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Abstract: In this research, an innovative electric vehicle (EV) charger is designed and presented for
xEV charging stations. The key feature of our system is a scalable, interleaved inductor–inductor–
capacitor (iL2C) DC-DC converter operation. The proposed system employs two parallel L2C
converters with 8-GaN switches on the primary side and a shared rectifier circuit on the secondary
side. This configuration not only amplifies the resonant tank internal currents and losses gener-
ated by the switches but also improves current sharing. A novel closed-loop technique is pro-
posed with a constant-voltage method of operation, along with a hybrid control scheme of variable
frequency + phase shift modulation (VFPSM). To examine the controller and converter’s performance,
an experimental demonstration is conducted under varying load conditions, including full load,
half load, and light load, where the source voltage and load voltage are maintained at constant
levels of 400 Vin and 48 V0, respectively. Furthermore, line regulation is conducted and verified to
accommodate a broad input voltage range of 300 Vin–500 Vin and 500 Vin–300 Vin while maintaining
an output voltage of 48 V0 at 3.3 kW, 1.65 kW, and 0.33 kW with a peak efficiency of 98.2%.

Keywords: electric vehicle charger; DC-DC converter; scalable; iL2C resonant converter; hybrid
control strategy; gallium nitride

1. Introduction

Due to the contamination caused by toxic gases, carbon emissions, and unpredictable
weather patterns, conventional internal combustion engines are approaching their max-
imum capabilities. There is a global initiative to implement environmentally friendly
transportation in order to mitigate the effects of climate change. Electric vehicles (EVs) are
increasingly becoming popular due to their environmentally advantageous nature, aiming
to replace internal combustion engines (ICEs) and reduce carbon dioxide emissions [1–3].
By transitioning to electric vehicles, such as battery electric vehicles (BEVs), fuel cell electric
vehicles (FCEVs), hybrid electric vehicles (HEVs), ultra-capacitor electric vehicles (UCEVs),
solar-charged electric vehicles (SCEVs), and plug-in hybrid electric vehicles (PHEVs), we
can significantly reduce pollutants [4,5]. The goal of achieving a carbon-free society by 2030
in Europe and 2050 in India is ambitious but achievable with the swift adoption of EVs and
the development of robust charging infrastructure. This transition not only contributes
to environmental preservation but also promotes technological advancement and energy
independence. The increasing demand for electric vehicles necessitates the development
of a strong and efficient charging infrastructure. The information in [6,7] covers power
electronics for several applications such as solar energy, fuel cells, renewable energy, and
electric cars. It also discusses optimization approaches for various charging topologies.
Figure 1 illustrates a standard block diagram of a charging infrastructure.
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Figure 1. Typical block diagram of charging power conversion system. 

In the present scenario, the EV industry is looking for a scalable design that can op-
erate over wide operating ranges and easily adjust to different power requirements [8]. 
The need for scalability is increased because battery charging technology has improved 
over a wide range from 48 V to 800 V and even larger in some cases. The scalable designs 
are helpful with their quick adaptability of operation to the desired voltage range [9]. Res-
onant converters are more popular for their merit of operation over wide operating 
ranges; hence, this paper deals with an advanced resonant converter named the iL2C con-
verter, which is an extension of the L2C converter [10,11]. 

According to our understanding, L2C resonant converters are gaining popularity in 
comparison to numerous traditional DC-DC converters [12,13]. This is due to their inher-
ent benefits, including primary-side zero voltage switching (ZVS) operation across all load 
circumstances and secondary-side zero current switching (ZCS) operation with synchro-
nous rectification [14,15]. The ZVS function can be compromised if the switching fre-
quency, denoted as fs, is too low. Consequently, designers must take this into account 
when dealing with applications that require a wide voltage gain [16,17]. Furthermore, the 
use of the L2C converter as an EV charger is subject to many limitations. For instance, 
augmenting the load capacity at a high power density results in amplified voltage and 
current fluctuations, which can potentially harm the product [18,19]. The volume of the 
resonant tank is limited, resulting in increased circulating current and reduced efficiency 
[20]. 

This work introduces an iL2C converter as an electric vehicle charger to address the 
research gap in L2C converters [21]. In order to increase the load capacity, this converter 
employs two L2C converters operating in parallel. Consequently, the power losses in the 
transformer are reduced during high-current applications. Over time, numerous control 
techniques have been suggested to enhance soft switching, ensure precise regulation, and 
minimize the circulating current [22,23]. All of these control methods can be employed in 
different working areas of the converter, such as when the switching frequency (fs) is less 
than the resonant frequency (fr), when fs is equal to fr, and when fs is more than fr. These 
methods have an impact on the regulation of the converter. This article presents a hybrid 
control technique called the variable frequency + phase shift modulation (VFPSM) 
scheme. The strategy operates at a specified current value in either the zero current switch-
ing (ZCS) or zero voltage switching (ZVS) operating area. Furthermore, the iL2C DC-DC 
converter utilizes wideband gap semiconductor-based E-mode (enhancement mode) GaN 
technology. 

The research contributions of this paper are as follows: 
a. The modeling of a scalable iL2C resonant converter with operation is presented. 
b. A hybrid control strategy is suggested and derived to improve the regulations. 
c. Simulations are presented for various load and line regulating conditions to check 

the converter performances. 
d. The experimental setup is demonstrated using E-mode GaN technology at 3.3 kW as 

an EV charger with an efficiency of 98.2%. 

2. Modeling and Operation of iL2C Converter Topology 
Figure 2 illustrates the resonant DC-DC topology of the iL2C, while Figure 3 depicts 

identical waveforms. It consists of two resonant circuits, each with a switching topology 

Figure 1. Typical block diagram of charging power conversion system.

In the present scenario, the EV industry is looking for a scalable design that can operate
over wide operating ranges and easily adjust to different power requirements [8]. The
need for scalability is increased because battery charging technology has improved over
a wide range from 48 V to 800 V and even larger in some cases. The scalable designs are
helpful with their quick adaptability of operation to the desired voltage range [9]. Resonant
converters are more popular for their merit of operation over wide operating ranges; hence,
this paper deals with an advanced resonant converter named the iL2C converter, which is
an extension of the L2C converter [10,11].

According to our understanding, L2C resonant converters are gaining popularity in
comparison to numerous traditional DC-DC converters [12,13]. This is due to their inherent
benefits, including primary-side zero voltage switching (ZVS) operation across all load cir-
cumstances and secondary-side zero current switching (ZCS) operation with synchronous
rectification [14,15]. The ZVS function can be compromised if the switching frequency,
denoted as fs, is too low. Consequently, designers must take this into account when dealing
with applications that require a wide voltage gain [16,17]. Furthermore, the use of the L2C
converter as an EV charger is subject to many limitations. For instance, augmenting the
load capacity at a high power density results in amplified voltage and current fluctuations,
which can potentially harm the product [18,19]. The volume of the resonant tank is limited,
resulting in increased circulating current and reduced efficiency [20].

This work introduces an iL2C converter as an electric vehicle charger to address the
research gap in L2C converters [21]. In order to increase the load capacity, this converter
employs two L2C converters operating in parallel. Consequently, the power losses in the
transformer are reduced during high-current applications. Over time, numerous control
techniques have been suggested to enhance soft switching, ensure precise regulation, and
minimize the circulating current [22,23]. All of these control methods can be employed in
different working areas of the converter, such as when the switching frequency (fs) is less
than the resonant frequency (fr), when fs is equal to fr, and when fs is more than fr. These
methods have an impact on the regulation of the converter. This article presents a hybrid
control technique called the variable frequency + phase shift modulation (VFPSM) scheme.
The strategy operates at a specified current value in either the zero current switching (ZCS)
or zero voltage switching (ZVS) operating area. Furthermore, the iL2C DC-DC converter
utilizes wideband gap semiconductor-based E-mode (enhancement mode) GaN technology.

The research contributions of this paper are as follows:

a. The modeling of a scalable iL2C resonant converter with operation is presented.
b. A hybrid control strategy is suggested and derived to improve the regulations.
c. Simulations are presented for various load and line regulating conditions to check

the converter performances.
d. The experimental setup is demonstrated using E-mode GaN technology at 3.3 kW as

an EV charger with an efficiency of 98.2%.

2. Modeling and Operation of iL2C Converter Topology

Figure 2 illustrates the resonant DC-DC topology of the iL2C, while Figure 3 depicts
identical waveforms. It consists of two resonant circuits, each with a switching topology
that incorporates a primary and secondary rectifier circuit utilizing a single diode bridge. It
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functions by employing a phase angle of 180◦ between the gate signals of two switching
circuits. Equation (1) denotes that the resonant frequency of the converter is 150 kHz [21].
Additionally, the functioning of two switching topologies is comparable throughout their
entire operational cycle; thus, the equations are examined in relation to the resonant
network 1 and converter 1 [21,22]. The graphical representation of the gain performances
of the converter is shown in Figure 4.

fr =
1

2π
√

Lr ∗ Cr
(1)
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Stage 3: The switches S2 and S3 are activated at intervals t2 through t3, resulting in a 
positive current flow at iLr1, while the secondary-side diode rectifier circuit remains in an 
OFF state. 

Stage 4: During the time intervals t3 to t4, the secondary-side diodes D2 and D4 are in 
the ON position in relation to the switches S2 and S3, because of the negative current cir-
culation in iNS1. Consequently, the secondary-side voltage of the transformer is −VC0, which 
is exceedingly low, and the current iLm1 progressively diminishes. Conduction between 
the resonant inductor Lr1 and the resonant capacitor Cr1 commences simultaneously with 
the secondary current of iNS1 charging the filter capacitor C0. Equation (5) represents the 
voltage VNS1 at this juncture, while Equation (6) depicts the state space equation [24–26]. 
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Stage 1: All secondary-side diodes are deactivated prior to time zero, while switches
S2 and S3 are in the active state. During the time interval t0–t1, the switches S2 and S3
are deactivated, while the body diodes S1 and S4 are activated using a negative resonant
current of iLr1.

Stage 2: The voltage throughout transformer 1 T1 is equivalent to the input voltage
Vin between time points t1 and t2, and the switches S1, S4 and diodes D1, D4 are all in the
ON state. Concurrently, the additional current of iNS1 conducts via the filter capacitor C0,
while the resonant inductor Lr1 begins to circulate through the resonant capacitor Cr1. The
voltage of the magnetizing inductance Lm1 is specified by Equation (2), and the current
increases incrementally. Furthermore, the voltage across VNS1 from time t1 to time t2 is
equivalent to the output voltage V0, as calculated in Equation (3), and subsequently, the
voltage at the resonant tank is described in Equation (4) [24].

Lm1 =
V0

n
(2)

VNS1 = V0 (3)


iLr1(t) = I0 cos(ωrt) + (nVin−V0−nV0)

nZr
sin(ωrt)

VCr1(t) = I0Zr sin(ωrt) +
(

V0 +
V0
n − Vin

)
cos(ωrt)

+Vin − V0−VC0
n

(4)

Stage 3: The switches S2 and S3 are activated at intervals t2 through t3, resulting in a
positive current flow at iLr1, while the secondary-side diode rectifier circuit remains in an
OFF state.

Stage 4: During the time intervals t3 to t4, the secondary-side diodes D2 and D4 are in
the ON position in relation to the switches S2 and S3, because of the negative current circu-
lation in iNS1. Consequently, the secondary-side voltage of the transformer is −VC0, which
is exceedingly low, and the current iLm1 progressively diminishes. Conduction between
the resonant inductor Lr1 and the resonant capacitor Cr1 commences simultaneously with
the secondary current of iNS1 charging the filter capacitor C0. Equation (5) represents the
voltage VNS1 at this juncture, while Equation (6) depicts the state space equation [24–26].

VNS1 = −V0 (5)
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
iLr1(t) = ILr1(t2)cos(ωrt) + (nVin−V0−nVCr1(t2)

nZr
sin(ωrt)

VCr1(t) = ILr1(t2)Zrsin(ωrt) +
(

VCr1(t2)− V0
n − Vin

)
cos(ωrt)

+Vin +
V0
n

(6)

Stage 5: From time t4 to time t5, the components D2 and D3 are both in the ON
state, while the secondary-side transformer current iNS1 is reduced to zero. Equation (7)
represents the secondary side of the transformer voltage; consequently, the magnetizing
inductance drops gradually [27,28]. Additionally, resonance occurs between the resonant
capacitor Cr1 and the resonant inductor Lr1.

VNS1 = −V0 (7)

The state space equations for stage 5 are defined in Equation (8) below:
iLr1(t) = ILr1(t4)cos(ωrt) +

(nVin+V0−nVCr1 (t4)

nZr
sin(ωrt)

VCr1(t) = ILr1(t4)Zrsin(ωrt) +
(

VCr1(t4)− V0
n − Vin

)
cos(ωrt)

+Vin +
V0
n

(8)

Stage 6: From time t5 to time t6, the current iNS1 on the secondary side of the trans-
former is entirely negative, accompanied by the absence of any diodes. The magnetizing
inductance iLm1 begins to resonate with the resonant capacitor Cr1 and inductor Lr1 at
this time.

The critical parameters of the iL2C converter for every single component are mentioned
in [21–24]; the nominal input voltage is 400 V, and the output voltage is 48 V at a power
range of 3.3 kW and a filter capacitor value of 100 µF, respectively. The associated step-by-
step engineering calculations then followed with the appropriate values.

Equations (9)–(11) were utilized to derive a transformer T1 turn ratio of 8.82, as well
as the maximum and minimum values of voltage gain of the iL2C converter under the
specified operating conditions.

n =
Vin_min
V0_min

(9)

Mmin =
n ∗ V0_min

Vin_max
(10)

Mmax =
n ∗ V0_max

Vin_min
(11)

where n is transformer turn ratio, Vin_max and Vin_min are maximum and minimum input
voltages, V0_max and V0_min are maximum and minimum output voltages, followed by
maximum and minimum voltage gain Mmax and Mmin [24].

The resonant tank design of the resonant inductance Lr1 was 22.11 µH; the capacitance
Cr1 was 50.94 nF; the impedance Z01 and the magnetizing inductance Lm1 were 20.83 Ω
and 23 µH respectively with an equivalent resistance Rac1 of 22.12 Ω and 55.81 Ω as the
minimum and maximum values. The formulas are mentioned in Equations (12)–(16) [29,30].

Rac1 =
8n2

π2 ∗ RL (12)

Lm1 =
n2

fr
∗ Vo_crit

4 ∗ n ∗ Isc + [π2 ∗ L ∗ Mcrit − 4] ∗ Io_crit
(13)

Lr1 = L ∗ Lm1 (14)

Cr1 =
1

Lr1 ∗ (2π fr)
2 (15)
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Z01 =

√
Lr1

Cr1
(16)

3. Control Strategy

There are now multiple control approaches being studied for resonant converters
mainly based on fixed-or variable-frequency techniques and phase shifting strategies.
Nevertheless, in practical use, each of them possesses distinct constraints when it comes
to converters operating within a wider range of input and output voltages. Typically,
frequency modulation is effective but necessitates intricate magnetic construction, whereas
the phase shifting approach is straightforward to build but challenging for a wide variety
of input voltages [24]. This paper presents a hybrid control methodology, known as the
VFPSM method, for an iL2C converter. The VFPSM method ensures consistent control
strategy performance throughout all areas.

The switching frequency fs is determined by comparing the output voltage V0 to the
reference input voltage Vref, relying on the provided error voltage. The voltage control
oscillator (VCO) can be utilized to compare the input and output voltage values [22–24],
while also driving the gate signals. Figure 5 displays the control circuit. The controller
regulates the output voltage V0 and modulates the current, referred to as the CV mode of
operation. The third-order transfer function, specified in Equation (17) with sub-equations
in Equations (18)–(22), is valuable for constructing the outer feedback compensator [31–33].

Gv f (s) =
V(s)0
w(s)s

= Gdc
X2

eq + R2
eq(

s2L2
e + sLeReq + X2

eq

)(
1 + sRLC f

)
+ Req

(
sLe + Req

) (17)

Le = Lr +
1

CrΩ2
s
= Lr

(
1 +

Ω2
0

Ω2
s

)
(18)

Req =
8

π2 n2RL (19)

Xeq = ΩsLr −
1

ΩsCr
(20)

Ln =
Lm

Lr
(21)

Q =

√
Lr
Cr

n2RL
(22)
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The development of the switching frequency design was concluded based on the
information provided in Figure 5. This design enables the generation of pulses that may be
used to switch the switches ON and OFF [34,35]. The 180-degree phase shift technique is
employed to control the input voltage within the wide range of 300 Vin–500 Vin, while the
VFPSM methodology ensures precise regulation at both the line and load sides [36]. The
operation of converters 1 and 2 involves a switching process that utilizes the phase shifting
approach known as “before 180◦” and “after 180◦”, respectively, as seen in Figure 6 [37,38].
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4. Simulation and Experimental Validation

MATLAB/Simulink was utilized to conduct the simulation analysis of the iL2C con-
verter employing the VFPSM control technique. The essential design variables are enumer-
ated in [24]. The evaluation of the converter is provided for various case studies. In the first
instance, the nominal input and output voltage under full load, half load, and light load
conditions were examined. The nominal input voltage of 400 Vin is depicted as a constant
in Figure 7.
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The outcomes of the simulated converter were assessed under controlled nominal load
conditions of 68.75 A and 48 V0 at maximum load (3.3 kW). Figure 8 shows the resonant
tank waveforms of converter 1 and converter 2, and the converter load voltage and current
waveforms are presented in Figure 9. The voltage and current ripple measurements
indicated a deviation of +0.5 V (+1.04%) at a rated output of 48 V0 and approximately
+0.65 A (+0.94%) at a full load current of 68.75 A, respectively.

Figure 10 shows the resonant tank waveforms of converter 1 and converter 2; Figure 11
presents the simulated results for the half load condition, which is at 1.65 kW, 48 V, and
34.375 A, respectively. At an output of 48 V0, both ripple voltages and currents were deter-
mined to have a voltage variance of +0.3 V (+0.62%) and a current variance of approximately
+0.175 A (+0.5%) at a half load current of 38.375 A.
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Figure 12 shows the resonant tank waveforms of converter 1 and converter 2; Figure 13
presents the simulated results at a light load which is 10% of the rated load, i.e., 0.33 kW,
48 V, and 6.875 A, respectively. At an output of 48 V0, both ripple voltages and currents
were determined to have a voltage variance of +0.15 V (+0.31%) and a current variance of
approximately +0.017 A (+0.25%) at a half load current of 6.875 A.
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4.1. Dynamic Performance Analysis of iL2C Converter for 300 Vin–500 Vin under Various
Load Conditions

In this section, the dynamic performance of the iL2C converter with a variable input
voltage of 300–500 Vin and an output voltage that stays constant at 48 V0 is evaluated. The
voltage increased abruptly from 300 to 500 Vin at 0.05 s, as depicted in Figure 14. Figure 15
illustrates the load voltage of 48 V and current waveforms at 3.3 kW. The sudden variation
in load voltage and current took place at 0.05 s; the enlarged figures are also provided, and
the settling time was within 1.1 ms.
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Figure 16 illustrates the load voltage of 48 V and current waveforms at 1.65 kW. The
sudden variation in load voltage and current took place at 0.05 s; the enlarged figures are
also provided, and the settling time was within 1.0 ms.
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Figure 17 illustrates the load voltage of 48 V and current waveforms at 0.33 kW. The
sudden variation in load voltage and current took place at 0.05 s; the enlarged figures are
also provided, and the settling time was within 1.3 ms.
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4.2. Dynamic Performance Analysis of iL2C Converter for 500 Vin–300 Vin under Various
Load Conditions

In this section, the dynamic performance of the iL2C converter with a variable input
voltage of 500–300 Vin and an output voltage that stays constant at 48 V0 is evaluated. The
voltage increased abruptly from 500 to 300 Vin at 0.05 s, as depicted in Figure 18. Figure 19
illustrates the load voltage of 48 V and current waveforms at 3.3 kW. The sudden variation
in load voltage and current took place at 0.05 s; the enlarged figures are also provided, and
the settling time was within 1.2 ms.
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Figure 19. Step change in load voltage and current waveforms from 500 Vin to 300 Vin at 3.3 kW.

Figure 20 illustrates the load voltage of 48 V and current waveforms at 1.65 kW. The
sudden variation in load voltage and current took place at 0.05 s; the enlarged figures are
also provided, and the settling time was within 1.2 ms.

Figure 21 illustrates the load voltage of 48 V and current waveforms at 0.33 kW. The
sudden variation in load voltage and current took place at 0.05 s; the enlarged figures are
also provided, and the settling time was within 1.4 ms.
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4.3. Experimental Validation of iL2C Converter

The iL2C converter concept is constructed utilizing GaN technology and operates at a
maximum rated load capacity of 3.3 kW. The purpose of this prototype is to demonstrate
the performance line and load regulation of the converter. The range of input voltages
is set between 300 Vin and 500 Vin, while the rated load voltage is maintained at 48 V0.
The converter’s effectiveness is evaluated under different load conditions [39,40]. The
major side of the converter includes 8-GaN switches, specifically 4 in converter 1 and 4 in
converter 2.
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The production specifications of the GaN switch GS66508T are listed in [24], where
the critical parameters are a drain source voltage of 650 V, a drain current of 30 A, and
a low drain resistance of 50 mΩ, respectively. The E-mode GaN transistor possesses
advanced characteristics such as an upper cooled technology, resulting in reduced junction–
case thermal resistance at high power density [41,42]. It also exhibits decreased drain
resistance, reverse recovery current, and zero reverse recovery losses. Additionally, it
showcases well-designed gate charge characteristics [43]. The TMS320F28335 serves as the
primary controller for the iL2C converter, functioning as a digital signal processor [44,45].
The prototype was constructed according to specific modeling parameters, including a
magnetizing inductance of 23 µH for Lm1 and Lm2, resonant inductors of 21 µH for Lr1 and
Lr2, resonant capacitors of 56 nF for Cr1 and Cr2, and a filter capacitor of 100 µF for C0. The
experimental setup is illustrated in Figure 22.
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Figure 23 displays the empirical waveforms of the drain and gate voltages of a switch
operating with zero voltage switching (ZVS). This clearly demonstrates the successful
attainment of ZVS functioning using soft switching.
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The load regulation of the converter was analyzed and is depicted in Figure 24 under
different load situations of 3.3 kW, 1.65 kW, and 0.33 kW. The input voltage was kept
constant at 400 Vin, while the output voltage was maintained at 48 V0. Based on the
findings, it was observed that the output voltage remained steady during load operations
involving step-up and step-down conversion; this indicates effective voltage control. The
findings were examined with a time scale of 100 ms for each division and a load voltage
scale of 20 volts per division, shown by a blue line. The load current scale was set at 50
amperes per division, represented by a pink line. The input source voltage scale was set at
300 volts per division, represented by a red line.

World Electr. Veh. J. 2024, 15, x  16 of 23 
 

The load regulation of the converter was analyzed and is depicted in Figure 24 under 
different load situations of 3.3 kW, 1.65 kW, and 0.33 kW. The input voltage was kept 
constant at 400 Vin, while the output voltage was maintained at 48 V0. Based on the find-
ings, it was observed that the output voltage remained steady during load operations in-
volving step-up and step-down conversion; this indicates effective voltage control. The 
findings were examined with a time scale of 100 milliseconds for each division and a load 
voltage scale of 20 volts per division, shown by a blue line. The load current scale was set 
at 50 amperes per division, represented by a pink line. The input source voltage scale was 
set at 300 volts per division, represented by a red line. 

 
Figure 24. Validated waveforms during load regulation. 

As seen in Figure 25, the iL2C converter was validated for 3.3 kW at 48 V0 and 68.75 
A during variable input voltage conditions. The findings were examined with a time scale 
of 100 milliseconds for each division and a load voltage scale of 20 volts per division, 
shown by an orange line. The load current scale was set at 50 amperes per division, rep-
resented by a pink line. The input source voltage scale was set at 300 volts per division, 
represented by a blue line. The dynamic responses at the line side were executed by intro-
ducing an abrupt alteration in input voltage at 0.05 s (500 milliseconds), resulting in a little 
modification in load voltage. The corresponding current was then monitored and rec-
orded, as depicted in Figure 25. The converter and controller demonstrated conformity 
with the theoretical and simulated studies. 

Figure 24. Validated waveforms during load regulation.

As seen in Figure 25, the iL2C converter was validated for 3.3 kW at 48 V0 and 68.75 A
during variable input voltage conditions. The findings were examined with a time scale
of 100 ms for each division and a load voltage scale of 20 volts per division, shown by an
orange line. The load current scale was set at 50 amperes per division, represented by a
pink line. The input source voltage scale was set at 300 volts per division, represented
by a blue line. The dynamic responses at the line side were executed by introducing an
abrupt alteration in input voltage at 0.05 s (500 ms), resulting in a little modification in
load voltage. The corresponding current was then monitored and recorded, as depicted in
Figure 25. The converter and controller demonstrated conformity with the theoretical and
simulated studies.

The efficiency of the GaN-powered iL2C converter was evaluated at the recommended
voltage settings of 400 Vin and 48 V0. The efficiency was measured at various load condi-
tions, specifically 3.3 kW, 3.0 kW, 2.5 kW, 2.0 kW, 1.65 kW, 1.0 kW, 0.5 kW, and 0.33 kW,
sequentially. The efficiency was 98.2% at a power output of 3.3 kW, 98.7% at a power output
of 1.65 kW, and 99.1% at a power output of 0.33 kW. Figure 26 displays the efficiency curve
in relation to power.
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5. Performance Analysis and Discussion

This section examines the steady-state and dynamic performance assessment of the
converter in relation to line regulation and load regulation. The comparative assessment
of simulation and experimental analysis of the converter was carried out during various
conditions presented in Section 4. Moreover, the converter’s merits are discussed under
various parameters at the end of this section.

5.1. Steady-State Performance Analysis

This analysis was conducted at constant input and load voltages, while varying the
load. The voltage deviation and ripple percentage were measured to be +0.5 V (+1.04%),
+0.3 V (+0.62%), and +0.15 V (+0.31%) at power levels of 3.3 kW, 1.65 kW, and 0.33 kW,
respectively. Figures 27 and 28 show the steady-state analysis under simulating conditions
of load voltage deviation (LVD), average voltage ripple (%AVR), load current deviation
(LCD), and average current ripple (%ACR), respectively [24]. The present discrepancy
and fluctuation percentages were measured to be +0.65 A (+0.94%), +0.175 A (+0.5%), and
+0.017 A (+0.25%) at power levels of 3.3 kW, 1.65 kW, and 0.33 kW, correspondingly.
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The voltage variation and ripple percentage were measured to be +0.9 V (+1.87%),
+0.7 V (+1.45%), and +0.52 V (+1.09%) for power levels of 3.3 kW, 1.65 kW, and 0.33 kW, re-
spectively. Figures 29 and 30 show the steady-state analysis under experimental conditions
of LVD, %AVR, LCD, and %ACR, respectively [24]. The present difference and fluctuation
percentages were measured as +1.26 A (+1.83%), +0.525 A (+1.52%), and +0.095 A (+1.23%)
at power levels of 3.3 kW, 1.65 kW, and 0.33 kW, respectively.
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Figure 29. Steady-state analysis of LVD vs. %AVR during experimental validation.
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5.2. Transient Performance Analysis

Table 1 shows the transient analysis during simulation conditions of the load voltage
deviations, %avg load ripples, transient dip, and %avg dip of the voltage during line
regulation (i.e., 300 Vin–500 Vin and 500 Vin–300 Vin) tabulated by maintaining the load
voltage at 48 V0 and the load current at 68.75 A, 38.375 A, and 6.875 A, respectively. When
the load was 3.3 kW, for (300 Vin–500 Vin) and (500 Vin–300 Vin), the max LVD was found
to be +0.40 V and +0.42 V, and the %ALVR was +0.830% and +0.875%, respectively. The
transient voltage dip was found to be +5.2 V, −3.5 V, and its average percentage dip was
+10.83%, −7.29%, respectively, with a settling time of 1.1 ms and 1.2 ms. In the case of
1.65 kW, the max LVD was found to be +0.38 V and +0.40 V, and the %ALVR was +0.791%
and +0.833%, respectively. The transient voltage dip was found to be +4.8 V, −5.8 V, and
its average percentage dip was +10.00%, −12.08%, respectively, with a settling time of
1.0 ms and 1.2 ms. Lastly, in the case of 0.33 kW, the max LVD was found to be +0.37 V and
+0.38 V, and the %ALVR was +0.770% and +0.791%, respectively. The transient voltage dip
was found to be +6.35 V, −8.70 V, and its average percentage dip was +13.23%, −18.12%,
respectively, with a settling time of 1.33 ms and 1.4 ms.

Table 1. Transient analysis under line regulation during simulations.

Operation
Attributes

Variable Input
Voltage

Max. LVD %
ALVR

Transient Analysis

Voltage Dip Avg % of Dip Settling Time

Lo
ad

V
ar

ia
ti

on

3.3 kW
300 V–500 V +0.40 V +0.830% +5.2 V +10.83% 1.1 ms

500 V–300 V +0.42 V +0.875% −3.5 V −7.29% 1.2 ms

1.65 kW
300 V–500 V +0.38 V +0.791% +4.8 V +10.00% 1.0 ms

500 V–300 V +0.40 V +0.833% −5.8 V −12.08% 1.2 ms

0.33 kW
300 V–500 V +0.37 V +0.770% +6.35 V +13.23% 1.33 ms

500 V–300 V +0.38 V +0.791% −8.70 V −18.12% 1.40 ms

Table 2 shows the transient analysis during simulation conditions of the load current
deviations, %avg load ripples, transient dip, and %avg dip of the current during line
regulation (i.e., 300 Vin–500 Vin and 500 Vin–300 Vin) tabulated by maintaining the load
voltage at 48 V0 and the load current at 68.75 A, 38.375 A, and 6.875 A, respectively. When
the load was 3.3 kW, for (300 Vin–500 Vin) and (500 Vin–300 Vin), the max LCD was found
to be +0.59 A and +0.64 A, and the %ALCR was +0.85% and +0.93%, respectively. The
transient current dip was found to be +7.25 A, −4.75 A, and its average percentage dip
was +10.54%, −6.90%, respectively, with a settling time of 1.1 ms and 1.2 ms. In the case of
1.65 kW, the max LCD was found to be +0.57 A and +0.62 A, and the %ALCR was +1.66%
and +1.81%, respectively. The transient current dip was found to be +3.82 A, −2.25 A, and
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its average percentage dip was +11.11%, −6.54%, respectively, with a settling time of 1.0 ms
and 1.2 ms. Lastly, in the case of 0.33 kW, the max LCD was found to be +0.055 A and
+0.069 A, and the %ALCR was +0.8% and +1.0%, respectively. The transient current dip
was found to be +1.85 A, −1.87 A, and its average percentage dip was +26.91%, −27.20%,
respectively, with a settling time of 1.33 ms and 1.40 ms.

Table 2. Transient analysis of load current under line regulation during simulation.

Operation
Attributes

Variable Input
Voltage Max. LCD %

ALCR
Transient Analysis

Current Dip Avg % of Dip Settling Time

Lo
ad

V
ar

ia
ti

on

3.3 kW
300 V–500 V +0.59 A +0.85% +7.25 A +10.54% 1.1 ms

500 V–300 V +0.64 A +0.93% −4.75 A −6.90% 1.2 ms

1.65 kW
300 V–500 V +0.57 A +1.66% +3.82 A +11.11% 1.0 ms

500 V–300 V +0.62 A +1.81% −2.25 A −6.54% 1.2 ms

0.33 kW
300 V–500 V +0.055 A +0.8% +1.85 A +26.91% 1.33 ms

500 V–300 V +0.069 A +1.0% −1.87 A −27.20% 1.40 ms

In addition, line regulations were conducted experimentally under variable input with
a full load condition at 3.3 kW. Table 3 presents the comparative analysis of simulation
and experimental conditions [24]. The simulation and experimental results indicate that
the steady-state voltage deviation was +0.4 V (+0.83%) and +0.76 V (+1.58%), while the
steady-state current deviation was +0.59 A (+0.85%) and +1.38 A (+2.0%), correspondingly.

Table 3. Simulation vs. experimental analysis during line regulation.

Conditions Max. LVD %AVR Max. LCD %ACR

Simulations +0.40 V +0.83% +0.59 A +0.85%
Experimental +0.76 V +1.58% +1.38 A +2.00%

The measurements in Table 4 indicate that there was a transient voltage dip (TVD) of
+5.2 V (+10.83%), +6.17 V (+12.85%) and a transient current dip (TCD) of +7.25 A (+10.54%),
+8.29 A (+12.05%), which are the transient voltage ripple (TVR) percentage and transient
current ripple (TCR) percentage, respectively. The computational and experimental results
indicate that the transient dip had a duration of 1.1 ms and 18 ms, respectively.

Table 4. Simulation vs. experimental transient analysis during line regulation.

Conditions Voltage Dip Avg% of Dip Current Dip Avg% of Dip Settling Time

Simulations +5.20 V +10.83% +7.25 A +10.54% 1.1 ms
Experimental +6.17 V +12.85% +8.29 A +12.05% 18 ms

5.3. Discussion

The presented technology has the merit of scalability in operation, where it can operate
in a wide range; ease of adaptability to any type of charging environment; and a high
efficiency of operation. The major constraint of this technology is basically the construction
of a complex system, and the management of the control algorithms for two bridges with
maintaining the proper deadtime is the major challenge. The complexity of managing
the two resonant tanks with hybrid structures will leads to a high cost of the system.
The assembly, manufacturing, and fabrication of the proposed system having the higher
involvement of complex strategies to minimize the losses during the development phase;
this happens due to the system’s complexity.
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6. Conclusions

This study focused on analyzing the iL2C resonant DC-DC converter, which utilizes a
hybrid control method known as the variable frequency + phase shift modulation (VFPSM)
technique. This research also contributes to the advancement of EV charging technology, en-
suring efficient and reliable charging for xEVs. The converter is designed to accommodate
a wide range of input voltages and is specifically intended for use in EV charging systems.
This paper provides an explanation of the modeling and operational principles of the con-
verter, and it conducts simulations of the whole proposed design using MATLAB/Simulink.
The performance of the iL2C converter is evaluated under several conditions, and initially
the converter is tested at various load and line conditions. Furthermore, the performance
of the converter is verified through experimental validation utilizing GaN switches, and
the results indicate that the controller effectively regulates the system. In future expansion
of this work, predicative control techniques are to be implemented and analyzed.
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ACR Average Current Ripple
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FCEV Fuel Cell Electric Vehicle
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HEV Hybrid Electric Vehicle
ICE Internal Combustion Engine
iL2C Interleaved Inductor–Inductor–Capacitor
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LCD Load Current Deviation
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PHEV Plugin Hybrid Electric Vehicle
SCEV Super Capacitor Electric Vehicle
TCD Transient Current Dip
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UCEV Ultra-Capacitor Electric Vehicle
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