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Abstract: Traditional electric vehicle (EV) charging methods can lead to extended waiting times
for users, resulting in decreased travel efficiency and user satisfaction, therefore impacting overall
convenience. Moreover, a limited number of charging stations can lead to congestion, exacerbating
waiting times, while an excessive number of stations incurs inefficient costs and reduces utilization.
While prior research has primarily focused on sizing and allocating charging stations to enhance
user performance, there has been comparatively less emphasis on optimizing waiting times and
determining the optimal number of charging stations, which is crucial from the EV user’s perspective.
This study introduces a K-additive fuzzy logic algorithm to predict the average waiting time and
the optimal number of charging stations. The K-additive fuzzy inference system (K-FIS) defines
membership functions, expert rules, and a formulation for achieving the optimal solution. The
proposed approach integrates uncertain and independent input parameters into weighted control
variables, addressing the objective function to optimize EV waiting times and costs represented
by the number of charging stations. The scheme utilizes both Type 1 and Type 2 membership
functions, offering a detailed comparison. To validate its efficiency, the proposed scheme undergoes a
comparative study against related state-of-the-art approaches.

Keywords: EV user waiting time; fast-charging station; electric vehicles; fuzzy logic; type 2 fuzzy
logic; queuing theory; charging-station user waiting time

1. Introduction

The rising prominence of electric vehicles, prompted by concerns over greenhouse
gas emissions and the reduced reliance on fossil fuels, has drawn significant attention [1].
With a continuous increase in the number of electric vehicles, the charging of their bat-
teries is anticipated to have a noteworthy impact on the electric power infrastructure,
affecting generation, transmission, and distribution systems. Challenges include issues like
feeder and transformer overloading, voltage fluctuations, harmonics, and additional energy
losses [2]. Coping with the heightened demand requires challenging and costly solutions
such as increasing generating power and upgrading the distribution power system [3].
To counteract the surge in peak load resulting from uncontrolled charging, it is crucial
to avoid the simultaneous charging of electric vehicles [4]. Several research papers have
explored the application of fuzzy logic-based systems [5–7] for managing electric vehicle
(EV) charging. Faddel et al. [8] presented a fuzzy algorithm to operate in conjunction
with a virtual synchronous generator. The study aimed to intensify the demand curve
and enhance equity in battery charging time. In [9], two fuzzy algorithms were intro-
duced and contrasted with multiple optimization techniques. These algorithms yielded
satisfactory outcomes, closely matching the performance of an optimization metaheuristic
technique. Notably, they demonstrated lower computational complexity and incorporated
expert knowledge into the model. In [8], a charging scheme based on fuzzy logic was
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proposed to manage aggregated charging loads, which took into account factors such as
state-of-charging (SoC), remaining charging time, and electricity prices. In [9], the authors
introduced a fuzzy-based energy-management algorithm designed for electric vehicle (EV)
charging in an intelligent workplace parking station. This algorithm incorporated variables
such as photovoltaic panel output power, required power for charging, and utility energy
prices. Another study [10] presented a fuzzy optimization model aiming to maximize
parking-lot operator profit while meeting EV charging requirements. This study explored
scenarios involving fixed charging prices and multi-tier pricing for fast charging. Fur-
thermore, [11] proposed a two-stage charging strategy that utilized the Bee Algorithm for
optimal charging power calculation. Additionally, a fuzzy logic controller was suggested
for power distribution among EVs. Despite the promising potential, there are still a few
challenges, with charging time and public charging requirements being the most notable.
Despite a significant decrease in electric vehicle EV charging time over the years, it remains
considerably higher on average than the refueling time for internal combustion engine
(ICE) vehicles. While emerging charging technologies like extremely fast charging [12]
and wireless charging [13] show promise, they are still grappling with various challenges
and will likely take years before widespread adoption. Due to the limitations in charging
infrastructure, a majority of electric vehicle (EV) owners depend on public charging sta-
tions. This reliance places a burden on the power distribution grid because of the high
power demands of EVs [14,15]. Fuzzy logic is a powerful tool that deals with uncertainty
and imprecision in decision-making [16–18]. In the context of optimizing waiting time
for EVs, K-additive fuzzy logic offers a robust framework to tackle the complex nature
of charging requirements and infrastructure constraints. By considering multiple factors
simultaneously, one can develop comprehensive solutions that enhance the charging expe-
rience for EV owners. Considering the previously mentioned research and the imperative
need for enhancements in the energy-management systems of electric charging stations to
improve user experience, this study proposes a multi-objective-based fuzzy logic model
for determining the number of charging stations and average waiting time for EV users.
The model takes into account the SoC of the EV, the number of charging stations, and the
percentage of station utilization as input parameters. The algorithm seeks to optimize
the number of charging stations for cost-effectiveness while also minimizing the average
waiting time for EV users, directly impacting user satisfaction. The main contributions of
this study are summarized as follows:

1. This study introduces a multi-objective problem aimed at optimizing the delay, repre-
sented by both EV users’ waiting time and the charging time at the stations, and the
cost represented by the number of charging stations.

2. The paper focuses on modeling the charging stations using the M/M/c model with
the objective of maximizing station utilization and enhancing user satisfaction.

3. K-additive fuzzy logic is implemented to predict both the average waiting time and
the optimal number of charging stations in this context.

4. The scheme utilizes both Type 1 and Type 2 membership functions for the K-additive
FIS, offering a detailed comparison.

The rest of this paper is organized as follows. Section 2 provides a review of the
literature. Section 3 outlines the proposed fuzzy logic-based algorithm. Section 4 involves
the simulation, verification, and analysis of the proposed algorithm. Section 5 concludes
the article.

2. Literature Review

Efficient network management plays a pivotal role in the Internet of Vehicles (IoVs),
emphasizing the need for the proper consideration of fast-charging station (FCS) allocation
and sizing. Insufficient attention to these aspects when integrating FCSs into the distri-
bution network can result in detrimental effects on the power grid. This may manifest in
increased power loss, voltage instability, and imbalances in demand and supply. Therefore,
ensuring optimal FCS allocation and sizing is critical to prevent potential negative repercus-
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sions on the power grid within the context of IoVs [19]. While predictions of electric vehicle
(EV) charging behavior and waiting time for charging can encompass various categories,
this study specifically focuses on minimizing the delay that occurs by waiting in the queue
and at the charging station and finding the optimal number of charging stations. Other
charging behaviors, such as forecasting whether the EVs will be charged the following
day [20], identifying the use of fast charging [21], predicting the time to the next plug [22],
charge profile prediction [18], charging speed prediction [19], and forecasting charging
capacity and daily charging times [23], offer valuable insights. However, from a cost and
user satisfaction point of view, the more significant focus lies in finding the number of
charging stations that can serve the EVs without causing too much delay. Figure 1a,b
presents detailed statistics on introducing EVs into the global market in different countries
and the retail price, respectively [24]. Nations worldwide are implementing comparable
government initiatives to boost the development and manufacture of electric vehicles (EVs)
and to ensure the stability of their supply chains for essential minerals necessary for EV
production. While we have only highlighted the efforts of China, Europe, and the US
for brevity, many other countries around the world are developing their own financial
programs to promote EV initiatives. The growth of electric vehicle (EV) sales in China
has been driven by supportive policies and low retail prices. In 2022, the average price
of small EVs in China was under USD 10,000, much lower than in Europe and the US,
where it exceeded USD 30,000. The top-selling EVs in China, like the Wuling Mini BEV
and BYD’s Dolphin, were priced below USD 16,000, indicating strong demand for compact
models. Chinese automakers focus on cost reduction and smaller, more affordable models,
benefiting from lower costs and supply-chain integration. In contrast, Western automakers
prioritize larger, luxury EVs, offering a better range but limiting options for mass-market
consumers. Different evolutionary algorithms [25–29] have been proposed for EV systems;
however, very few have used fuzzy logic to predict the number of charging stations as
well as the average waiting time of EV users. Frendo et al. [30] employed support vector
machines (SVM) to predict the arrival and departure times of electric vehicle (EV) com-
muters on a university campus. Utilizing historical arrival and departure times along with
temporal features such as week, day, and hour, the reported mean absolute percentage
error (MAPE) stood at 2.9% and 3.7% for arrival and departure times, respectively. Ref. [31]
employed ensemble machine-learning techniques, incorporating SVM, random forest (RF),
and a diffusion-based kernel density estimator (DKDE) for predicting session length and
energy consumption. The training data involved historical charging records from two
distinct datasets—one public and the other residential. The ensemble model outperformed
individual models in both predictions, with reported symmetric mean absolute percentage
errors (SMAPEs) of 10.4% for the duration and 7.5% for consumption. In the literature,
many studies have been proposed for minimizing waiting time and predicting the optimal
sizing and location of charging stations where machine-learning algorithms are incorpo-
rated; however, this study is the first to address the waiting time and sizing of charging
stations based on fuzzy logic in EVs. In [32], the authors introduced a multi-objective
optimization approach to determine the optimal location and size of fast-charging stations
(FCSs) near Bangi City, Malaysia. This method considers factors such as the Google Maps
API, road traffic density, and harmonic power flow. The optimization problem is formulated
to minimize various costs, with the primary objective being to reduce the total expendi-
ture. In [33], the authors developed a mixed-integer programming model to address the
best charging station location and to maximize the number of people who can complete
round-trip itineraries. In [34], the authors proposed an optimization cost model for locating
and sizing charging stations for electric vehicles. The model considers the number of EVs
and uses the Analytic Hierarchy Process (AHP) to assign weights to candidate locations.
The model incorporates constraints like the distance between the substation and candidate
locations and the installation cost of charging stations. As can be observed, most of the
studies in the literature focus on solving the sizing problem of charging stations; however,
important factors related to users’ waiting times and the queuing model of the charging
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stations are not well focused on. Hence, this paper adopts the M/M/c queuing model for
the charging stations and determines the optimal number of charging stations, which is
crucial from the EV user’s perspective, by applying the K-additive fuzzy logic algorithm to
predict the average waiting time and the optimal number of charging stations.
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3. Proposed K-Additive Fuzzy Logic-Based Algorithm

In this work, K-additive fuzzy logic is adopted to determine the number of electrical
charges and EV waiting time. Since the arrival of the EVs and the service of electrical
charges are uncertain each time an electric vehicle comes for service, fuzzy logic is suitable
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for such cases, especially since the number of electrical stations is to be determined based
on EV availability. First, delay time formulation is described, along with the formulation
of the number of electrical stations. Then, the K-additive fuzzy logic-based algorithm is
explained in detail.

3.1. Delay Time at the Charging Station

The state of charge (SoC) for an electric vehicle’s battery is a ratio of the remaining
capacity in the battery to its total capacity and is given by Equation (1), where the reciprocal
of it gives the number of battery cells that are empty. Hence, the time to fully charge an EV,
denoted by Te

c , is given by Equation (2).

SoC =
Bc

e −
∫ t1

t0 Bd
e (t)dt

Bc
e

(1)

where Bd
e (t) is battery discharge rate and Bc

e is the battery capacity, Bd
e is the dynamic

discharge rate of a battery, and Tc is the time it takes a charging station to charge 1 unit cell.

Te
c = (SoC + ε)−1 × Tc (2)

where a small number (ε = 0.001) is added to SoC to prevent division by zero in the case of
SoC being empty. The delay time encountered by an EV is the time it takes to be served due
to the queue line and the time it spends at the charging station; hence, first, the queuing
model is explained, and then the delay time is formulated. The charging stations are
assumed to be modeled by M/M/c, where the arrival rate follows the Poisson process, the
service rate follows an exponential distribution, and c is the number of charging stations.
The waiting time at charging station i, Te

i is by Equation (3):

Te
i = Lq/ϕiµNi

Bec (3)

where ϕi is the probability of i EVs being served, µ is the service rate, Ni
Bec is the number of

busy electric charges, and Lq is the queue length. It is given by (4):

Lq =
P0 × (λi/µ)Nec

(Nec−1)! ×
(
1 − ϕi

)2 (4)

where P0 is the probability a charging station i is idle, is given by (5)

P0 = [1 +
Nec−1

∑
n=1

λi/µ
n

n!
]−1 (5)

Therefore, the total delay De of an EV is the sum of charging time and waiting time,
given by (6)

De = Te
i + Te

c (6)

The number of electric chargers at FCS i is given by Equation (7)

Ni
c =

λi

Ne
(7)

where Ne is the number of electric vehicles at FCS i. The utilization rate of an electric
charging station i is given by (8)

ρi =
Ne × Te

c
Nec

(8)

The objective function is formulated as in Equation (9)

F = min
e

De (9)



World Electr. Veh. J. 2024, 15, 150 6 of 15

The K-additive fuzzy logic inference system (K-FIS) is a type of fuzzy logic inference
system that incorporates the concept of K-additivity. K-additivity is a property that extends
the concept of additivity to fuzzy sets. In traditional additivity, the sum of the membership
values of two sets is equal to the membership value of their union. In K-additivity, the sum
is not constrained to be equal to the membership value of the union but can be any value
between the sum and the maximum of the membership values. Furthermore, in K-FIS,
K-additivity is utilized in the inference process. The system uses fuzzy rules to determine
the output based on the input variables. The degree of fulfillment of each rule is calculated
using the K-additive method. The degree of fulfillment is then aggregated to obtain the
overall output value. One advantage of using K-FIS is that it allows for more flexibility in
representing uncertainty. The K-additive property allows for a smooth transition between
different degrees of membership, which can be beneficial in decision-making applications.
K-FIS has been used in various fields, including control systems, pattern recognition, and
decision-support systems. It provides a robust and flexible framework for dealing with
uncertainty and imprecision in decision-making processes.

The K-additive K-FIS for electric vehicle (EV) charging stations is a fuzzy logic-based
decision-making tool designed to enhance the efficiency of charging station operations. It
evaluates multiple input variables and their corresponding fuzzy sets to determine the
most suitable charging rate for EVs. Factors such as charging-station availability, charging
rates, energy demand, and electricity grid load are taken into consideration. To address the
inherent uncertainty and imprecision in these input variables, the K-FIS employs fuzzifica-
tion, converting them into linguistic terms or fuzzy sets. Subsequently, fuzzy logic rules
are applied based on expert knowledge or historical data to make decisions regarding the
charging rate. These rules encapsulate the relationship between input variables and the de-
sired output, which, in this case, is the charging rate. Utilizing fuzzy logic enables the K-FIS
to effectively manage the ambiguity present in decision-making processes. Following the
application of fuzzy logic rules, a defuzzification process is employed to convert the fuzzy
output into a clear value, representing the recommended charging rate for each station.
This value is then used to regulate the charging rate of electric vehicles, optimizing the
utilization of charging infrastructure and ensuring efficient energy consumption. The K-FIS
is adaptable and customizable, making it suitable for various charging-station scenarios. It
can consider different parameters and constraints, such as time-of-use electricity pricing,
available charging stations, and energy demand patterns. This adaptability ensures the
effective management of EV charging stations, maximizing their utilization while minimiz-
ing the impact on the electricity grid. In summary, the K-FIS for EV charging stations offers
an intelligent and adaptive approach to optimizing charging operations. It considers the
dynamic nature of charging infrastructure and electricity demand, ultimately enhancing
the efficiency of charging-station operations. The K-additive allows for the adjustment of
the crisp logic and fuzzy reasoning in the system, which can help in better decision-making
and control of the charging-station operations. Additionally, the K-additive can help in
reducing the computational complexity of the fuzzy system, making it more efficient and
faster in processing information and making decisions. This can be particularly beneficial
in a dynamic and real-time environment like an electric charging station, where quick and
accurate responses are crucial.

Overall, using the K-additive in a fuzzy system for an electric charging station can lead
to improved efficiency, accuracy, and performance, ultimately resulting in better overall
functionality and customer satisfaction.

Modeling EV charging stations proves challenging due to system complexity. There-
fore, employing a model-free controller that does not rely on system modeling becomes
essential. Various model-free controllers, including fuzzy, neuro-fuzzy, adaptive neuro-
fuzzy, Q-learning, and deep Q-learning control models, have been explored in the literature
to enhance the efficiency of electric car charging stations. Among these, the fuzzy logic
controller (FLC) emerges as a promising choice, particularly for handling nonlinear map-
pings between input and output data, ultimately improving system efficiency. K-additive
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FLC consists of three main components: fuzzification, fuzzy inference engine, and defuzzi-
fication [3–6]. Fuzzification involves converting input and output variables into fuzzy
linguistic sets using membership functions. The fuzzy inference engine relies on rules to
govern the system, demanding expert skill and experience for rule design, with control law
parameters stored in the fuzzy database. Defuzzification transforms fuzzy variables into
crisp values, with the fuzzy variables as input values and the defuzzification output as crisp
or numeric values. In the context of electric car charging stations, FLC is developed to up-
hold user satisfaction by optimizing the average waiting time and the number of charging
stations. The FLC takes three inputs—number of electric vehicle users (Ne), percentage of
charging-station utilization (ρi), and state of charge of electric vehicles (SoC)—and produces
two outputs—number of charging stations (Ni

c) and average waiting time (De)—as shown
in Figure 2.
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3.2. Top of Form

A fuzzy logic controller (FLC) utilizing the Mamdani algorithm is implemented to
define input variables (Ne, ρi, and SoC) and output variables (Ni

c and De). All variables
undergo conversion into linguistic variables, specifically: small (S), medium (M), and
high (H). The respective ranges for Ne, ρi, SoC, Ni

c, and De are [1–1000 cars], [0.01–0.99%],
[20–85%], [3–8 charging stations], and [8–45 min]. Triangular membership functions are
chosen to visually represent the inference of these variables graphically.

For a K-additive fuzzy measure λ, the additive property over subsets A and B of a
finite set X is expressed by Equation (10):

λ(A ∪ B) = λ(A) + λ(B) + max
A,B

µ (10)

where µ is the membership values.
The K-additive fuzzy logic controller (FLC) is an extension of traditional FLCs that

incorporates additive aggregation operators to combine fuzzy rule outputs. This approach
allows for more flexible and accurate control decisions by considering multiple rules
simultaneously. In a K-additive FLC, the output of each fuzzy rule is represented as a fuzzy
set, which is then aggregated using a chosen aggregation operator (sum in our case). The
aggregation process combines the outputs of all relevant rules to generate a final control
action. The K in K-additive refers to the number of rules whose outputs are aggregated at
each step. This approach can improve the FLC’s performance in handling complex and
nonlinear control problems by capturing more information from the fuzzy rule base.

The fuzzy rules developed for the FLC of the battery are presented in Table 1, while
Table 2 outlines the range of input and output variables. Table 3 presents the range of
upper membership function (UMF) and lower membership function (LMF) of Type 2
fuzzy variables.
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Table 1. Fuzzy rules.

Fuzzy Inputs Fuzzy Outputs

Ne ρi SoC Ni
c De

S S S S S
S S M S S
S S H S S
S M M S M
S H H S M
S M H S M
S H M S M
S M S S M
S H S M M
M M M M M
M M S M M
M M H M M
M S S M M
M H H M M
M H S M M
M S H M M
M S M M M
M H M M M
H H H H H
H H S H H
H H M H M
H S S H S
H M M H M
H M S H S
H S M H M
H S H H M
H M H H H

Table 2. Range of input and output variables.

Fuzzy Linguistic
Variables

Range of Input Variables Range of Output Variables

Ne ρi (%) SoC (%) Ni
c De (min)

S [1–440] [0.01–0.40] [20–40] [3–5.8] [8–23]

M [300–700] [0.30–0.65] [35–55] [5–7.2] [20–30]

H [550–1000] [0.55–0.99] [45–85] [6.6–10] [28–45]

Type 1 fuzzy logic systems have crisp or precise membership functions, meaning that
each input value is assigned to a specific linguistic term or category. This type of fuzzy
logic is often used to deal with uncertainties and approximate reasoning, as shown in
Figure 3. On the other hand, Type 2 fuzzy logic systems have fuzzy membership functions,
which allow for more flexibility and handling of uncertainties compared to Type 1 fuzzy
logic. In Type 2 fuzzy logic, the membership functions themselves are also fuzzy, meaning
that the degree of membership to a linguistic term can vary further. When applied to
electric car charging stations, a Type 1 fuzzy logic system could be used to determine
the charging rate based on factors such as the battery level, charging time, and charging
station capacity. The membership functions would assign the inputs to specific linguistic
terms (e.g., low, medium, high) and make crisp decisions based on the rules defined in
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the system. In contrast, a Type 2 fuzzy logic system for electric car charging stations
could handle more uncertainties, as shown in Figure 4. For example, the membership
functions could be assigned to fuzzy intervals or ranges instead of crisp terms. This would
allow for a more flexible decision-making process, taking into account more complex and
uncertain factors such as fluctuating energy prices, varying charging network availability,
or dynamic customer demand. Overall, Type 2 fuzzy logic systems offer more versatility
and adaptability in handling uncertainties compared to Type 1 fuzzy logic systems, making
them suitable for complex and uncertain scenarios such as electric car charging stations.

Table 3. Range of upper membership function (UMF) and lower membership function (LMF) of Type
2 fuzzy variables.

Fuzzy
Linguistic
Variables

Range of Input Variables Range of Output Variables

Ne ρi SoC Ni
c De

UMF LMF UMF LMF UMF LMF UMF LMF UMF LMF

S [0–500] [0–400] [0–0.50] [0–0.37] [20–50] [20–42] [0–6.2] [0–5.5] [0–23] [0–21]

M [220–800] [380–680] [0.20–0.78] [0.3–0.62] [38–68] [41–60] [4.3–7.9] [5–7.5] [18–33] [20–29]

H [500–1000] [620–1000] [0.4–1] [0.58–1] [50–100] [55–100] [6.2–10] [7–10] [25–45] [27–45]
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Type 2 fuzzy logic can be used for electric car charging stations to prioritize charging
based on factors such as availability, charging time, and user preferences. For example,
suppose there are multiple electric vehicles in need of charging and limited charging
stations available. In that case, the Type 2 fuzzy logic system can evaluate the importance of
each vehicle’s charging needs based on factors such as battery level, distance traveled, and
urgency. It can then allocate the charging stations to those vehicles that require it the most,
optimizing the overall usage of the charging infrastructure. Additionally, the Type 2 fuzzy
logic system can consider user preferences, such as the maximum charging time allowed,
preferred charging stations or locations, and any specific restrictions or requirements set
by the vehicle owner. This can ensure that the charging process is tailored to the user’s
specific needs and preferences. Overall, the use of Type 2 fuzzy logic in electric car charging
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stations can help maximize the efficiency and utilization of the charging infrastructure while
providing a personalized and optimized charging experience for electric vehicle owners.

4. Simulations and Discussion

The simulations were conducted on a complex network model representing a real-
world scenario of EV charging infrastructure. The network covered a geographical area
of 265 km² and was designed to accommodate a fleet of 1000 homogeneous EVs. We as-
sumed these EVs have the same battery characteristics in terms of charging and discharging
time and battery capacity. The charging infrastructure consisted of 20 FCS strategically
distributed at 2.5 km intervals, as depicted in the bus radial distribution system, as shown
in Figure 5. The simulation parameters, shown in Table 4 [23], including the EV distribu-
tion, charging-station locations, and grid characteristics, were carefully selected to reflect
real-world conditions. To determine the power loss in the adopted 47-bus Malaysian
distribution system [31], which incorporates electric vehicles (EVs) during fast charging, a
backward/forward-based harmonic load flow method is utilized [35]. Figure 5 illustrates
the 47-bus Malaysian radial distribution system with loads from fast-charging stations
(FCSs). The harmonic current magnitudes and angles for fast charging were sourced.
The scenario study for the comparison was conducted using the MATLAB–Simulink en-
vironment, with simulations lasting over 20 min. This extended duration allowed for a
comprehensive evaluation of the performance of the K-Fuzzy Inference System (K-FIS)
and its comparison with existing methods. The simulations were executed with careful
consideration of various parameters and conditions to ensure a realistic representation of
the electric vehicle (EV) charging infrastructure scenario. The use of MATLAB–Simulink
provided a robust platform for conducting the simulations, enabling detailed analysis and
insights into the efficiency and effectiveness of the K-FIS in optimizing charging-station
operations. In comparison to existing methods, K-FIS is evaluated against [32–34] con-
cerning the number of FCS, Load of EVs at each charging station, and average charging
time. The K-FIS scheme recommends 8 FCS, whereas [32–34] suggests 10, 12, and 13 FCS,
respectively, as depicted in Figure 4. This shows the significance of the SoC of the EV
when finding the number of electric chargers. Figure 6 illustrates the load distribution of
fast-charging stations. Each station’s load is represented by the number of EVs served.
In the proposed scheme, an M/M/c queuing model is adopted, which shows a positive
impact on the overall load and waiting time of EVs compared with other schemes. Table 5
presents a comparison between the average waiting time or delay and the average load
in the system. While the delay or waiting time in the proposed K-FIS is higher, it is worth
noting that the decrease in other schemes is approximately 0.4%, 0.5%, and 0.6% for [32–34],
respectively. This marginal decrease is considered relatively insignificant compared to the
reduced number of FCS, which implies higher costs. With respect to the charging time, it is
worth noting that the average charging time is related to the state of charge (SoC) of the
EVs. When the SoC is low, more time is required to charge the EV fully and vice versa. The
average delay for the proposed K-FIS is 18.25 min, whereas it is 18.17, 18.16, and 18.12 min
for [32–34], respectively.

Table 4. Parameters used for simulation [23].

Scheme No. of FCs Avg. Charging Time (min) Avg. Load (No. of EVs)

Proposed K-FIS 8 18.25 125

[32] 10 18.17 100

[33] 12 18.16 84

[34] 13 18.12 77
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Table 5. Comparison of K-FIS with different schemes.

Parameter Value

Number of EVs 1000

EV maximum battery capacity 50 kW

Maximum charging time 50 min

Battery discharge rate 5.28 kW

Maximum number of FCS 20

5. Conclusions

Given the significance of waiting time from the perspective of EV users, the number
of FCSs is equally crucial from the standpoint of service providers. Since FCS installations
entail considerable expenses, achieving both user satisfaction and provider profitability
poses a complex challenge. This study presents an optimal sizing solution for FCSs, aiming
to uphold user satisfaction, as indicated by average waiting time or delay, while optimizing
provider benefits through the deployment of fewer fast-charging stations compared to
alternative schemes. The proposed approach introduces a K-additive fuzzy logic algorithm
to forecast the average waiting time and determine the optimal number of charging stations.
Through various simulations and comparisons with state-of-the-art methods, the efficacy
of the proposed K-FIS is demonstrated in terms of average waiting time and the optimal
number of FCSs. The obtained results will benefit different stakeholders, such as the
EV users, as they will experience reduced waiting times at FCSs, leading to improved
satisfaction and convenience. In addition to the service providers, they can optimize their
investments by deploying fewer FCSs while maintaining user satisfaction, thus increasing
profitability. In addition, the government and policymakers can use the findings to make
informed decisions regarding infrastructure investments and regulatory policies related to
EV charging. Furthermore, researchers and academia will benefit from the study, which
contributes to the academic literature on optimal sizing solutions for FCSs, providing
insights for further research and development in the field of electric vehicle infrastructure.
Lastly, environmentalists will also benefit, as the promotion of efficient FCS deployment can
contribute to reducing greenhouse gas emissions by encouraging the adoption of electric
vehicles. For future research directions, enhancing the proposed scheme to ensure load
balancing among FCSs to mitigate grid power loss could be explored.
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