (3 input spaces × 1000 simulations) was performed. The results of average and standard
deviation values of R, RMSE, and MAE are plotted in Figure 9. Detailed simulation results with respect
to six indicators are summarized in Table 5. The discontinuous black lines represent the error criteria
values for the simulation without using clay content (X1), specific gravity (X3) and void ratio (X4) as
input variables. With respect to the average values of R, it is observed that the performance of ELM
algorithm in excluding plastic limit (X6) slightly decreased from 0.9138 (simulation with four inputs
without clay content, specific gravity, and void ratio) to 0.8815 (simulation with two inputs moisture
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content and liquid limit). On the contrary, different remarks were observed for the average values of
RMSE and MAE. Precisely, it was found that excluding the liquid limit made inconsiderable changes
with RMSE (increase from 0.0993 to 0.1334) and MAE (increase from 0.0778 to 0.0778). On the other
hand, taking the maximum values of R, or minimum values of RMSE and MAE as indicators, the
plastic limit was the variable need to be eliminated. Overall, it could be considered that the plastic
limit is less important than the liquid limit and moisture content in predicting the shear strength of
soil, and thus, it can be concluded that moisture content is the most important factor for the prediction
of the shear strength of soil.
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Table 5. ELM performance while reducing the input space from four to three input variables.

Excluded X2 X5 X6 Full Decide

Mean(R) 0.5499 0.8571 0.8815 0.9138 X6
Max(R) 0.7851 0.9322 0.9481 - X6

Mean(RMSE) 0.2673 0.1334 0.1397 0.0993 X5
Min(RMSE) 0.1296 0.0782 0.0684 - X6
Mean(MAE) 0.2291 0.1093 0.1162 0.0778 X5
Min(MAE) 0.0979 0.0627 0.0509 - X6

4. Discussions

4.1. Performance of ELM in Predicting the Shear Strength of Soil

Overall, the performance of the ELM algorithm in predicting the shear strength of soil is satisfactory.
From Scenarios 1 to 4, in reducing the input space from six to three variables, the accuracy of ELM was
reasonably accepted. Precisely, the average values of R decreased from 0.9218 to 0.8815, those of RMSE
were varied in the range of 0.1082–0.1334 and an increase of MAE values from 0.0857 to 0.1093 between
Scenario 0 and Scenario 4, respectively. ELM algorithm could thus be considered as a good predictor
to deal with the soil shear strength problem. Moreover, the computation time of ELM is very fast in
comparison with other common ML methods such as ANN, ANFIS, or SVM [11]. For illustration
purposes, one simulation using ELM in this study took only less than 0.1 seconds, which could be very
efficient for massively parallel computing. The total 30,000 simulations in this study were conducted in
just a few hours in an Intel Xeon E3-1505M V5 2.80GHz computer using eight processors. The reason
lies in the main concept of ELM, by random initialization of the single hidden layer feedforward NN
for the weights and biases [44].

4.2. Reliability of the Predicted Results by Monte Carlo Approach

The reliability of an ML algorithm, represented by the convergence of simulation results, is
crucial for any analysis. Presented in the previous sections, the convergence analysis via Monte Carlo
simulation is performed in order to provide additional information on the prediction capability of the
ELM model. It is worth noticing that, for the sake of simplicity, only results of R and RMSE are shown in
Figure 10. Overall, the R values over five simulation scenarios were converged after only 200 runs (in a
1% range compared with the average values of R), whereas smaller fluctuation can be achieved over 700
simulations in all the cases. For RMSE values, the fluctuations were observed in the 4% range compared
with the corresponding average values of RMSE. More stable results were achieved when the number
of simulations exceeded 800. Interestingly, in excluding the liquid limit (X5), the plastic limit (X6) or
moisture content (X2) from the input space seemed to highly increase the fluctuations of the statistical
analysis. This could be another confirmation to strengthen the conclusion of the backward selection
feature in this study, as these three variables were considered as important. The fluctuation analysis
of results was in very good agreement with the convergence analysis. Thus, performing backward
elimination coupling with Monte Carlo simulation as a support decision indicator, an in-depth point of
view on the importance of variables could be revealed.
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(h) RMSE for Scenario 4.

4.3. Backward Elimination Criteria-Based Sensitivity Analysis

The backward elimination process, belonging to the wrapper methods, has been empirically
proven that it obtains subsets with better performance than certain feature selection methods (i.e., filters
methods) as the obtained subsets are evaluated by real modeling algorithms [24]. Moreover, comparing
with forward selection, backward elimination finds a stronger subset of features because of the full
assessment of features during the selection process [23]. Last but not least, backward elimination
could reveal information not only on the importance but also the unimportance of input variables.
However, selecting the criteria to remove such variables from the input space is crucial. In this study,
six criteria were proposed and independently evaluated to provide useful information to the final
decision. The average values of R, RMSE, or MAE could be potential candidates as they reflect the
global, converged performance of the ELM algorithm over a sufficient number of simulations. It is
found that, in all cases, the average values of RMSE and MAE were the reliable indicators for the
elimination process. The average value of R was failed in one case (Scenario 3), similar to the minimum
values of RMSE and MAE (Scenario 1).

The results show that the values of R attained negative values in several cases. This could be
the reason for several sudden changes in the statistical convergence curves (Figure 9), making the
average value of R not a good indicator. This is quite familiar for all ML algorithms performed with
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Monte Carlo simulation, as the values of R could be stable (ANFIS model in [45], SVM algorithm
in [11]) or unstable (ANN algorithm in [45]). The values of RMSE and MAE were noticed to be
more stable, in which extreme or outlier values were not observed. This could be because using
the average values of RMSE, MAE is better than that of R. Interestingly, the maximum values of R
were also found as a reliable elimination indicator in this study. In fact, choosing ML model with the
highest accuracy (maximum value of R or R2) to perform further investigation is very common in the
literature, for instance, in [17]. The maximum values of R or minimum values of RMSE and MAE
only represented the best performance of the ELM algorithm over a certain number of Monte Carlo
simulations. Even though the number of 1000 runs in each case was proven to be statistically satisfied,
these values could change when increasing the number of simulations. Therefore, the use of maximum
values of R or minimum values of RMSE and MAE as backward elimination indicators still needs
further investigations.

4.4. Importance of Input Factors for Prediction of Soil Shear Strength

Validation of the importance of input factors for developing and applying ML models is an
essential task which will help in selecting the most suitable factors used for more effective and accurate
modeling and prediction. In this study, with the help of a combination approach of EML, Monte Carlo
and backward elimination, the importance of input factors for prediction of soil shear strength was
validated and determined (Table 6). Except for Scenario 2, the study found that the moisture content,
liquid limit and plastic limit were the three most important input variables. Considering Scenarios
1 and 2, the liquid limit is more important than others, however, Scenarios 3 and 4 demonstrated
that the moisture content had a stronger effect on predicting the soil shear strength than others. In
general, water-related factors are the most important parameters affecting the soil shear strength and
the performance of the predictive ML model. It is reasonable because water can significantly reduce
the friction and link between soil particles, thus, the shear strength of less-water soil will be higher
than those of more-water soil. The finding of this study is also comparative with other published
studies [46,47].

Table 6. Order of importance over four scenarios in this study.

Order of Importance 1 2 3 4 5 6

Scenario 1 X1 X4 X3 X6 X2 X5
Scenario 2 X4 X2 X3 X6 X5 -
Scenario 3 X3 X6 X5 X2 - -
Scenario 4 X5 X6 X2 - - -

The limitation of this study is that the feature interaction might be a phenomenon that slightly
changed the order of importance in the present study [48]. It occurs when such feature has a little
correlation with the predicted target but highly correlated when treating with another feature, so that
excluding these types of features could reduce the performance of the ML algorithms [48]. With respect
to the change of ML algorithms due to the elimination of one input, the readers could refer to the
literature [14].

5. Conclusions

In this study, the sensitivity of an advanced ML method, namely the ELM algorithm under
different feature selection scenarios for prediction of shear strength of soil was carried out. Feature
backward elimination and Monte Carlo simulations were applied to evaluate the importance of factors
used for the modeling. A database including input variables (moisture content (%), clay content (%),
void ratio, plastic limit (%), liquid limit (%), and specific gravity) and output variable (shear strength
of soil) constructed from 538 samples collected from Long Phu 1 power plant project was used for
analysis. Well-known statistical indicators such as R, RMSE, and MAE were utilized to evaluate the
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performance of ELM algorithm. In each elimination step, the majority vote was selected to decide the
variable to be excluded.

The results show that the performance of ELM is good but very different under different
combinations of input factors for the prediction of shear strength of soil. The moisture content, liquid
limit, and plastic limit were found as the most important variables, and other factors are less important
for prediction of shear strength of soil using the ML model. This study might help to select the suitable
factors for more quickly and accurately prediction of shear strength of soil using ML models.
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