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Abstract: It is essential and forward-thinking to investigate the personalized use of four-wheel driving
and steering wire-controlled unmanned chassis. This paper introduces a personalized path-tracking
approach designed to adapt the vehicle’s control system to human-like characteristics, enhancing the
fit and maximizing the potential of the chassis’ multi-directional driving and steering capabilities.
By modifying the classic vehicle motion controller design, this approach aligns with individual
driving habits, significantly improving upon traditional path-tracking control methods that rely
solely on reference vector fields. First, the classic reference vector field’s logic was expanded upon,
and it is shown that a personalized upgrade is feasible. Then, driving behavior data from multiple
drivers were collected using a driving simulator. The fuzzy c-means clustering method was used to
categorize drivers based on typical states that match vehicle path-tracking performance. Additionally,
the random forest algorithm was used as the method for recognizing driving style. Subsequently, a
personalized path-tracking control strategy based on the reference vector field was developed and a
distributed execution architecture for four-wheel driving and steering wire-controlled unmanned
chassis was established. Finally, the proposed personalized path-tracking approach was validated
using a driving simulator. The results of the experimental tests demonstrated that the personalized
path-tracking control approach not only fits well with various driving styles but also delivers high
accuracy in driving style identification, making it highly suitable for application in four-wheel driving
and steering wire-controlled chassis.

Keywords: wire-controlled unmanned chassis; personalized path-tracking; reference vector field;
driving style identification

1. Introduction

As an ideal chassis form for intelligent vehicles, the four-wheel driving and steering
(4WDaS) wire-controlled chassis has great potential for unmanned maneuverability. The
four-wheel drive of a 4WDaS wire-controlled chassis is achieved by four independent
wheels driven-by-wire, with each wheel capable of varying driving torque outputs. Ad-
ditionally, four-wheel steering is realized via steer-by-wire technology, employing four
independent steering motors capable of rotating the wheels up to 180 degrees in either direc-
tion. Path-tracking control is the direct interface layer between the 4WDaS wire-controlled
chassis and the intelligent driving system. As the basic foundation of intelligent driving
technology, the path-tracking control layer has a direct impact on the final performance
of intelligent vehicles. Scholars and researchers have proposed a variety of path-tracking
technologies to better achieve the driver’s desired driving target [1,2], including geometric
and kinematic algorithms, dynamic control algorithms, optimization algorithms, adaptive
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control algorithms, model-based algorithms, and classical algorithms, etc. [3,4]. Person-
alized driving strategies can reduce the driver discomfort associated with generic-style
control. Notably, variations in drivers’ gender, driving experiences, and ages lead to distinct
driving behaviors, even under identical conditions [5]. Consequently, personalized driving
strategies have become one of the hotpots in intelligent transportation control research [6,7].
However, since the 4WDaS wire-controlled chassis is predominantly utilized in unmanned
transportation scenarios, there has been insufficient research into human-like path-tracking
control for this type of chassis. It is necessary to conduct anthropomorphic research on the
multi-dimensional characteristics of 4WDaS wire-controlled chassis, which is particularly
vital for meeting the requirements of Level 3 (L3) intelligent driving [8], aiming to achieve
both strong maneuverability and high user acceptance.

Currently, the personalized path-tracking methods available are predominantly tai-
lored for conventional vehicle chassis designs. For example, Qu proposed a method for
modeling driver steering behavior based on the characteristics of parameter changes in
a driver–vehicle–road closed-loop system. The model uses a random model predictive
control method to facilitate personalized path-tracking control [9]. Li et al. introduced
two different learning-based personalized driver models to predict the preview distance
based on the pure pursuit algorithm, which achieved good path-tracking performance [10].
Despite these advancements, research into personalized path-tracking is still in its early
stages, with methodologies largely adhering to more traditional approaches. In the above
studies, the driving styles of drivers were usually divided into three categories: cautious,
general, and aggressive [11]. Specific control performance parameters were then designed
to meet different driving styles. Therefore, the identification of driving styles has become a
key area of research. In works on driving style recognition, the main research focuses on
the selection and improvement of identification algorithms and the values of input features.
For instance, Zhu et al. took the physiological characteristics of the driver as the parameters
of driving style [12]. Other scholars have employed the interactive signals between drivers
and vehicles as the parameters of driving style [9,13], while some researchers have focused
on the vehicle running state as the parameters for driving style [14,15]. Although the review
in [6] summarized many input characteristics, few are derived from the holistic running
state of the vehicle. In autonomous vehicles, which lack human drivers, the difference
between different styles lies in the running state of the vehicle. Therefore, relying on the
characteristic values of traditional operable devices for driving style identification may not
be directly applicable to 4WDaS wire-controlled chassis. Regarding driver identification
and classification technology, the differences mainly lie in the employment of different
identification methods; for example, neural network technology [14], and support vector
machines (SVM) technology [16]. Due to the applicability and limitations of different algo-
rithms, it is necessary and valuable to explore the application effects of different machine
learning algorithms.

Path-tracking methods for 4WDaS wire-controlled chassis are often enhancements of
traditional path-tracking algorithms, such as a multi-input multi-output nonlinear model
predictive control [17] and a dynamic output feedback path-tracking controller based on
robust H∞ [18]. However, the above methods generally lack specificity for this type of
chassis. Recently, a method based on the reference vector field (RVF) has entered the
research field. This method is based on a reference velocity vector and has both lateral
and longitudinal references, which can naturally match the multi-directional adjustment
ability of the 4WDaS wire-controlled chassis. The path-tracking method based on RVF
was proposed by Gordon [4]. The RVF method is a general framework for the action of
an automated driver (or driver model) to provide both longitudinal and lateral control
of a road vehicle. Because of its simple and efficient performance and the ability for
quadratic planning, it has been widely studied by scholars, and even widely used in the
field of aviation path-tracking [19]. However, most of the current path-tracking strategies
prioritize tracking performance, without considering the driver’s psychological acceptance
of control [13]. In the context of autonomous vehicles, achieving driver psychological



World Electr. Veh. J. 2024, 15, 198 3 of 19

acceptance of control is equally crucial alongside tracking performance. As drivers serve
as the final operators and decision makers for vehicles, their psychological state directly
affects their trust in and willingness to use the auto-drive systems. Therefore, optimizing
the control strategy to make it more in line with the driver’s driving habits and expectations
can improve the driver’s trust and willingness to use the auto-drive system, thereby
improving the safety and reliability of the entire system. Studying the application of the
path-tracking method based on RVF on a 4WDaS wire-controlled chassis is an effective
attempt to combine the advantages of both approaches.

In summary, in order to enhance the driver’s acceptance of the intelligent application
of 4WDaS wire-controlled chassis, and to better align its path-tracking technology with
the driver’s personal driving style, this paper proposes a personalized path-tracking
method based on RVF. First, the classic RVF was elaborated in detail and its potential
for personalization was demonstrated. Second, a driving simulator was used to obtain
driving behavior data from multiple drivers. Typical states corresponding to vehicle path-
tracking performance were selected, and drivers were classified using the fuzzy c-means
(FCM) clustering method. The random forest (RF) algorithm was used as the driving style
identification method. Subsequently, a distributed execution architecture was established
for 4WDaS wire-controlled unmanned chassis. Finally, the proposed personalized path-
tracking method was validated through a driving simulator. The approach is shown in
Figure 1, which consists of three layers considering the different drivers’ driving styles in
the path-tracking approach design and verification process.

Figure 1. Approach diagram of the personalized path tracking approach.

The main contributions of this paper can be summarized as follows: (1) Introduction
of vehicle level tracking states as features for driving style identification and the integration
of FCM and RF algorithms to obtain accurate identification results. The driving style
identification scheme is adapted to the characteristics of 4WDaS wire-controlled unmanned
chassis; (2) Proposal of a personalized path-tracking algorithm based on RVF for 4WDaS
wire-controlled chassis. The algorithm achieves adaptive extension of the RVF algorithm
and enhances tracking performance across different driving styles.

The study is organized into the following sections: Section 2 conducts a feasibility
reasoning proof of personalized path-tracking control based on RVF. Section 3 uses a
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driving simulator to collect driving data and complete the classification and identification
of driving styles. Section 4 builds the control architecture of a 4WDaS wire-controlled
chassis. Section 5 relies on a driving simulator to verify the RVF-based 4WDaS wire-
controlled chassis path-tracking algorithm. Section 6 presents the conclusions.

2. Feasibility Analysis for Personalized Path-Tracking Approach Based on RVF

The RVF-based path-tracking approach stands out for its simplicity and efficiency.
The speed difference between the current and reference speed vectors is transformed into
a demand for lateral and longitudinal acceleration, resulting in lateral and longitudinal
forces, as well as steering angle control for the vehicle. The characteristic of generating both
the wheel target driving force and wheel target steering angle naturally corresponds to the
characteristics of the 4WDaS wire-controlled chassis.

2.1. Path-Tracking Approach Based on RVF

The movement of the vehicle on a plane is regarded as a two-dimensional movement,
including both longitudinal and lateral movements. The position of the vehicle at point
P is denoted as P(X,Y), and its instantaneous speed is Vp(X,Y). As shown in Figure 2,
throughout the driving process, the vehicle targets a reference point Q as the subsequent
navigation objective.

Figure 2. Schematic diagram of RVF.

The RVF operates by using the velocity vector U from point P to point Q as the
reference velocity vector, while providing the reference direction and reference velocity
magnitude. The vehicle then follows the reference speed and advances to point Q. As
illustrated in Figure 3, each position of the vehicle correlates with a reference point on the
target trajectory, forming countless velocity vectors that converge on the target trajectory.
The field generated by countless velocity vectors will form the reference velocity vector field.

Figure 3. Schematic diagram of RVF convergence.

As the upper-level algorithm for path-tracking, RVF not only provides tracking control
targets but also performs simple secondary path planning. Referring to the derivation in
reference [4], it can be inferred that, when the reference path is a straight line parallel to the
X-axis, the reference velocity vector Up of point P can be expressed as

Up =
u
D

(
l
s

)
, (1)
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where l denotes the preview distance; s denotes the lateral distance between the vehicle
and the reference path; u denotes the value of the reference speed; D denotes the distance
from point P to Q; and D =

√
l2 + s2. Then, the following relationship can be derived:

dX
dt

=
ul
D

and
dY
dt

=
us
D

, (2)

Integrating the above equations, Equation (3) can be obtained:

Y = Y0exp(
X0 − X

l
), (3)

where X0 and Y0 are the initial positions, respectively.
The obtained curve represents the vehicle’s operating trajectory determined based on

RVF. The trajectory converges to a straight line parallel to the X-axis, which is different
from the reference line trajectory. The above process is the simple secondary path planning
function of RVF.

At point P, there is an error (e(t)) between the current speed (Vp(t)) and the reference
speed (Up):

e(t) = V p(t)− U p, (4)

In order to ensure that the vehicle can converge to the target trajectory, the vehicle
needs to travel in the direction of the reference speed. The vehicle’s acceleration requirement
at this moment is as follows:

ė(t) = V̇ p(t)− U̇(pt)

= a −
(
V p • ∇

)
U

= a − [(U + e) • ∇]U,

(5)

where ∇ = ( ∂
∂X , ∂

∂Y )
T , and

∇ • U =

(
∂UX
∂X

+
∂UY
∂Y

)
. (6)

A symmetric 2 × 2 matrix H instead of Equation (6):

H =

[
∂ωX
∂X

∂ωY
∂X

∂ωX
∂Y

∂ωY
∂Y

]
(7)

For the symmetric 2 × 2 matrix H, its eigenvalues ξ1 and ξ2 are real. Therefore, Equation (8)
is satisfied:

ξ1 + ξ2 = ∇ • U =

(
∂UX
∂X

+
∂UY
∂Y

)
(8)

When the vehicle speed and the reference speed coincide, there are no initial errors:

ė(t) = a − (U • ∇)U = 0 −→ a = a1(P(t)) ≡ (U • ∇)U. (9)

Then, a1 denotes the acceleration to follow the change in the reference speed. This
acceleration mainly reflects the change in the direction of the reference vehicle speed in the
RVF; when the vehicle speed differs from the reference speed, an initial error occurs:

ė(t) = a − (U • ∇)U − (e • ∇)U
a=a1+ã
⇄ ė(t) = ã − (e • ∇)U (10)

ã is used to eliminate the initial error caused by the mismatch of the current and reference
vehicle speeds. To ensure the reliability of the controller, the acceleration ã is limited to the
friction circle, as shown in Figure 4:
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|ã| ≤ ε ≤ µg (11)

where ε is a positive real number smaller than µg. In order to eliminate the initial error e, ã
needs to be processed as follows:

ã =

{
−e, |e| ≤ ε

−ε e
|e| , |e| > ε

(12)

Figure 4. The schematic diagram of the friction circle constraint of the RVF.

Hence, Equation (13) is obtained:

eė = e • ė = e • ẽ − e •
[
(e • ∇)U

]
(13)

where e = (e • e)1/2 denotes the norm of e. The second term may be simplified via the
divergence matrix H in Equation (7):

eė = e • ė = e • ã − eT He

≤ −eε − eT(ξ1 + ξ2)e

= −eε − (ξ1 + ξ2)e2

(14)

Further simplifying Equation (14) yields Equation (15):

ė ≤ −ε − (ξ1 + ξ2)e (15)

When ξ1 + ξ2 = 0 and an initial error exists, the greatest derivative of the errors may
be written as follows:

ė ≤ −ε (16)

Since the derivative of the error is bounded, when an initial error exists, the error will
decrease to 0 during a finite period t f , where the magnitude of t f may be represented as

t f = e/ε (17)

As illustrated in Figure 3, after the vehicle reaches the acceleration ã, it will converge
to the reference path.

Based on the above analysis, the neighboring reference vehicle speed variations
throughout the whole RVF process are sufficiently minor to be disregarded, and hence the
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a1 may be ignored. The acceleration a will be utilized to eliminate the initial speed error,
and the final control strategy is as follows:

a =

{
a, |a| ≤ µg

µg, |a| > µg
(18)

according to Equation (17), the target acceleration at the preview time can be obtained:

a = e/T (19)

where T denotes the preview time, which is the fastest time to reach the reference speed
when the preview point is known. By decomposing the acceleration into the longitudinal
and lateral axes of the vehicle coordinate system, the target longitudinal acceleration ax*
and target lateral acceleration ay* of the vehicle can be obtained.

2.2. Feasibility Analysis for RVF-Based Personalized Path Track Control

To assess the personalized feasibility based on RVF, this section explores the influence
of RVF parameters on vehicle path tracking performance. First, a three-degree-of-freedom
(3-DoF) vehicle model was established, incorporating various RVF parameters, such as the
preview distance (preview time) and reference speed values. Subsequently, two sets of
path-tracking experiments were conducted. In the simulation experiment, the vehicle was
initiated from the point (0,0) and the target path was defined as a straight line with y = 3 m.
The simulation research results, shown in Figure 5, indicated that

(a) (b)

Figure 5. Simulation results; (a) 3-DoF vehicle simulation results with different preview distances;
(b) 3-DoF vehicle simulation results with different reference velocities.

(1) With the reference vehicle speed set at 15 m/s and the preview distances being
respectively 1.5 m, 3 m, 4.5 m, 6 m, and 7.5 m, it was observed that the maximum tracking
error, maximum lateral acceleration, and maximum yaw rate all decreased as the preview
distance increased.

(2) Conversely, when the preview distance was 6 m and the reference speeds were
respectively 10 m/s, 15 m/s, 20 m/s, 25 m/s, and 30 m/s, the maximum tracking error,
maximum lateral acceleration, and maximum yaw rate all increased with the increase in
the reference speed.

According to the results of the preceding analysis, it is evident that when the other
vehicle parameters were fixed, both the preview distance (preview time) and the reference
speed values directly affected the path-tracking performance with RVF. Therefore, it can
be concluded that by adjusting the preview distance (preview time) and reference speed
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values of RVF, different effects on path-tracking performance could be achieved. Such
insights form a theoretical basis for the personalized path-tracking approach.

3. Driving Style Classification and Identification

Given the feasibility of personalized path-tracking methods, this section details the
collection of driving data and the classification and identification of driving styles. Unlike
manned vehicles, where driving style features are often associated with the driver’s oper-
ational characteristics, the selection of driving style features for unmanned chassis must
avoid such driver-specific features. Therefore, this section focuses on solving driving style
recognition based on non-operational features.

3.1. Driving Data Collection

For the driving data collection in this section, some typical steering test conditions
were built in a driving simulator as shown in Figure 1. For this experiment, 64 drivers
with different driving ages and different driving experiences were recruited for a set of
path-tracking experiments. The experimental setup required each driver to navigate a
predefined route within the simulator. All participants were given time to familiarize
themselves with both the test bench and the driving scenarios before the tests, to ensure
consistency in data collection. The drivers’ driving behavior data and vehicle running state
parameters were both collected during the experiment process. The collected data were
filtered and processed via a data processing algorithm, and the feature value data of each
driver were clustered into a set of data groups; hence 64 sets of feature value data were
finally obtained.

3.2. Drivers’ Driving Style Clustering

According to the collected dataset, the drivers were clustered based on their driving
performance. Normally, a driver’s driving style can be divided into three types: cautious,
general, and aggressive drivers. Various data clustering algorithms are widely adopted,
including RF, Markov networks, SVM, neural networks, K-means clustering, and other
algorithms [20,21]. Among them, RF involves complicated steps, requiring careful selection
of the kernel function. Similarly, adjusting parameters of an SVM can be challenging.
Neural networks require strict parameter adjustments and may not guarantee convergence.
The clustering quality of Markov networks and neural networks is not high. K-means is
sensitive to outliers and initial values. However, due to its efficient and accurate clustering
performance, unsupervised FCM usually does not require human intervention during
algorithm implementation [22,23]. Therefore, this paper employed the FCM for driving
data clustering. The FCM algorithm is a data clustering method based on the optimization
of objective functions. The clustering result is the degree of membership of each data
point to the clustering center, and the degree of membership can be represented by a
numerical value.

Some researchers use driver input signals, such as steering wheel input signals, brake
pedal signals, and accelerator pedal signals, as feature values for driving style classification.
However, in terms of path tracking performance, a driver’s driving style will ultimately
manifest through how the vehicle’s state influences its tracking performance. Cautious
drivers pay more attention to safety and comfort during the driving process. When
tracking a specific path, such a driver prefers to drive at a relatively low speed, and lateral
accelerations and the tracking errors are usually small. In contrast, aggressive drivers focus
more on maneuverability. They prefer higher speeds on the same paths, which typically
results in higher lateral accelerations and larger tracking errors. General drivers balance
safety with the vehicle’s operational efficiency, so their performance generally falls between
that of cautious and aggressive drivers.

Based on the above analysis, a driver’s driving style is most apparent through various
vehicle path-tracking states. First, these vehicle states more directly express the driver’s
operational intention. Second, focusing solely on driver inputs overlooks the impact of



World Electr. Veh. J. 2024, 15, 198 9 of 19

the current working conditions. Different working conditions necessitate different driving
inputs. Incorporating driver input feature values introduces the additional task of driving
condition classification. Driver behavior is influenced by both the vehicle’s state and work
conditions; hence, simple driving operations alone cannot objectively describe the driver’s
driving style. Moreover, under different working conditions, the driver’s input can interfere
with style recognition. Hence, this paper classified the drivers’ driving styles by considering
the vehicle path tracking states as the feature values. To preserve the consistency between
the vehicle path tracking states and the corresponding driver’s driving style, the following
feature values were collected: average vehicle speed, vehicle speed standard deviation,
largest lateral acceleration, lateral acceleration standard deviation, largest yaw rate, yaw
rate standard deviation, largest tracking error, and error standard deviation. Where the
average speed, lateral acceleration, and yaw rate can reflect the driver’s motion control
demands. In addition, the path-tracking error is also an indispensable value to reflect the
driver’s path-tracking performance.

These features can be expressed as

f = {e1, e2, ..., e8} (20)

The clustering results based on the vehicle speed as the X-axis are shown in Figure 6.

(a) (b)

(c)

Figure 6. Clustering results; (a) lateral acceleration; (b) yaw rate; (c) lateral path-tracking error.

Figure 6 clearly shows the boundary between different clusters in the vehicle speed
dimension, indicating that vehicle speed can well reflect the driver’s driving style and is
one of the key features. In addition, as shown in Figure 5, lateral acceleration and lateral
path tracking error can well characterize driving behavior: as the vehicle speed increased,
both lateral acceleration and lateral path tracking error also increased. According to the
clustering results, the center speed of aggressive drivers could be set at 69.4 km/h, the
center speed of general drivers could be set at 48.8 km/h, and the center speed of cautious



World Electr. Veh. J. 2024, 15, 198 10 of 19

drivers could be set at 33.1 km/h. The relationship between vehicle speed and different
driver types can thus be expressed as

ua : ug : uc = 1.40 : 1 : 0.68 (21)

The dataset with clustering marks then can be expressed as

X = {ei1, ei2, ..., ei8, ci}(i ∈ [1, 64]) (22)

where eij denotes the ith driver’s jth feature value, and ci denotes the ith driver’s clustering mark.

3.3. Driver’s Driving Style Identification

The current driver behavior identification algorithms generally include neural net-
work identification, structural pattern identification, the statistical algorithm of pattern
identification, and fuzzy identification [24–26]. Among these, it is difficult to select the
meta-parameters and topology for neural networks. The neural network method relies
heavily on data and exhibits poor real-time performance [27]. Structural identification
tends to have a low recognition rate. The training set for the statistical algorithm of pattern
identification is very important. It must be large and typical enough to ensure the reliability
of the algorithm. Fuzzy identification relies heavily on membership functions. This paper
employed the RF method, which has been proven to solve the problem that the data’s
randomness shows strong tolerance for outliers and interference, as the tool for driver
driving style identification.

To verify the accuracy of the RF model, 60 sets were randomly selected from the 64
collected datasets to form the training set, while the remaining 4 datasets with known
classification marks were used for testing and verification.

The following RF algorithm (Algorithm 1) could be obtained:

Algorithm 1. The Random Forest classification algorithm

Input: I = (X, n), where X = {ei1, ei2, ..., ei8, ci}(i ∈ [1, 64])
1. 60 groups are randomly selected in X as the training set and the remaining 4 groups as the test
set;
2. Sample from 60 groups with a Bootstrap method to randomly generate n training subsets and n
decision trees;
3. Input parameters as Node Split Subsets. Select the optimal method according to the Least Square
Error Criterion to split the nodes;
4. Each decision tree recursively grows from top to bottom and stops growing after satisfying the
recursive termination condition. A1l combinations of decision trees constitute a random forest;
5. Enter the remaining 4 test data sets;
6. Select the highest number of votes as the corresponding classification mark of the driver
H(x) = max ∑n

i=1 ϕ(hj(x) = y)
Output: The final classification of 4 sets of test data sets with numbers 1 or 2, or 3.

3.4. Verification of Identification Accuracy

According to the model design, the test set was input into the trained RF for validation.
The verification was repeated five times, and the results are shown in Table 1.

Table 1. Driver identification test results.

Number Known Mark Identification Mark Accuracy

1 [2;1;3;3] [2;1;3;3] 100%
2 [2;2;3;3] [2;2;3;3] 100%
3 [2;3;3;2] [2;3;3;2] 100%
4 [2;1;1;3] [2;1;1;3] 100%
5 [1;2;3;1] [1;2;3;2] 75%
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The results indicate that the trained RF model had high identification accuracy and
can be used for driver-style identification. In addition, the feasibility of selecting vehicle
path tracking states as features was further verified.

4. Personalized Path-Tracking Approach and 4WDaS Wire-Controlled Chassis Modeling
4.1. Personalized Path-Tracking Approach Based on RVF

Based on the principles of RVF and the earlier identification of driver driving styles,
this section designs a personalized path-tracking method based on RVF. The main param-
eters in RVF, including the preview distance (preview time) and reference speed, were
adjusted according to the identified driving styles.

When tracking a specific path, the speed requirements vary among the three drivers
types. The results of clustering showed that the speed performance of the cautious driver
was lower, whereas the speed performance of the aggressive driver was higher, while the
speed performance of the general driver fell in between. Hence, the design of a reference
speed in RVF should be tailored to match these findings.

Given the varying speed requirements for different vehicles, the preview distance can
be defined as the relative preview distance, which is the ratio of preview time to vehicle
speed. This parameter more accurately reflects the driver’s driving style, especially in terms
of maintaining drivability during emergency situations. Cautious drivers, who prioritize
safety, should have a longer relative preview distance. Conversely, aggressive drivers, who
pay more attention to maneuverability, should have a shorter relative preview distance.
The settings for general drivers should fall between these two extremes, balancing safety
and maneuverability.

Assuming the current reference speed requirement is ur. Based on the relationship of
the center speeds obtained in the clustering results, the reference speed relationships for
three types of driving styles can be obtained:

ua : ug : uc = 1.40ur : 1ur : 0.68ur (23)

where ua denotes the aggressive driver speed; ug denotes the general driver speed; and uc
denotes the cautious driver speed.

At the same time, the preview time up can be set according to the reference vehicle
speed and the proposed concept of the relative preview distance. In this paper, this could
be set as

Ta : Tg : Tc = Tp : Tp : Tp (24)

where Ta denotes the aggressive driver preview time; Tg denotes the general driver preview
time; and Tc denotes the cautious driver preview time.

Hence, the absolute preview distance relationship among the three driver types can be
obtained as

La : Lg : Lc = 1.40 : 1 : 0.68 (25)

where La denotes the aggressive driver absolute preview distance; Lg denotes the general
driver absolute preview distance; and Lc denotes the cautious driver absolute preview
distance. Note that this setting can satisfy the initial requirements of different drivers for
absolute preview distance.

Then, the relative preview distance can be obtained as

L′
a : L′

g : L′
c = 0.714 : 1 : 1.471 (26)

where L′
a denotes the aggressive driver relative preview distance; L′

g denotes the general
driver relative preview distance; and L′

c denotes the cautious driver relative preview
distance. This setting can satisfy the requirements of different drivers for maintaining
drivability during emergency driving situations.
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Based on the clustering results collected from the driving simulator, the RVF parameter
settings specific to the three identified driving styles were determined, allowing for tailored
application enhancements based on RVF.

4.2. Hierarchical Execution Architecture for 4WDaS Wire-Controlled Unmanned Chassis

In order to verify the proposed personalized path tracking approach, a 4WDaS wire-
controlled unmanned chassis based on a 3-DoF vehicle dynamic model is introduced in this
section. All wheels of the 4WDaS wire-controlled unmanned chassis can be independently
driven and steered, with decoupling achieved through controlled-by-wire technology.

As the control approach shows in Figure 1, the driver’s driving style identification
module provides classification results to the RVF control layer (where signal number 1
represents the cautious driver, signal number 2 represents the general driver, and signal
number 3 represents the aggressive driver). Based on the identified driving style, the RVF
control layer adjusts the preview distance and reference vehicle speed accordingly for the
personalized path-tracking approach. In the meantime, the longitudinal and lateral acceler-
ations, along with the vehicle speed vector errors can be obtained based on the RVF theory.
In the subsequent control layer, the center forces for the lateral and longitudinal directions
of the vehicle can be obtained based on the corresponding accelerations, and the desired
vehicle yaw moment can be obtained by employing the sliding mode controller (SMC) that
addresses the speed vector errors. The model operates under the assumption that the road
surface is flat and disregards the vehicle’s vertical motion and aerodynamic influences.
Hence, the 3-DoF simplified vehicle dynamic model can be used for the control allocation
layer. The linear-quadratic programming (LQP) method is introduced to distribute the
total vehicle center forces and torque into the individual tire forces with a nonlinear friction
circle constraint. Finally, in the actuator control layer, a SMC is employed to accurately
track the desired tire steering angles and driving torques, as per the actuator control targets.

The vehicle acceleration is calculated in the upper-layer approach and decomposed
into the vehicle’s longitudinal and lateral directions. Consequently, the total forces in the
longitudinal and lateral directions are determined according to Equation (27):

∑ Fxi = max cos φ + may sin φ

∑ Fyi = may cos φ − max sin φ
(27)

where φ is the heading angle of the vehicle; m is the centroid mass; Fxi and Fyi are the
longitudinal and lateral force of the ith axle, respectively; and ax and ay are the longitudinal
and lateral acceleration, respectively.

The initial direction error of the vehicle speed and the reference speed is known in
the upper layer approach, and the yaw moment Mz is obtained by the SMC based on the
heading angle error.

4.2.1. Control Allocation Layer

For simplicity, it is assumed that the road is flat, and both the vertical movement of
the vehicle and the influence of aerodynamics are neglected.

The following Equation (28) describes the balancing force of the vehicle along the
x-axis, y-axis, and z-axis:

mẍ = mẏρ̇ + ∑ Fxij

mÿ = −mẋφ̇ + ∑ Fyij

Mz = ΘF

i = 1, 2; j = 1, 2 (28)

where F =
[
Fx11 Fx12 Fx21 Fx22 Fy11 Fy12 Fy21 Fy22

]T ;
Θ =

[
d −d d −d l f l f −lr −lr

]
; ẋ and ẏ are the longitudinal and lateral

velocity, respectively; Fxij and Fyij are the longitudinal and lateral force of the ijth wheel,
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respectively; d is the half of the track width; and l f and lr are the distance from the center
of mass to the front and rear axle, respectively.

Equation (29) indicates that the dynamic model of the 4WDaS wire-controlled un-
manned chassis has four independent controllable force variables. In this paper, a LQP
multi-objective optimization approach is employed for tire force allocation, with the fol-
lowing objective function:

min|NF − V |2 (29)

where

N =

a12 a12 a21 a22 −b11 −b12 −b21 −b22
b11 b12 b21 b22 a11 a12 a21 a22
c11 c12 c21 c22 d11 d21 d21 d22

;

aij = cos δij; bij =
(
−1

)jd cos δij +
(
−1

)i+1li cos δij; cij = sin δij;

dij = (−1)j+1d sin δij + (−1)i+1li cos δij; V =
[
∑ Fxi ∑ Fyi Mz

]T ; δij is the steering angle
of the ijth wheel.

At the same time, the cost function of LQP is converted into a standard function:

min
(

1
2

x̃TGx̃ + x̃Tc
)

(30)

where c is a constant matrix. Take the matrices G and x̃ in the quadratic programming as

G =

[
2NT N −2N
−2N 2I

]
(31)

x̃ =
[
F V

]T (32)

Proved to be

J =
1
2
[
FT V T][2NT N −2NT

−2NT 2I

][
F
V

]
+

[
FT V T][0

0

]
=

[
FT NT N − NT N −FT NT + V T][F

V

]
= FT NT NF − V T NF − FT NTV + V TV

= (NF − V)T(NF − V)

=
∣∣NF − V

∣∣2
(33)

When c = [0 0]T , it can be inferred from Equation (33) that Equation (29) is equivalent to
Equation (30).

In the tire force allocation process, the lateral and longitudinal forces exerted on each
tire must conform to the limits of the friction circle. As illustrated in Figure 7, the linear
polygon constraint method is used to simplify the nonlinear friction circle constraint to
solve the challenging and time-intensive nature of solving nonlinear constraint optimization
problems. The specific constraints are as follows:

|Fxi| ≤ µFzi∣∣Fyi
∣∣ ≤ µFzi∣∣Fxi + Fyi

∣∣ ≤ √
2µFzi∣∣Fxi − Fyi

∣∣ ≤ √
2µFzi

(34)

where µ is the road adhesion coefficient; Fzi is the longitudinal force of the ith axle.
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Figure 7. Schematic diagram of linear polygon friction circle constraint.

4.2.2. Actuator Control Layer

As a typical non-linear characteristic system, both the lateral and longitudinal forces
exerted on the tire are non-linear and interconnected. The nonlinear Dugoff tire model
and the magic tire model are widely used in tire models. The tire measurement data are
listed in a lookup table, from which the longitudinal slip rate and tire side slip angle are
obtained. Finally, the target wheel angle is calculated according to Equation (35), and the
target torque is determined as shown in Equation (36).


δ11
δ12
δ21
δ22

 =


α11
α12
α21
α22

+



arctan
( ẏ+l f φ̇

ẋ−φ̇d

)
arctan

( ẏ+l f φ̇

ẋ+φ̇d

)
arctan

( ẏ−l f φ̇

ẋ−φ̇d

)
arctan

( ẏ−l f φ̇

ẋ+φ̇d

)


, (35)

Tij = Fxijrtire (36)

where rtire is the wheel radius; αij is the side slip angle of the ijth wheel;Tij is the target
torque for the ijth wheel. The independent driving and steering of 4WDaS are achieved
through the layered architecture.

5. Simulation Verification of the Personalized Path-Tracking Approach Based on a
Driving Simulator
5.1. Simulation Setup

In order to verify the proposed personalized path-tracking approach based on RVF,
we used a high-fidelity driving simulator to establish a simulation test bench. A 4WDaS
chassis model based on Simulink/Carsim was established for this purpose. Within the
test platform, a 4WDaS wire-controlled unmanned chassis, modified using a C-class ve-
hicle model within CarSim, was employed for the signal transformation. The drivers’
driving signal were then computed within the Simulink/MATLAB environment. Due
to the common occurrence of the double-lane change maneuver in real-word driving
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scenarios, which includes both straight and curved phases, this could well reflect the
driver’s driving style. In addition, the data collected in Section 3 are also based on the
double-lane change maneuver. Consequently, this section selected the classic double-lane
change maneuver as the test condition. The experimental structure, as shown in Figure 1,
was divided into two stages. The first stage involved driver driving style identification
based on driving simulator operation, with the identification accuracy verification detailed
in Section 3. The second stage focused on the verification of personalized path tracking
control based on the results of the driver’s driving style identification. Some key simulation
parameters are outlined in Table 2. The running step of the simulation test was set to
1000 Hz.

Table 2. Simulation parameters.

Symbol Variable Description Value (Unit)

m Total mass 1345 (kg)
IZ Moment of inertia 1523 (kg·m2 )
l f Distance from front axle to center of mass 1.01 (m)
lr Distance from rear axle to center of mass 1.46 (m)
d Half of the track width 0.77 (m)
µ Adhesion coefficient 0.8
C f Front axle lateral stiffness 62,900 (N.rad)
Cr Rear axle lateral stiffness 62,900 (N.rad)

5.2. Simulation Results

According to the control approach shown in Figure 1, the results of the current driver
identification were transmitted to the RVF control layer as numerical signals 1, 2, and
3. The controller then selected the relative preview distance and reference speeds cor-
responding to the identification results. This section verifies the personalized tracking
performance of the three driving styles using a comprehensive set of recognition data. To
better demonstrate the differences in path-tracking performance across the personalized
tracking control strategies, the results are collectively analyzed and presented. For the pur-
pose of the simulation, the reference speed ur was set at 48.8 km/h according to the work
conditions and the collected dataset. Then, based on Equation (25), the reference speeds for
cautious, general, and aggressive drivers were set at 33.1 km/h, 48.8 km/h, and 69.4 km/h,
respectively. In addition, the preview times for all types were standardized at 0.3 s. The
results of the path-tracking test with three different driver driving styles are depicted in
Figure 8.

The experimental results presented in Figure 8 offer a comprehensive comparison
of the path-tracking control performance across different driving style identifications,
including an evaluation of path-tracking control efficiency under varying states, as well
as the operational performance of the 4WDaS wire-controlled unmanned chassis. In
Figure 8a, the trajectories under three personalized tracking settings are displayed. The
enlarged image indicates that there was little difference in trajectory tracking perfor-
mance between the three settings, revealing tracking accuracy across speeds ranging
from 33.1 km/h to 69.4 km/h. In specific, as depicted in Figure 8c, at vehicle speeds of
33.1 km/h, 48.8 km/h, and 69.4 km/h, the absolute values of the maximum lateral path
tracking error were 0.20 m, 0.169 m, and 0.138 m, respectively. The lateral errors remained
relatively small under the three personalized tracking settings. Figure 8b–e respectively
show the key tracking states of the entire vehicle. Noticeable disparities were observed
in the vehicle states across the three driving styles, effectively reflecting distinct driving
behaviors. Specifically, as shown in Figure 8b, the absolute values of maximum lateral
acceleration corresponding to cautious, general, and aggressive driving styles were
0.163 g, 0.327 g, and 0.594 g, respectively. It is common practice for researchers to set
0.4 g as the critical value for vehicle lateral acceleration. Therefore, in this test, the
vehicle’s driving state underwent a transition from a stable state to an extreme state.
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As shown in Figure 8d, the absolute values of the maximum yaw rate corresponding
to cautious, moderate, and aggressive driving styles were 1.59 deg/s, 4.22 deg/s, and
11.75 deg/s, respectively. This result proves that the controlled vehicle exhibited a
more aggressive performance with the increase in target reference speed, which corre-
spondingly reflected the requirements of the different drivers’ driving styles. Figure 8e
illustrates the side slip angle for the different driving styles. The absolute values of the
maximum side slip angle corresponding to cautious, moderate, and aggressive driving
styles were 12.46 deg, 13.69 deg, and 16.32 deg, respectively. As an important indica-
tor of vehicle stability, the increasing body-side slip angles also reflected the distinct
requirements of the different drivers’ driving styles. Figure 8f presents the vehicle speed
performance. Under the three tracking scenarios, the controlled vehicle was able to main-
tain the target reference speed with relatively small errors. Specifically, when operating
in pure steering mode, there was a slight decrease in vehicle speed to accommodate
the required lateral and longitudinal accelerations. However, the controlled vehicle in-
creased the vehicle speed to the reference value in the short term to meet the longitudinal
acceleration required by the upper controller. These minor speed fluctuations served
as indicators of the longitudinal path-tracking capacity of the proposed algorithm. The
results outlined above demonstrated the path-tracking states of different driving styles,
with high-precision tracking effects and significant differences in overall vehicle states.
Compared with Figure 6, the vehicle states under different styles conformed to the data
collection rules.

Figure 8g–i respectively show the total longitudinal force, total lateral force, and
yaw torque before and post LQP allocation. Under the different driving styles, except
for the initial start-up, the target total force and allocated total force were basically
consistent, achieving commendable tracking and execution. The above three sub-
graphs demonstrated the execution capability of the 4WDaS wire-controlled unmanned
chassis. The results proved the effectiveness of the 4WDaS wire-controlled unmanned
chassis execution based on LQP force distribution and a control layer. Meanwhile, the
variation in demand for driving force and torque across the different driving styles
corroborated the chassis’s ability to adapt to personalized driving performances.

Combining the accuracy verification performance of driving style recognition
in Section 3 with the diverse performances based on personalized RVF in Figure 8,
the results indicate that the 4WDaS unmanned chassis using the personalized path-
tracking approach proposed in this article could accurately identify the driver’s driving
style and achieve personalized path-tracking control performance. In summary, the
proposed path tracking control approach not only reflected the driving style of the
identified driver but also ensured high-precision path-tracking performance under
various driving conditions, thereby meeting individual personalized driving intentions
and requirements.

(a) (b)

Figure 8. Cont.
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(c) (d)

(e) (f)

(g) (h)

(i)

Figure 8. Simulation results; (a) Path-tracking trajectories; (b) lateral accelerations; (c) lateral errors;
(d) yaw rates; (e) vehicle side slip angles; (f) vehicle speeds; (g) longitudinal forces; (h) lateral forces;
(i) yaw torques.

6. Conclusions

This paper proposed a personalized trajectory tracking algorithm based on RVF for
4WDaS wire-controlled unmanned chassis. The classic RVF was reasonably extended,
and the driving behavior data of multiple drivers were obtained using a driving simula-
tor. For driving style identification, the fuzzy c-means clustering method coupled with
the random forest algorithm was employed. The proposed personalized path-tracking
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approach was validated through simulation testing. The experimental test results demon-
strated that the personalized path-tracking control approach not only fit well with the
4WDaS wire-controlled unmanned chassis but also exhibited high accuracy in driving style
identification, achieving effective personalized path-tracking performances. Furthermore,
with the proposed personalized path-tracking approach, the vehicle could achieve a more
human-like autonomous driving performance, to satisfy the design concept from “driver
adapted to the car” to “car adapted to the driver”.

It is important to note that the driving data used in this article were gathered using
driving simulators, primarily to validate principles with minimal impact on the algorithm
structure. In addition, the validation experiment in this article was based on data collection
settings, and future research will explore the use of more extensive datasets to refine the
clustering centers. There are still areas for further improvement in this article, such as the
data sources and validation methods. Therefore, in future research will focus on applying
and validating real vehicle data, to broaden the applicability and robustness of our findings.
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