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Abstract: With the advancement of machine-learning and deep-learning technologies, the estimation
of the state of charge (SOC) of lithium-ion batteries is gradually shifting from traditional method-
ologies to a new generation of digital and AI-driven data-centric approaches. This paper provides
a comprehensive review of the three main steps involved in various machine-learning-based SOC
estimation methods. It delves into the aspects of data collection and preparation, model selection and
training, as well as model evaluation and optimization, offering a thorough analysis, synthesis, and
summary. The aim is to lower the research barrier for professionals in the field and contribute to the
advancement of intelligent SOC estimation in the battery domain.

Keywords: lithium-ion battery SOC; machine learning; deep learning

1. Introduction

Lithium-ion batteries are high-energy-density and long-life energy storage devices
widely used in electric vehicles, renewable energy, and other fields. Estimating the state
of charge (SOC) of lithium batteries plays a significant role in battery management. Accu-
rate SOC estimation can enhance the performance, lifespan, and safety of the battery [1].
However, lithium batteries, characterized by their nonlinear and time-varying electrochem-
ical properties, pose considerable challenges in terms of the observation of their internal
states through external instruments. Therefore, the SOC can only be estimated through a
series of parameters or external characteristics. Currently, the SOC estimation methods for
lithium batteries are primarily categorized into direct and indirect methods, as illustrated
in Figure 1. Traditional SOC estimation methods include the ampere-hour integration
method [2], open-circuit voltage method [3], equivalent circuit model method [4], adaptive
filtering methods (including Kalman filtering [5] and extended Kalman filtering [6–8]),
and nonlinear observer methods (including the sliding mode observer [9,10], proportional-
integral observer [11], and nonlinear observer [12]). The advantages and disadvantages of
the traditional approach are summarized in Table 1.

The traditional methods for estimating the SOC of lithium-ion batteries are confronted
with challenges such as complex battery models, sensitivity to model parameters, poor
adaptability, and high computational complexity [13]. The effectiveness of these methods is
constrained by the uncertainties and complexities inherent in battery models, highlighting
the necessity for advancements in the real-time capabilities, accuracy, robustness, and
adaptability of SOC estimations. In contrast, data-driven approaches to SOC estimation
capitalize on big data and machine-learning technologies, which do not require the con-
struction of precise battery models. These approaches primarily depend on the quality of
the collected datasets, as well as the selection and optimization of the model, employing
extensive data to train models that discern the nonlinear mapping relationships between the
input features and SOC, thus enabling more accurate SOC estimations. Machine-learning
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models possess formidable nonlinear mapping capacities, robust generalization, and adapt-
ability [14]. Consequently, data-driven SOC estimation methods for lithium batteries have
rapidly developed.

Furthermore, since the estimation issues concerning the SOC and SOH can be defined
as the estimation of nonlinear states and parameters, respectively, and considering that
state estimation and parameter estimation are closely related, they can be addressed using
similar methodologies [15,16]. Therefore, this paper primarily focuses on a comprehensive
review of SOC estimation.

Table 1. Advantages and disadvantages of traditional methods.

Method Advantage Disadvantage

Direct method

Ampere-Hour Integration
1. Simple and convenient
2. Low computational complexity

1. Depends on initial SOC value
2. Accumulative error
3. Overlooks capacity decay
4. Needs precise equipment

Open Circuit Voltage 1. Simple and easy to use 1. Long measurement downtime
2. Dynamic condition limitations

Model method

Electrochemical Model
1. Reflects the internal characteristics of

the battery
1. Complex model and parameter setup
2. High computational complexity

Equivalent Circuit Model
1. Easy to understand
2. Fewer parameters

1. Complex model and parameter setup
2. High computational complexity

Kalman Filter (KF)
1. Simple and efficient
2. Real-time estimation.

1. Linear model constraints
2. Noise restrictions

Extended Kalman Filter (EKF)
1. Deals with low nonlinear systems
2. Real-time estimation

1. Nonlinear system underperforms
2. Jacobian matrix calculation
3. Surpasses KF in complexity
4. Complex parameter tuning

Unscented Kalman Filter (UKF)
1. Highly nonlinear capability
2. More accurate than EKF
3. No Jacobian matrix calculation

1. Exceeds the KF/EKF in complexity
2. Depends on the choice of parameters

(e.g., sigma points and weights)

Particle Pilter (PF)
1. Handles highly nonlinear and

non-Gaussian systems
2. Handles multi-modal distribution

1. High computational complexity
2. Poor real-time estimation
3. Needs a large number of samples

Nonlinear observer Sliding Mode Observer
1. Good robustness
2. Quick response

1. Chattering phenomenon
2. Depends on the accuracy of the

system model

This paper’s contributions are primarily as follows:

1. The limitations of traditional SOC estimation methods are summarized. The advan-
tages and necessity of machine-learning SOC estimation are presented.

2. The datasets commonly used by researchers and the processing methods for the
datasets are summarized and sorted out.

3. The models of SOC estimation using traditional neural networks and deep neural
networks are introduced, and the advantages and disadvantages of various models
are compared.

4. The impact of model hyperparameter settings and tuning methods on model perfor-
mance is discussed. Factors affecting model performance are explored, and reference
methods for model validation are established.

5. The research needs, challenges faced, and areas requiring improvement for machine-
learning-based SOC estimation are clarified.
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The subsequent sections of this paper are organized as follows. The Section 2 out-
lines the steps for SOC estimation based on machine learning. The Section 3 discusses
the datasets and data-processing methods. The Section 4 examines machine-learning al-
gorithms for SOC estimation. The Section 5 addresses the SOC evaluation criteria and
methods for setting and tuning hyperparameters. The Section 6 explores the challenges
faced and directions for improvement. The Section 7 provides a comprehensive summary
of the entire paper.
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2. Methods

The methodology for SOC estimation utilizing machine learning encompasses three
primary phases: data collection and preparation, model selection and training, and model
evaluation and tuning.

Data collection and preparation involve transforming the gathered raw battery data
into feature vectors suitable for machine-learning algorithms. This process includes data
cleaning, preprocessing, and feature engineering of the relevant datasets. Model selection
and training involve choosing the appropriate machine-learning algorithms and models
based on specific requirements, including dividing the data into training, testing, and vali-
dation sets. Model evaluation and tuning refer to assessing and improving the model based
on certain evaluation metrics or systems, involving adjustments to the hyperparameters,
feature selection, and model structure. The specific steps involved in SOC estimation are
illustrated in Figure 2.
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3. Data Collection and Preparation
3.1. Data Collection

In machine-learning-based SOC estimation, the input of a substantial volume of data
into the model for training is essential. The foundation for successful model training lies in
the availability of high-quality and authoritative datasets. The closer the training data is
to the actual battery operating conditions, the more precise the algorithm model’s output,
underscoring the undeniable importance of the dataset.

In the papers reviewed, the datasets utilized primarily originate from three sources.
The first category includes datasets obtained from different types of battery discharge
experiments conducted under laboratory conditions using battery testing platforms, such
as Constant Current–Constant Voltage (CC–CV) tests or constant current pulse test datasets.
The second category comprises datasets publicly released by authoritative institutions or
research institutes, which also include real-world data from electric vehicle operations,
such as the CALCE dataset from the University of Maryland’s Battery Laboratory and
the RBUDS from NASA. The third category is datasets derived from simulation software,
like the ADVISOR2002 dataset for advanced vehicle simulation. These datasets can be
primarily classified into two categories: battery discharge characteristics and vehicle driving
characteristics. Analyzing these two types of features reveals that the battery discharge
properties are the predominant factor. Most researchers use the current voltage, current,
and temperature as the main input features, while a few use the averages, driving data,
polarization states, or other data as supplementary inputs. Table 2 provides a summary of
the commonly used dataset sources and their characteristics.

Table 2. Common datasets.

Data Source Data Content Data Characteristics

1 Dataset of new energy vehicle data
platform [17].

Includes the total voltage, monomer
current, cell voltage, temperature, etc.,

and the error identification code.

Encompasses core vehicle system
parameters and BeiDou navigation

position data.

2 ADVISOR2002 dataset of advanced
vehicle simulation software [18].

Simulation software provides the voltage,
current, temperature, and SOC values.

Simulation mimics comprehensive
electric vehicle battery data under

varied conditions.
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Table 2. Cont.

Data Source Data Content Data Characteristics

3 NASA dataset [19].
Features charge/discharge data across

conditions, temperature states, and aging,
with randomness and uncertainty.

Battery cycles through random
current conditions.

4 University of Maryland Battery
Laboratory (CACLE) [20].

Discharge data under three different
discharge conditions, including voltage,

current, temperature and
other parameters.

Discharge conditions include DST, US06,
and FUDS.

5
Panasonic 18650PF lithium-ion battery

dataset of McMaster University,
Canada [21].

Includes time information, discharge
capacity, power, battery voltage, current,

energy, battery shell temperature,
incubator temperature, etc.

Covers temperatures of 0 ◦C, 10 ◦C, and
25 ◦C.

High-quality datasets can enhance the accuracy of SOC estimation, strengthen the
robustness and generalizability of the model, and improve the model’s overall perfor-
mance. In addition to the aforementioned datasets, some researchers have also utilized
the following datasets: Stanford Cycle Life Prediction Dataset [22], Stanford Fast-Charging
Optimization Dataset [23], Oxford Battery Degradation Dataset [24], Sandia National Labo-
ratories [25], Poznan University of Technology Laboratories [26], and Panasonic 18650PF
Li-Ion Battery Dataset of the University of Wisconsin-Madison [27].

These datasets contribute significantly to the field by providing diverse and com-
prehensive data, enabling more accurate predictions and optimizations regarding SOC
estimation models.

3.2. Data Preparation

The goal of data cleaning and preprocessing is to enhance the quality and usability of
the data, laying a solid foundation for subsequent feature engineering and modeling. Data
cleaning involves identifying and rectifying errors or inconsistencies in the data, such as
missing values, outliers, or incorrect entries. Preprocessing, on the other hand, involves
transforming the raw data into a format more suitable for analysis, which may include
normalization, scaling, encoding categorical variables, and handling missing data. Feature
engineering aims to extract effective features from the raw data that can reflect the state
and performance of the battery for use in model training and prediction. This process
includes selecting relevant features, creating new features through domain knowledge, and
transforming features to improve their relationship with the target variable.

Table 3 summarizes the common methods and operations used in data preparation,
providing a comprehensive overview of the techniques employed to ensure the data are
optimized for machine-learning applications in SOC estimation.

Table 3. Common methods of data preparation.

Method Main Operation

Data cleaning [17] Remove duplicate values, handle abnormal values and fill in missing values.

Statistical characteristics [17] Calculate statistical measures like the mean, variance, max, min, and median to
characterize battery data distribution and variation.

Data normalization [28–30] Normalize features across dimensions using min–max and standardization.

Data conversion [29] Apply logarithmic and exponential transformations for nonlinear data to linearize
and enhance model fit.

Data dimensionality reduction [31] Use PCA and other techniques for dimensionality reduction, converting
high-dimensional data into a compact feature space.

Data balance [32] Employ under-sampling and over-sampling to balance the dataset and improve
the minority class recognition.
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Table 3. Cont.

Method Main Operation

Time characteristics [32] Extract time features from timestamps to identify periodicity and trends.

Data smoothing [32] Smooth data to lessen noise and sharp fluctuations.

Differential feature [32] Perform differential analysis of battery data, using the differences between
consecutive time points as features.

Gan et al. [17] utilized SQL queries to perform data cleaning and preprocessing from
a MySQL database, selecting a dataset that represents the range of most frequent charge–
discharge cycles in daily vehicle use (SOC between 90% and 20%) for the SOC estimation
training. Liu et al. [28], in their study utilizing a convolutional neural network (CNN)
model, incorporated a batch normalization layer between each convolutional layer and its
corresponding activation function. This addition aimed to ensure a more uniform distri-
bution across the network’s layers. Altman et al. [29], aiming to eliminate the differences
in the numerical ranges of different features, adopted feature-scaling methods such as
normalization, standardization, and centering to process data. Gan et al. [17] conducted a
correlation analysis between the feature fields and SOC using the Spearman correlation
coefficient. They found a correlation between the total voltage, maximum and minimum
cell voltage, highest and lowest temperature, and the label field SOC, while the speed and
total current showed a low correlation with the SOC. Furthermore, they constructed five
new feature groups based on artificial prior knowledge and added them to the original
pure electric vehicle operational data, thereby expanding the data dimensionality. Li [31]
employed Principal Components Analysis (PCA) to extract the most relevant input fea-
tures from a multitude of data, including the integral and differential of the voltage and
current. These features were then input into a BP neural network, effectively reducing the
dimensionality of the inputs while retaining a wide range of input information, which led
to improvements in the computational complexity and estimation accuracy.

Although data processing involves numerous operations, most researchers favor
simpler procedures. In terms of preprocessing, the wide range of data presents a challenge:
battery voltage values span from 2.5 to 4.2, current values range from −4 to 2, SOC values lie
between 0 and 1, and temperature values vary from 0 to 45 ◦C. These significant differences
in the data ranges can cause the model to prioritize certain features over others during
the parameter optimization process. Therefore, normalization and standardization are
generally necessary. In terms of feature engineering, most features need to be manually
extracted or extracted with the aid of software from the dataset. Most researchers use
simple sampling values such as the voltage, current, temperature, average voltage, and
average current as inputs. A minority of researchers use the means, derivatives, integrals,
and other more complex features extracted as inputs.

4. Model Selection and Training

Machine-learning models exhibit a potent capacity for nonlinear mapping, a charac-
teristic that confers significant advantages, notably their robust generalization capabilities.
However, a notable drawback of these methods is their reliance on extensive sample
training, coupled with the high computational demand. This includes both the cost of high-
performance processing chips and the time required for training samples. The selection of
a model should be a comprehensive process, taking into account factors such as the fitting
accuracy, cost, robustness, and complexity [33–35].

4.1. Artificial Neural Networks

Artificial Neural Networks (ANNs) [36] can be broadly categorized into traditional
neural networks and deep-learning networks. Traditional neural networks are composed of
just an input layer, a single hidden layer, and an output layer. An ANN structure diagram
is shown in Figure 3. Typical examples of traditional neural networks include the Back
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Propagation Neural Network (BPNN) [37], Wavelet Neural Network (WNN) [38], Radial
Basis Function Neural Network (RBFNN) [39], and Extreme Learning Machine (ELM) [40],
among others.

4.1.1. BPNN Network

The feedforward Back Propagation Neural Network (BPNN) [41] represents the
quintessential model of neural networks, employing nonlinear monotonic univariate func-
tions as activation functions. The training process for the BPNN is centered on identifying
the optimal values for weights and biases to minimize the loss function. With the matu-
rity of BPNN technology, numerous hybrid algorithms have emerged, integrating with
the BPNN.
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Yin et al. [42] enhanced the BPNN using the Levenberg–Marquardt (L–M) algorithm,
a numerical optimization technique, effectively boosting the network’s convergence speed.
Their findings demonstrated that the error between the actual and predicted SOC val-
ues remained within a 6% range, validating the feasibility of the improved BPNN for
estimating the SOC. However, the model’s tendency to become trapped in local minima
remained unresolved.

To address this, Yu et al. [43] combined the Genetic Algorithm (GA) with the BPNN.
The improved GA-BP network not only maintained excellent nonlinear mapping and data
prediction capabilities but also ameliorated the BPNN’s susceptibility to local minima. This
refinement reduced the error margin between the actual and predicted SOC values to be-
tween 2% and 3%, enhancing the SOC estimation accuracy. Furthering these advancements,
Xu et al. [44] proposed the integration of the Whale Optimization Algorithm (WOA) with
the BPNN. The WOA-BP neural network algorithm overcame the issues of slow conver-
gence and local minima that are inherent in the traditional BPNN. Comparative analysis
against the GA-BP algorithm, using metrics such as the MAE, MSE, and RMSE, revealed
that the WOA-BP neural network algorithm exhibits superior robustness and precision.

4.1.2. RBFNN Network

The Radial Basis Function Neural Network (RBFNN) [45] employs radial basis func-
tions as activation functions. The RBFNN offers advantages such as local approximation,
excellent interpolation capabilities, and reduced computational complexity, aligning with
real-time design requirements. The standard RBFNN typically estimates with a maximum
error of approximately 5%. To optimize the RBFNN model, many researchers have made
enhancements and improvements.

Zhang et al. [45] combined the Particle Swarm Optimization (PSO) algorithm with RBF
networks, resulting in the PSO-RBFNN, which achieved SOC prediction errors of within
2.5%. Although the improved RBFNN method requires more training time compared to the
traditional approach, its root mean square error is only half that of the traditional method.
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However, the PSO has the potential to lead the PSO-RBFNN model into local minima,
causing an increase in the estimation error variability.

Li et al. [46] utilized the Backtracking Spiral Algorithm (BSA) to optimize the RBF
network, reducing the maximum estimation error of the BSA-RBFNN to within 2%, further
enhancing the SOC estimation accuracy. To determine the optimal number of neurons in the
hidden layer for modeling nonlinear relationships, Chang [47] employed the Orthogonal
Least Squares Algorithm (OLSA). Additionally, an Adaptive Genetic Algorithm (AGA) was
used to train the centers, widths, and weights of the RBFNN as an alternative to traditional
stochastic gradient descent. Comparative results with the BPNN across various discharge
experiments showed that the RBFNN model exhibits superior performance.

4.1.3. ELM and WNN Networks

In the context of neural networks, Extreme Learning Machines (ELMs) utilize acti-
vation functions for hidden layer neurons that can be any function with a range between
(0, 1). Unlike the BPNN and RBFNN, an ELM does not employ backpropagation algorithms
for weight and bias updates. Instead, it sets these parameters using the Moore–Penrose
generalized inverse matrix. On the other hand, Wavelet Neural Networks (WNNs) use
wavelet functions as activation functions for the hidden layer [44]. Compared to the BPNN,
RBFNN, and ELM, the WNN combines the wavelet decomposition properties with the
nonlinear approximation capabilities of neural networks, avoiding local optima issues and
enhancing the convergence speed.

Cui et al. [48] conducted research on hybrid adaptive wavelet neural networks and
multi-layer adaptive WNNs. They optimized the employed wavelet neural network esti-
mation models using particle swarm optimization and the L–M. Extensive experimental
analysis validated the effectiveness of the SOC estimation algorithms based on the studied
wavelet neural network models.

Xie et al. [49] proposed an improved WNN model that optimized the weights and
thresholds of the WNN model using a GA. The results showed that the GA-WNN provided
more accurate SOC estimation and exhibited better convergence properties.

To accelerate the wavelet network parameter optimization and enhance the SOC estima-
tion accuracy, Sun [38] introduced an algorithm based on the Hausdorff derivative for WNN
parameter optimization. This method improved the parameter optimization for wavelet
neural networks and demonstrated its effectiveness through verification experiments.

Song et al. [50] presented a battery SOC estimation model based on an ELM. The model
utilized voltage and current data obtained from discharge experiments under different
currents for training and prediction. A comparison of the prediction performance with
the BPNN revealed that the ELM had higher estimation accuracy and a significantly
faster network training speed. The ELM’s performance was significantly influenced by
the training time and the number of neurons in the hidden layer. To address this issue,
Anandhakumar [51] and colleagues used an improved optimization algorithm called
the Honey Badger Optimization Algorithm (HBA) to select appropriate hidden neurons,
resulting in enhanced SOC estimation accuracy. The model achieved an accuracy of 97%
in the FUDS drive cycle and 99% in the US06 drive cycle, making it suitable for real-time
online estimation.

4.2. Deep Neural Network

The ongoing advancement of deep-learning algorithms has led many researchers to
focus on deeper neural networks. Traditional feedforward neural networks often only fit
the nonlinear mapping relationship between the input and output based on the current
moment’s input features. In contrast, deep neural networks, a subset of deep-learning
algorithms, utilize multiple hidden layers and are capable of mapping complex and non-
linear functions. They typically exhibit higher accuracy compared to traditional neural
networks [52,53].
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Common deep-learning models include Convolutional Neural Networks (CNNs) [54]
and Recurrent Neural Networks (RNNs) [55]. CNNs are well-suited for tasks involving
grid-like data such as images, as they can automatically learn hierarchical features. On
the other hand, RNNs are particularly useful for sequences of data, as they can capture
temporal dependencies and context information. The use of deep neural networks, like
CNNs and RNNs, has significantly contributed to the success of various machine-learning
and artificial intelligence applications.

The typical architecture of a CNN consists of multiple layers, including convolutional
layers, pooling layers, fully connected layers, and an output layer [56]. The structure of a
CNN is shown in Figure 4. The presence of convolutional processes in the CNN allows
for faster learning and reduces the memory requirements. This design is particularly
effective for tasks involving grid-like data, such as images. On the other hand, RNNs have
a short-term “memory” property, where the information in each hidden layer at a given
time step depends on the input at that time step and the hidden layer from the previous
time step [57]. A structure diagram of the RNN is shown in Figure 5. The corresponding
formulas are (1) and (2).

h(t) = f (Whhh(t − 1) + Wihx(t) + bh) (1)

∧
y(t) = g(Whoh(t) + by) (2)

x(t) is the input at the current time step, t. h(t) is the hidden state at the current time
step, t. h(t − 1) is the hidden state from the previous time step, t − 1. Wih, Whh, Who is the
connection weight matrix. yt is the output generated by the output layer at the current time
step. bh and by are the bias terms. f and g are the activation functions. In simple terms, the
updating of the hidden state in an RNN network is determined by the input at the current
time step, x(t), and the hidden state from the previous time step, h(t − 1).
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However, RNNs suffer from the vanishing gradient or exploding gradient problem
when dealing with sequences of data over multiple time steps, limiting their performance.
To address this issue, researchers have developed several variants of RNNs. The three
mainstream variants of RNNs are Long Short-Term Memory (LSTM) [58], Bi-directional
Long Short-Term Memory (Bi-LSTM) [59], and Gated Recurrent Unit (GRU) [60]. LSTM
introduces forget gates, input gates, and output gates to mitigate the gradient vanishing
problem that exists in traditional RNNs. The structure of the LSTM is shown in Figure 6.
The corresponding formula is given in (3)–(8). While this improves the gradient flow, LSTM
has a more complex internal structure and increased computational complexity compared
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to traditional RNNs. The GRU is a modification of LSTM that simplifies the architecture. In
contrast to LSTM, which has separate gates for forgetting and updating states, the GRU
uses a single gate unit to control both the forgetting and updating processes. This results in
a simpler parameter structure and reduced computational complexity compared to LSTM.
Both the LSTM and GRU variants have been widely adopted in sequence-modeling tasks,
offering solutions to the vanishing gradient problem and improving the performance of
RNNs [61].

ft = σ(W f · [ht−1, xt] + b f ) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)
∼
Ct = tanh(WC · [ht−1, xt] + bc) (5)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot ∗ tanh(Ct) (8)

ft, it and ot are the activation values of the different gates. σ is the sigmoid function.W f , Wi,
WC and Wo comprise the weight matrix. b f , bi, bc and bo are the bias terms, and [ht−1, xt]
represents the concatenation of ht−1 and xt. Ct is the cell state, while Ct−1 is the cell state

from the previous time step.
∼
Ct is a tanh layer that creates a new candidate value vector.
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Hannan et al. [62] introduced a Fully Convolutional Network (FCN) composed of
four temporal convolutions for estimating the SOC. The FCN differs from CNNs in that it
transforms the fully connected layers typically found at the end of a CNN into convolutional
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layers. It employs global average pooling to prevent overfitting. The results showed that
this model achieved an RMSE of 0.85% and an MAE of 0.7% at room temperature. The
FCN’s unique approach combines the automatic feature extraction capabilities of CNNs
with the time-series prediction abilities of RNNs.

Zhang et al. [63] combined a CNN and LSTM to create a CNN-LSTM model with
the introduction of an attention mechanism. They utilized one-dimensional convolution
to capture the spatial features within measurement variables and employed LSTM to
capture the features between the current output and past inputs. The attention mechanism
allowed the model to focus on key parts of the input data, thereby improving the overall
performance and accuracy. The average prediction error at different temperatures reached
0.89%. This model aims to balance the consideration of temporal aspects while enhancing
the estimation accuracy.

To augment the robustness and adaptability of their model, Liu et al. [28] introduced a
CNN-GRU hybrid, ingeniously integrating the CNN with the GRU. It demonstrated good
performance in unknown operating conditions. In cases where the initial SOC value is
unknown, the CNN-GRU neural network rapidly converges to the reference values. This
network does not require weight adjustments based on the test conditions, complex feature
extraction such as averaging or integration, and does not rely on battery models, filtering,
or algorithms. This approach streamlines SOC estimation while maintaining accuracy
and adaptability.

Because the estimation of the SOC of lithium batteries can be viewed as a time-
series problem, it is related not only to the current moment’s input features but also
to previous time steps’ input features. This makes RNNs particularly suitable for SOC
estimation. However, using a standalone RNN network for SOC estimation can lead to
the vanishing gradient or exploding gradient problem over multiple time steps. Therefore,
researchers have mostly focused on studying variants of RNNs or algorithmic models that
combine RNNs.

Ma et al. [64] trained and validated an LSTM model to estimate the SOC using a
publicly available dataset provided by Phillip Kollmeyer. The estimation error RMSE
ranged from 1% to 1.8%. Li et al. [65] were the first to propose using a GRU alone for battery
SOC estimation. They achieved an MAE of 0.32% at 25 ◦C under LA92 conditions and
compared the errors of the GRU and LSTM models under the same experimental conditions.
The results showed that the GRU outperformed LSTM in terms of the estimation error and
training time.

Researchers have also explored models that are combinations of RNN variants and
other algorithms. Li et al. [66] improved the RNN and introduced the LSTM-RNN neural
network, which was validated for lithium-ion battery models under six high-rate pulse
conditions. This approach addressed the issues of vanishing gradients and exploding
gradients. Because the GRU is an extension of LSTM, it can also address the vanishing
gradient and exploding gradient problems. To further optimize the GRU, Han Yitong [67]
and colleagues proposed a GRU-RNN estimation model. The GRU-RNN model was
trained and tested on battery data under different conditions and temperatures, resulting
in improved accuracy and robustness.

Bi-LSTM is an extension of traditional LSTM that can enhance the performance of
sequence classification models. Bian et al. [68] used a stacked bidirectional Bi-LSTM model
to estimate the battery SOC and compared it with the LSTM and GRU models. The results
showed that under three conditions (0 ◦C, 10 ◦C, and 25 ◦C), SBi-LSTM achieved the
highest estimation accuracy, with an MAE as low as 0.46%. There is also research related to
a Bi-GRU. Zhou et al. [69] proposed a lithium battery SOC estimation model based on a
bidirectional Bi-GRU. In addition, some scholars have studied the key problems of joint
multi-state estimation.
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4.3. Support Vector Machine

The Support Vector Machine (SVM) [70] is a method based on statistical theory, which
offers improved generalization capabilities compared to neural network algorithms. It
requires fewer sample data, reduces the computational costs, and exhibits superior per-
formance in nonlinear and high-dimensional model training. Furthermore, the SVM can
rapidly and accurately estimate the SOC using the correct training data. The difference
between the actual state of charge and the predicted state of charge based on the SVM
is generally less than 5% [71]. To further enhance the estimation accuracy, Yu [72] and
colleagues employed the Least Squares SVM for online, real-time estimation of the SOC
of electric vehicle batteries. This method is characterized by its strong nonlinear approx-
imation ability and rapid convergence. A comparative analysis with BPNN predictions
demonstrated that the Least Squares SVM algorithm could approximate the actual SOC
values more accurately, reducing the maximum estimation error to 2%. To improve the
model’s generalization capability and training speed, Li [73] and associates optimized
the SVM parameters using the PSO. They evaluated the performance of the predictive
model through cross-validation, transforming the SOC estimation issue into a nonlinear
regression problem.

Table 4 summarizes the advantages and disadvantages of the different models, sug-
gesting that the appropriate model should be selected based on specific needs and practical
conditions in real-world applications.

Table 4. Advantages and disadvantages of different models.

Model Name Model Advantage Model Disadvantage

1 BPNN
Mature technology, strong nonlinear mapping ability,

self-learning and adaptive ability, strong generalization
ability and fault tolerance ability.

Slow convergence speed, blindness in parameter
selection and long training time, and easy to fall

into local minimum.

2 RBFNN Local approximation, good interpolation ability, simple
calculation and fast convergence.

Easily influenced by the basis function and easily
overfitted.

3 ELM Simple structure, few model parameters, fast convergence
speed and high accuracy.

Parameter selection has great influence on the
performance of the ELM.

4 WNN Superior to the BP network in design, approximation
sensitivity, and fault tolerance. Parameters are difficult to determine.

5 CNN
Handles complex, nonlinear functions and

high-dimensional data effortlessly, ensuring
higher accuracy.

Long training time and high cost.

6 RNN Temporal and short-term memory. Prone to gradient explosion.

7 LSTM
Long-term memory, controllable memory ability, high

prediction accuracy, and improves the gradient attenuation
problem in the RNN.

Complicated structure, increased calculation and
long training time.

8 GRU
Simple structure, few model parameters, easy adjustment of
parameters, high prediction accuracy, difficult overfitting,

and mitigation of gradient disappearance or explosion.

Cannot fully solve gradient vanishing; the GRU
has fewer parameters than LSTM, reducing the

overfitting risk.

9 SVM
Effectively solves the problem of under-study and

over-study, and suitable for high-dimensional
small-sample data.

Sensitive to parameters and noise, with high
computational complexity; unsuitable for

large datasets.

4.4. Other Methods of Machine Learning
4.4.1. Transfer Learning

Transfer learning [74] involves a model utilizing the knowledge acquired from one
task to enhance the learning efficiency and performance on another related task. This
approach is often employed in scenarios characterized by data scarcity or limited com-
putational resources. The estimation of the SOC for lithium batteries typically requires
training machine-learning models on large datasets, which may not be effective with
limited data and could lead to substantial computational burdens with extensive data.
Hence, transfer learning has garnered attention from researchers. By leveraging pre-trained
models, transfer learning can reduce the training time and enhance the generalizability of
SOC estimates.
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Panagiotis et al. [75] applied various transfer-learning techniques on top of pre-trained
models [76] (RNN models, including LSTM, GRU, Bi-LSTM, and Bi-GRU) for SOC estima-
tion under three datasets (CALCE and two datasets). A crucial decision in transfer learning
involves determining which layers of the neural network to freeze or unfreeze and which
to fine-tune. Different strategies impact the SOC estimation performance and training time.
The experimental results indicated that the combination of transfer learning with Bi-LSTM,
employing localized fine-tuning techniques, resulted in the lowest error, with an RMSE of
1.525%, reducing the error by 6.2%.

Zhang et al. [77] proposed the introduction of a Dropout layer in the Bi-GRU network,
forming the Bi-GRU-Dropout neural network model, for SOC estimation. Transfer learning
was utilized to share parameters, allowing rapid and effective SOC estimation at various
temperatures using the CALCE dataset. Experiments showed that after 200 training itera-
tions with transfer learning, the RMSE remained within 0.015, as opposed to approximately
1800 iterations being required by previous neural network models. Transfer learning
significantly reduced the training time and improved the efficiency of SOC estimation.

4.4.2. Random Forest

Li et al. [31] were the first to employ random forest regression for estimating the
state of charge (SOC) of batteries. Compared to the BP neural network, random forest
demonstrated higher accuracy in both the dynamic and steady-state discharge processes.
The maximum error estimates for random forest and neural networks were 0.013 and 0.018,
respectively. However, a drawback of random forest is its unstable estimation accuracy in
both the early and later stages.

Hossain et al. [78] proposed the use of DSA to optimize the random forest regression
algorithm. At 25 ◦C, the DSA-optimized RFR algorithm achieved an MAE of 0.193% and
0.346% under DST and FUDS cycle conditions, respectively. Compared to the DSA-based
ELM, DSA-based SVM, and DSA-based LSTM, this method showed reductions in the
MAE of 78.76%, 74.96%, and 60.64%, respectively. The study also demonstrated that
this algorithm surpassed the ELM, SVM, and LSTM in terms of accuracy, adaptability,
and robustness.

4.4.3. Hybrid Models

In the research field, scholars have explored the possibility of combining traditional
Kalman filter estimation methods with machine-learning algorithms. In this exploration,
Yang et al. [79] proposed an Adaptive Convolutional Neural Network Gated Recurrent
Unit with Feedback and Kalman Filter (Fb-Ada-CNN-GRU-KF). This model utilizes the
Kalman filter as a post-processing tool to achieve more stable and smooth estimates of the
battery SOC. By integrating the CNN and GRU, the model effectively extracts spatial and
temporal features of the data. Ada, as a transfer-learning technique, identifies segments
within the training dataset with significant distribution differences and reduces these
discrepancies, thus achieving higher generalization capability and accuracy compared to
traditional RNN models. The Fb-Ada-CNN-GRU-KF model achieved an average absolute
error (MAE) of 0.78% and 0.82% in tests on the Highway Fuel Economy Test (HWFET) and
Urban Dynamometer Driving Schedule (UDDS), respectively, demonstrating its superior
performance in lithium battery SOC estimation. Yang et al. [80] also applied UKF technology
to an LSTM-RNN network, further enhancing the performance of the proposed model.

There are also studies on the joint estimation of the SOC and state of health (SOH). Hou
et al. [71] reviewed the SOC/SOH joint estimation methods and analyzed their advantages
and limitations. On this basis, the key issues of joint multi-state estimation were discussed,
and suggestions for future work were put forward. Huang [81] proposed a new SOC/SOH
estimation framework. This framework achieves parameter sharing through segmented
training, effectively addressing the intrinsic coupling issues between the SOC and SOH.
Jointly estimating both variables in a unified manner significantly enhances the efficiency
of lithium battery state estimation.
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This section discusses the performance of various machine-learning methods in esti-
mating battery SOC, highlighting the critical role of model selection in achieving high accu-
racy in SOC estimates. However, comparing different models presents certain challenges
due to variations in the datasets, model parameters, tuning algorithms, and hardware
conditions among them. Thus, it is imperative to concentrate on the internal parameters of
models, their optimization techniques, and the establishment of efficacious evaluation crite-
ria. The subsequent section will explore the intricacies of model parameters and adjustment
strategies, facilitating a more equitable comparison among various models.

5. Model Evaluation and Tuning

To assess the effectiveness of different models in estimating the SOC of batteries, a
set of evaluation criteria is essential for appraising these models. The most commonly
used metrics include the Mean Absolute Error (MAE), Mean Squared Error (MSE) and
Root Mean Square Error (RMSE). These metrics enable the evaluation of the deviation
between the SOC values estimated by different models and the actual values from various
dimensions. Furthermore, based on the outcomes of model evaluations, further tuning and
optimization of the models are required to continually enhance their performance. This
involves optimizing various model parameters and training configurations to ensure that
the constructed model remains the most effective and optimal for the given task.

5.1. Evaluation Indicators of the Model

The MAE is the average distance between the predicted value of the model f (x) and
the true value of the sample y. Equation (9) is as follows:

MAE =
1
m∑m

i=1|yi − f (xi)| (9)

The MSE is the mean sum of the squares of the error of the sample point corresponding
to the model predicted value f (x) and the true value y of the sample. The smaller the value,
the better the fitting effect. The Mean Square Error is the most common loss function in
linear regression. Equation (10) is as follows:

MSE =
1
m∑m

i=1 ( f (xi)− yi)
2 (10)

The RMSE, also known as the standard error, takes the root of MSE, that is, the Root
Mean Square Error. The Root Mean Square Error is used to represent the difference between
the predicted value and the true value. Equation (11) is as follows:

RMSE =

√
1
m∑m

i=1 ( f (xi)− yi)
2 (11)

Through the above three formulas, the accuracy of the model can be clearly evaluated.
Liu et al. [28] conducted comparative experiments on five different models: CNN-GRU,
CNN-LSTM, LSTM, GRU, and BPNN. As illustrated in Table 5, the test results under the
NYCC and OCC conditions for these models are available. The outcomes indicated that the
CNN-GRU network yielded the most optimal estimation results among the tested models.

Table 5. Comparison of the test results of different models.

Model RMSE (%) MAE (%) MAX (%)

CNN-GRU 0.39 0.30 2.18
CNN-LSTM 0.72 0.52 6.63

LSTM 0.96 0.86 6.86
GRU 0.83 0.73 2.79

BPNN 1.24 9.6 8.99



World Electr. Veh. J. 2024, 15, 131 15 of 25

Xia et al. [82] proposed a multi-hidden-layer WNN model optimized by the L–M
algorithm, along with a series of intelligent SOC estimation methods based on the L–M
approach. This includes the LMWNN, optimized by the PSO algorithm for a three-layer
WNN based on the L–M, the LMMWNN for a multi-hidden-layer WNN based on the L–M,
and the PLMMWNN, which utilizes a segmented network approach for optimizing the
LMMWNN. Under a single driving cycle, such as the New European Driving Cycle (NEDC),
the PLMMWNN achieved a reduction in the Mean Absolute Error to 0.6% and a decrease
in the Maximum Absolute Error to 5%. Additionally, a comparative study was conducted
between these WNN-based methods and both the BPNN and EKF. The proposed methods
demonstrated commendable performance in terms of the estimation accuracy, applicability,
and robustness. Table 6 presents the Mean Absolute Error and Maximum Error in the
SOC estimation by the PLMMWNN and EKF under various conditions, including NEDC,
UDDS, UKBC, and EUDC.

Table 6. Mean and max of the models.

Model (Mean/Max) NEDC UDDS UKBC EUDC

PLMMWNN 1.0%/6.7% 1.0%/9.7% 1.2%/7.6% 1.5%/9.7%
EKF 1.7%/5.8% 2.1%/5.1% 2.4%/7.7% 3.0%/11.1%

5.2. Hyperparameter Tuning

Hyperparameters are manually adjustable parameters in the model training process,
such as the neuron initialization, learning rate, batch size, batch normalization, activation
functions, number of network layers, and number of nodes. The settings of these hyper-
parameters directly influence the model’s performance and generalization ability. Models
require hyperparameter tuning based on practical situations and needs, meaning there is
no universal strategy for hyperparameter optimization. Sometimes, hyperparameters need
to be adjusted continuously until the optimal results are obtained. Tables 7 and 8 show the
hyperparameters of a CNN and RNN.

Table 7. CNN hyperparameter and explanation.

CNN Hyperparameter Explanation

Convolutional layers Determines the depth of the feature hierarchy.
Convolution kernel size Influences the local scope of feature extraction.

Stride Step length when kernel sliding.
Padding Fills zeros around the input data.

Activation function Determines the nonlinearity of the network.
Pooling Reduces the feature dimension.

Table 8. RNN hyperparameter and explanation.

RNN Hyperparameter Explanation

Learning rate Affects the convergence speed and stability of model training.
Layers Determines the structural depth of the model.

Hidden neurons Limits the capacity of the model.
Epochs The number of times all samples are traversed by the model.

Batch size The number of samples used for each training.
Optimizer Affects the efficiency of model training.

Cui et al. [83] and others compared the performance of the same algorithm under
different hyperparameter settings, demonstrating that different settings significantly affect
algorithm performance. Wang et al. [84] determined the number of hidden layer nodes
for a BPNN through trial and error. Yao et al. [85] identified the optimal layers, node
numbers, convolution layers, and the number of filters in each convolutional layer for
the CNN-GRU network model using grid search. Hannan et al. [86] proposed a BPNN
model improved with the BSA, finding the optimal combination of values for the hidden
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layer neurons and the learning rate, thus enhancing the accuracy and robustness of the
BPNN model. Compared to the RBFNN-BSA and ELM-BSA, the optimized BPNN-BSA
showed higher estimation accuracy. Dou et al. [87] proposed an improved ELM model,
utilizing the SSA to search for weights and biases in the hidden layer. Li et al. [73,88]
used PSO to find hyperparameters for the SVM model, and compared to conventional
optimization algorithms, the PSO-SVM model boasted faster processing speeds and higher
estimation accuracy. Hossain et al. [89] conducted a comparative study of the ELM, BPNN,
and RBFNN models, improving their performance through the application of the GSA for
optimal hidden neuron selection. They demonstrated that the GSA excelled in minimizing
the fitness function, thereby enhancing the SOC estimation accuracy in comparison to
particle swarm optimization. Hu et al. [90] streamlined the model training procedure and
refined the search for optimal parameters using DSOP, thereby significantly reducing the
duration of hyperparameter optimization. Table 9 provides an overview of several common
hyperparameter tuning methods.

Table 9. Hyperparameter tuning methods.

Method Advantage Disadvantage

Trial-and-error method Simple and convenient Constant trial and error.

Grid search Traverse all hyperparametric combinations and apply to
small datasets. Large amount of calculation and long time.

BSA High flexibility and large search space. High time complexity and strong randomness.
SSA Few parameters, simple structure, easy operation, etc. Slow convergence, prone to local optima.

PSO Minimal initialization restrictions, quick convergence,
low computational complexity.

Cannot ensure global search, easily trapped in
local optimization.

GSA Fast convergence speed, strong global search ability and
avoidance of falling into local optimum. High computational complexity.

DSOP The search space of each step is reduced. Less application and research.

5.3. Model Evaluation Guidelines
5.3.1. The Effect of Hyperparameters

The effects of different parameter tuning methods on model performance are described
above, and the effects of individual hyperparameters on the model are also studied.

Studies [91,92] utilized the same dataset [26], with training and test sets composed of
different conditions (UDDS, CC-CV, LA92) under four temperatures (−10 ◦C, 0 ◦C, 10 ◦C,
25 ◦C). The hyperparameters for both the FNN and LSTM models were set as follows:
minibatches = 89, epochs = 3000, training iterations = 50, initial learning rate = 0.01, and
the loss function optimizer = ADAM. It was estimated that the LSTM model yielded better
results than the FNN model in terms of the prediction accuracy. Table 10 shows the effect
of the number of layers on the accuracy of the model. Bian et al. [68] explored the impact of
varying the number of hidden neurons in the SBi-LSTM model on the model accuracy. As
illustrated in Figure 7 below, the results indicate that the estimation error performance is
optimal when the number of neurons is set to 125. Yang et al. [80] studied the performance
of the LSTM-RNN model under different epochs. Generally, both the training and testing
errors decrease as the number of available epochs increases, that is, as the training duration
extends. Considering the trade-off between the testing accuracy and training cost, the
authors selected an epoch setting of 8000.

Table 10. Comparison of the FNN and LSTM.

Method Inputs Hidden Neurons
and Layers Parameter Total MAE

FNN
[73] {V, I, T, V_avg, I_avg} Hidden neurons = 55

Layers = 2 3466 1.5~3.5%

LSTM
[74] {V, I, T} Hidden neurons = 55

Layer = 1 3376 1.2~1.55%
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To ensure a fair evaluation of the SOC estimation methods, it is crucial to consider the
following four points:

• Use of a Unified Dataset: Table 2 summarizes the high-quality publicly available
datasets. Researchers should use the same dataset for model comparison, including
identical data cleaning, preprocessing, and feature engineering steps. Models should
be trained and tuned on training, validation, and test sets split in the same proportion,
with a recommended ratio of 7:2:1.

• Model Hyperparameters of the Same Order of Magnitude: For example, the hyperpa-
rameters to be determined for neural networks include the number of layers in the
network structure, the number of neurons per layer, learning rate, batch size, and the
number of epochs. It is also crucial to ensure the use of the same hyperparameter
tuning methods to keep the number of parameters consistent across different models.

• Equivalent Computing Resources: When comparing models, ensure that all the
models run in the same or equivalent computing environments. This ensures sim-
ilar computational costs and memory usage, avoiding biases due to differences in
hardware performance.

• Uniform: Applying the same evaluation metrics across all the model assessments is
vital for a fair and objective comparison of model performance.
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Given the lack of established unified standards for SOC validation, the above points
can serve as reference criteria for model evaluation, aiming to make the assessment as fair
as possible. The models proposed by most researchers differ in the datasets used (data
processing methods, dataset division, input and output values), settings of the model
hyperparameters, hardware conditions, and tuning methods. Therefore, it is necessary to
summarize and organize the differences between the various methods, striving to clearly
highlight the distinctions between the different models for readers. Table 11 shows a
comparison of the different models.
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Table 11. Model comparison.

Method Dataset Import Hyperparameter Evaluation at 25◦ Ref.

BPNN CALCE {V, I, T} Hidden neurons = 24 RMSE = 0.91% (FUDS)
MAE = 0.59% (FUDS) [86]

FNN Panasonic 18650PF {V, I, T, V_avg, I_avg} Hidden neurons = 55
Layers = 2 MAE = 1.5%~3.5% [91]

RBFNN NASA dataset {V, I, T} Adaptive control RMSE = 0.72%
MAE = 0.61% [93]

WNN Laboratory data {V, I} Hidden neurons = 10 MAE = 0.8% (UDDS) [82]

CNN Panasonic NCR18650PF {V, I, T}
Convolutional

Layers = 2
Filters = 8

MAE = 0.8% (US06)
MAE = 4.72% (US06) [94]

SVM Laboratory data {V, I, T} Support vectors = 903
Kernel width = 1

RMSE = 0.4% (DST)
MAE < 4% (DST) [95]

LSTM CALCE {V, I, T}
Hidden neurons = 256

Layer = 1
Time steps = 50

RMSE = 1.71% (UDDS)
MAE = 1.39% (UDDS) [64]

LSTM Panasonic 18651PF {V, I, T} Hidden neurons = 55
Layer = 1 MAE = 1.2~1.55% [92]

LSTM-RNN-UKF Laboratory data {V, I, T}
Hidden neurons = 300

Layer = 1
Epochs = 8000

RMSE = 1.11%
MAE = 0.97% [80]

CNN-LSTM Laboratory data
{V, I, T,
V_avg,
I_avg}

Hidden neurons = 300
Filters = 6

RMSE = 1.31%
MAE = 0.92%

(DST, US06, and FUDS)
[96]

RNN-LSTM CALCE {V, I, T}

Hidden layers = 1
Hidden neurons = 30

Batch size = 64
Epochs = 150

RMSE = 2.3% (FUDS)
MAE = 11.5% (FUDS)
RMSE = 1.8% (US06)
MAE = 10.6% (US06)

[97]

(Extended input)
RNN-LSTM CALCE {V, I, T}

Hidden layers = 1
Hidden neurons = 30

Batch size = 64
Epochs = 151

RMSE < 1.3% (FUDS)
MAE = 3.2% (FUDS) [97]

Bi-LSTM
Panasonic
18650 PF,
CALCE

{V, I, T} Hidden neurons = 64
Layers = 2

MAE = 0.56% (US06)
MAE = 0.46% (HWFET)
MAE = 0.84% (FUDS)

[68]

GRU CACLE {V, I, T} Hidden neurons = 260
GRU layer = 1

RMSE = 0.64% (FUDS)
MAE = 0.49% (FUDS) [98]

GRU-CNN Laboratory data {V, I, T}

Hidden neurons = 150
Filters = 8

GRU layer = 2
GRU neurons = 80

RMSE = 1.54% (FUDS)
MAE = 1.26% (FUDS) [99]

GRU-RNN CALCE {V, I, T}

Hidden neurons = 30
Hidden layer = 1
Batch size = 64
Epochs = 300

RMSE = 1.7% (US06)
MAXE = 9.4% (US06)
RMSE = 2.0% (FUDS)

MAXE = 11.6% (FUDS)

[97]

GRU-RNN-AKF CALCE {V, I, T}

Hidden neurons = 30
Hidden layer = 1
Batch size = 64
Epochs = 300

RMSE = 0.2% (US06)
MAXE = 0.6% (US06)
RMSE = 0.5% (FUDS)
MAXE = 0.9% (FUDS)

[97]

5.3.2. Other Influencing Factors

In traditional methods for estimating the SOC, the OCV is not suitable for DST due
to its requirement for prolonged periods of inactivity for measurements. Model-based
approaches are capable of accommodating the dynamic behavior of batteries and changes
in environmental conditions within DST. This is particularly true for algorithms like the
extended Kalman filter [100], which adjust the model parameters by continuously updating
the state equations and observation equations within the state space, thereby maintaining
the estimation accuracy under changing test conditions. However, in extreme conditions,
the constant need to correct the battery model parameters presents challenges, leading to
issues with parameter tuning, model instability, and high computational costs.

Machine-learning-based methods for SOC estimation avoid the need to construct
highly accurate battery models or to understand the internal mechanics of batteries. They
are particularly adept at handling the high nonlinearity and uncertainty of battery data
in DST. In practice, a combination of multiple algorithms, along with appropriate calibra-
tion and parameter adjustments, are often employed to adapt to specific test conditions
and environments.

Yang et al. [80] utilized datasets obtained from DST at various temperatures (0 ◦C,
10 ◦C, 20 ◦C, 27 ◦C, 30 ◦C, 40 ◦C, 50 ◦C) to train the proposed LSTM-UKF model. The
results demonstrated that the LSTM-UKF model captures the impact of environmental



World Electr. Veh. J. 2024, 15, 131 19 of 25

temperatures more effectively than the LSTM network alone and produces satisfactory
results at temperatures for which it was not specifically trained. Table 12 below presents
the estimation results at different temperatures. Hannan [62] also employed data collected
under DST conditions to train the FNN model at three different temperatures (0 ◦C, 25 ◦C,
and 45 ◦C), with the results showing that the error at 0 ◦C was about twice that of the
comparison at 25 ◦C. Therefore, the effect of temperature varies significantly across different
models. However, compared to model-based SOC estimation methods, machine-learning-
based methods exhibit superior nonlinear mapping capabilities, generalization abilities,
and adaptability.

Table 12. Comparison of models at different temperatures.

Temperature (◦C)
LSTM LSTM-UKF

RMSE (%) MAE (%) RMSE (%) MAE (%)

0 1.46 1.31 0.73 0.63
10 1.06 0.88 0.29 0.21
20 2.04 1.60 1.11 0.97
27 1.93 1.58 1.06 0.93
30 1.68 1.40 0.93 0.82
40 1.86 1.38 0.92 0.81
50 1.93 1.51 1.03 0.89

6. Discussion

The research demand for machine-learning-based lithium battery SOC estimation
methods lies in overcoming the limitations of estimation caused by the uncertainty and
complexity of battery models when using traditional methods. Machine-learning ap-
proaches utilize big data and artificial intelligence technologies, eliminating the need for
battery modeling by training specific models to find the nonlinear mapping relationships
between input parameters and SOC. These methods are characterized by high accuracy,
strong generalization ability, and adaptability. Following a thorough review of lithium
battery SOC estimation methods based on machine learning, the following outlines the
challenges faced and areas that require improvement in the future.

• Challenges Faced

Comparing different models is challenging due to the variability in the datasets, model
hyperparameter settings, hyperparameter optimization algorithms, and computer hard-
ware conditions used by various authors in different papers, making the cross-comparison
of models from different papers difficult. Moreover, the use of serial or parallel composite
algorithm models increases the model complexity. The more modules in an algorithm,
the weaker the overall controllability and the more susceptible it is to disturbances, thus
the robustness and adaptability of composite algorithm models in practical applications
remain to be verified.

Large dataset differences exist because the experimental conditions of researchers
vary, and the model training data differ significantly from the actual conditions of electric
vehicles, affecting the accuracy of even excellent models.

The algorithm computational complexity is a factor; enhancing the SOC estimation
accuracy often requires complex models and algorithms, which increases the demands on
computational resources and necessitates higher computing power and storage capacity.
This may affect the real-time performance of systems, limiting online SOC estimation.
Future efforts should focus more on computational capabilities and performance.

The lack of open-source code is another issue. Models proposed by different re-
searchers often have unique input types and hyperparameters. Variations in the data
preprocessing methods and input types can significantly impact the model performance.
Without controlling variables, it is challenging to determine whether improvements re-
sult from enhancements in the model itself or modifications to the data preprocessing
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methods. Few scholars publish their code, leading to unfair comparisons and ineffective
improvements in the methods proposed in papers.

• Areas for Improvement

Standardizing datasets is crucial since current machine-learning models may perform
well on specific datasets but underperform on new or unseen datasets. Enhancing models’
generalization capabilities is an important area for improvement. Therefore, it is advocated
that more advanced and authoritative institutions publish higher-standard battery datasets
to facilitate research data access for researchers worldwide, or establish a battery database
that is precise in measurement, rich in data types, and has strong interpretability to further
provide a solid data foundation for model training.

Advocating for open-source code or providing standardized benchmarks represents a
current research gap. Under a unified benchmark, researchers could conduct fair compar-
isons to propose more effective improvements. This includes standardizing data processing
operations, model structure selection, and suitable hyperparameter combinations.

Assessing models from multi-dimensional perspectives is necessary. Although
Section 5.3 of this paper provides meaningful methods for model validation, improvements
and additions are needed in terms of model evaluation. Algorithms for SOC estimation
should not blindly pursue complexity and accuracy, nor should they be judged by a single
standard. Instead, a balance between model complexity and accuracy should be sought, and
proposed algorithm models should be evaluated from multiple dimensions, considering
real-world problems and needs.

7. Conclusions

This paper provided a comprehensive and systematic review of lithium-ion battery
SOC estimation using machine-learning algorithms, covering three main steps: data col-
lection and preparation, model selection and training, and model evaluation and tuning.
This paper summarized the innovative methods in the field and compared the advantages
and disadvantages of different approaches, providing readers with a clear understanding
of the development and trends of SOC estimation methods based on machine learning. It
introduced a verification method for comparing different models, offering a guide for a
fairer evaluation of models. Additionally, it highlighted the challenges and directions for
improvement in relation to various models, aiming to provide researchers with ideas for
future research. The machine-learning-based lithium-ion battery SOC estimation methods
have great development potential due to their strong nonlinear mapping capabilities, gen-
eralization, and adaptability. This paper aimed to promote the improvement of lithium
battery performance and safety, advance the intelligent development of SOC estimation
in the battery field, and contribute to the sustainable development of electric vehicles and
new energy technologies.
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Abbreviations

Acronyms Explanation
SOC State of Charge
SOH State of Health
KF Kalman Filter
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
AKF Adaptive Kalman Filter
PF Particle Pilter
CC–CV Constant Current–Constant Voltage
DST Dynamic Stress Test
FUDS Federal Urban Driving Schedule
US06 Highway Driving Schedule
LA92 Los Angeles 1992
NEDC New European Driving Cycle
EUDC Extra-Urban Driving Cycle
UDDS Urban Dynamometer Driving Schedule
BN Batch Normalization
PCA Principal Components Analysis
L–M Levenberg–Marquardt
RBF Radial Basis Function
ANNs Artificial Neural Network
FNN Feedforward Neural Network
BPNN Back Propagation Neural Network
RBFNN Radial Basis Function Neural Network
ELM Extreme Learning Machine
WNN Wavelet Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory Network
Bi-LSTM Bi-directional Long Short-Term Memory
SBi-LSTM Stacked Bidirectional Long Short-Term Memory
GRU Gated Recurrent Unit
FCN Fully Convolutional Network
Bi-GRU Bidirectional Gated Recurrent Neural Network
SVM Support Vector Machine
EKF Extended Kalman Filter
LMWNN Three-layer WNN optimized by L–M
LMMWNN Multi-hidden layer WNN optimized by L–M
PLMMWNN LMMWNN optimized by piecewise network
PSO Particle Swarm Optimization
BSA Backtracking Spiral Algorithm
SSA Salp Swarm Algorithm
WOA Whale Optimization Algorithm
GA Genetic Algorithm
GSA Gravity Search Algorithm
OLSA Orthogonal Least Squares Algorithm
AGA Adaptive Genetic Algorithm
HBA Honey Badger Optimization Algorithm
DSA Differential Search Algorithm
DSOP Double Search Optimization Process
MAE Mean Absolute Error
MSE Mean Squared Error
RAE Relative Absolute Error
RMSE Root Mean Square Error
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