
Citation: Bellavista, P.; Di Modica, G.

IoTwins: Implementing Distributed

and Hybrid Digital Twins in

Industrial Manufacturing and Facility

Management Settings. Future Internet

2024, 16, 65. https://doi.org/

10.3390/fi16020065

Academic Editor: Gianluigi Ferrari

Received: 15 January 2024

Revised: 7 February 2024

Accepted: 10 February 2024

Published: 17 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

IoTwins: Implementing Distributed and Hybrid Digital Twins in
Industrial Manufacturing and Facility Management Settings
Paolo Bellavista † and Giuseppe Di Modica *,†

Dipartimento di Informatica, Scienza e Ingegneria, Università di Bologna, Via Risorgimento 2,
40136 Bologna, Italy; paolo.bellavista@unibo.it
* Correspondence: giuseppe.dimodica@unibo.it; Tel.: +39-0512093277
† These authors contributed equally to this work.

Abstract: A Digital Twin (DT) refers to a virtual representation or digital replica of a physical object,
system, process, or entity. This concept involves creating a detailed, real-time digital counterpart that
mimics the behavior, characteristics, and attributes of its physical counterpart. DTs have the potential
to improve efficiency, reduce costs, and enhance decision-making by providing a detailed, real-time
understanding of the physical systems they represent. While this technology is finding application in
numerous fields, such as energy, healthcare, and transportation, it appears to be a key component of
the digital transformation of industries fostered by the fourth Industrial revolution (Industry 4.0). In
this paper, we present the research results achieved by IoTwins, a European research project aimed at
investigating opportunities and issues of adopting DTs in the fields of industrial manufacturing and
facility management. Particularly, we discuss a DT model and a reference architecture for use by the
research community to implement a platform for the development and deployment of industrial DTs
in the cloud continuum. Guided by the devised architectures’ principles, we implemented an open
platform and a development methodology to help companies build DT-based industrial applications
and deploy them in the so-called Edge/Cloud continuum. To prove the research value and the
usability of the implemented platform, we discuss a simple yet practical development use case.

Keywords: digital twins; Industry 4.0; IoT; IIoT; RAMI 4.0; orchestration; TOSCA; cloud continuum;
edge; predictive maintenance

1. Introduction

As the Internet of Things (IoT) and Big Data gain widespread adoption, Digital Twin
technology is surging in popularity. According to a recent study by Markets and Markets [1],
the Digital Twins (DTs) market, valued at USD 6.9 billion in 2022, is projected to soar to
a staggering USD 73.5 billion by 2027, demonstrating an impressive compound annual
growth rate of 60.6% over a 5-year span. The study identifies key industries poised
to heavily invest in this technology, including Automotive and Transportation, Energy
and Utilities, Infrastructure, Aerospace, Healthcare, and Oil and Gas. These industries
are leveraging DTs in various applications, such as product design and development,
predictive maintenance, performance monitoring, supply chain management, and business
optimization. While larger organizations have established a robust pathway for adopting
Digital Twins, there remains significant uncertainty regarding the speed and effectiveness
with which Small and Medium Enterprises (SMEs) can embrace this innovative approach.
In response to this challenge, the European community has initiated several programs,
such as IoTwins, Change2Twin, and DigitBrain [2–4] with the goal of facilitating a swift
and cost-effective adoption of Digital Twins among small enterprises.

IoTwins is a project supported by the European Union under the H2020 program.
Commencing in September 2019, IoTwins successfully concluded its planned activities by
August 2022. IoTwins exploits the big data available in Industry 4.0 (I4.0) to devise smarter
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and more effective approaches to predictive maintenance and operation optimization
in industrial manufacturing. Likewise, IoTwins wants to leverage big data to derive
descriptive insights about the operations and processes developed in facilities such as
buildings, smart power grids, data centers, etc. On the basis of such descriptive information,
optimization techniques can provide efficient facility management plans, operation optimal
schedules, and renovation/maintenance plans.

The primary objective of the IoTwins project is to reduce the technological barriers
faced by SMEs when seeking to create intelligent digital services that enhance their in-
dustrial production capabilities. Aligned with the guiding principles of I4.0, the IoTwins
project aims to support the digital transition of industrial factories by providing them
with a methodology and tools that leverage the potential of the DT computing paradigm
and of ICT technologies such as Cloud/Edge computing, Big Data and Machine Learning
(ML), while shielding the beneficiary from the complexity of adopting such technologies
separately or together. The contributions of the paper are summarized as follows:

• The definition of a hybrid and distributed DT model;
• The design of a DT reference architecture draws inspiration from the RAMI 4.0 archi-

tectural model [5];
• The implementation of an open platform that adheres to the architecture’s principles;
• The definition of a set of guidelines for the agile development of industrial DTs.

The paper structure is as follows. In Section 2, we introduce the background and dis-
cuss some related work. In Section 3, we provide a definition of the hybrid and distributed
DT model devised within the IoTwins project. Section 4 is devoted to the description of the
RAMI-inspired IoTwins reference architecture. In Section 5, we discuss some implemen-
tation details of the IoTwins platform, while in Section 6 a practical implementation and
deployment of DT-based application is discussed. Finally, Section 7 concludes the work.

2. Background and Related Work

Despite the research around digital, high-fidelity copies of physical objects had flour-
ished in the 1980s, the term “Digital Twins” is reported to first be used by Michael Grieves
in 2003 at the University of Michigan [6]. Since its inception, this idea has increasingly
garnered attention for its ability to create a digital depiction of a physical object. Although
there is no unique, globally accepted definition of the DT concept, there are some aspects
of it that is agreed upon by many researchers and practitioners [7]. Initially embraced
in the manufacturing sector, the adoption of Digital Twins (DT) has extended into the
domains of the Internet of Things (IoT) and cyber-physical systems (CPSs) [8]. Further-
more, it has captured the attention of various technical communities and professionals
spanning diverse industries. These stakeholders have identified shared aspects between
their existing methodologies, concepts, and needs. As a result, the concept of digital twins
has evolved and expanded, leading to a diverse interpretation influenced by the particular
domain and intended purpose. The literature is full of attempts to give a formal and
exhaustive definition of DT [9–13]. In this article, we will stick to the definition proposed
by Ref. [14], as we believe it embodies the concept of DT that best fits our aim: “A DT is a
comprehensive digital representation of an individual product. It includes the properties,
conditions, and behavior(s) of the real-life object through models and data. A DT is a set of
realistic models that can simulate an object’s behavior in the deployed environment. The
DT represents and reflects its physical twin and remains its virtual counterpart across the
object’s entire lifecycle”.

More specifically, Industrial Digital Twins (IDTs) refer to virtual representations of
physical industrial assets, processes, and systems. An IDT serves as a dynamic, real-
time digital counterpart of a physical asset or process, enabling monitoring, analysis, and
optimization within a virtual environment. For a comprehensive list of IDT definitions,
readers may consult Ref. [15]. Examples of industries that benefit from IDTs include
manufacturing, energy (power plants, oil and gas facilities), transportation (aircraft, trains,
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vehicles), healthcare (patient monitoring and treatment optimization), and more. Here is a
non-exhaustive list of potential areas of application of IDTs in industrial scenarios:

• Real-time monitoring and data collection. IDTs continuously gather data from sensors
and other sources in the real world. This data is used to update the virtual representa-
tion, ensuring that it closely reflects the current state of the physical asset or process.

• Predictive analysis involves utilizing historical data and advanced analytics within
IDTs to forecast future behavior and anticipate potential issues. This capability facili-
tates proactive maintenance, ultimately minimizing downtime.

• Remote operation and control. By way of IDTs, operators can remotely monitor and
control physical assets, even in challenging or hazardous environments. This proves
especially beneficial for sectors such as energy, oil and gas, and manufacturing.

• Optimization and testing. IDTs enable the testing of various scenarios and configura-
tions in a virtual environment prior to implementing changes to the physical asset.
This can result in streamlined processes and a decrease in trial-and-error efforts.

• Reduced downtime and maintenance Costs. By predicting and preventing issues
before they occur, IDTs can help reduce unplanned downtime and maintenance costs.

• Lifecycle management: IDTs cover the entire lifecycle of an asset, from design and
development to operation and maintenance, and even decommissioning.

The authors of Ref. [15] list the enabling technologies that turn the DT paradigm into
a concrete opportunity for industries to undertake the digitization process fostered by
the Industry 4.0 revolution. Primarily, progress in technologies related to data acquisition
and analysis (such as advanced wireless networks, communication protocols, and big
data analytics) facilitates the creation of accurate digital representations and seamless
integration with their corresponding physical entities [16,17]. High-fidelity modeling involves
both the precise translation of raw data from the physical asset into knowledge and the
integration of information generated by the virtual model, with the aim of optimizing
the physical entity [18]. In that respect, AI is frequently employed to create models that
utilize established inputs and outputs acquired from the real-world system, aiding in the
comprehension of how physical properties interact with each other [19]. Simulation stands
out as a significant enabler of the DTs, mainly due to the heightened value it provides
through facilitating seamless real-time communication between virtual and physical assets.
Simulating DT behavior opens up substantial opportunities for the mutual optimization
of the virtual and physical models in terms of operational efficiency and maintenance
schedules [20].

In the aim of establishing a comprehensive framework for constructing DTs, various
endeavors have emerged to devise distinct modeling approaches. These efforts involve
creating various DT models organized into methodological tiers, referred to as layers, to
enable smooth information exchange between the physical and virtual realms. In the litera-
ture, commonly encountered modeling methods include the five-layer structure, six-layer
structure, three-step process, and five-dimensional modeling [21]. In Ref. [22], the authors
developed a DT reference model and architecture, and applied them in an industrial case.
Drawing inspiration from the RAMI 4.0 reference model [5], they introduced a layered
model consisting of three coordinated dimensions that encompass essential aspects of
DTs, namely architecture, value life cycle, and integration. The literature also delves into
efforts to devise a methodology for DT development. Ref. [23] proposed a methodology
design using model-driven engineering (MDE) that strives toward being both flexible and
generic. In this approach, a DT is initially conceptualized as a composition of fundamental
components offering core functionalities (such as identification, storage, communication,
security, etc.). Subsequently, an aggregated DT is characterized as a hierarchical composi-
tion of other DTs. A generic reference architecture based on these principles and a practical
implementation methodology are put forward utilizing AutomationML [24].

In this paper, we present a DT model, a reference architecture, and a development
methodology to help companies, both big and SME, leverage the potential of the DT
paradigm in the aim of boosting their digitization process. The proposed DT model em-
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bodies all the state-of-the-art approaches, i.e., the data-driven, the model-driven and the
hybrid ones, and accounts for the possibility of having the DT distributed over the indus-
trial cloud continuum (OT-to-Cloud). Similarly to Ref. [22], our reference IT architecture
inspires to the principles of the RAMI 4.0 architecture; besides that, we propose an imple-
mentation of a software prototype of a DT-based PaaS for concrete use by the developers.
Finally, we deliver a methodology and a set of practical guidelines for the implementation
and TOSCA-based deployment of complex, containerized, and distributed DTs in the
computing continuum.

3. Design of a Hybrid and Distributed Digital Twins Model for Industrial Scenarios

The process of digital transformation, driven by the Industry 4.0 revolution, is impera-
tive for companies to navigate the formidable challenges presented by the global market. In
line with this perspective, the European H2020 project IoTwins (https://www.iotwins.eu/,
last accessed on 9 February 2024) strives to assist European SMEs in embracing digital trans-
formation by making cutting-edge information technologies more accessible, effectively
“democratizing” their use. IoTwins primarily aims to reduce the technological barriers
faced by SMEs seeking to embrace Big Data-driven intelligent services. These services are
designed to enable SMEs to extract valuable insights from their daily collected data and
leverage this knowledge to enhance overall business performance. In the practice, IoTwins
wants to deliver an open-software platform and a toolbox that manufacturers can harness
to easily develop and operate Big Data-fueled, AI-powered, and Cloud/Edge-enabled
industrial applications.

Among all enabling technologies called upon by IoTwins, the Digital Twins (DTs)
paradigm plays a pivotal role. As a European Innovation Action project (projects of this kind
enforce activities of prototyping, piloting, and market replication), IoTwins utilizes multiple
industrial pilots to explore the possibilities and challenges associated with the adoption
of Digital Twins (DTs) and other technologies by industrial players in manufacturing and
facility management sectors. IoTwins seeks to advance the adoption of this paradigm
by proposing a scalable DT model, aiming for easy replication across various industrial
settings and verticals. IoTwins envisions a strong involvement of its industrial partners
(IPs) in the definition of the DTs model. IPs are requested to provide the test-bed facility
to support the DT model validation and the domain expertise to define the business
requirements for the model design and implementation. The IoTwins test-beds are broken
down into three categories: (i) manufacturing test-beds, (ii) facility/infrastructure management
test-beds, and (iii) test-beds for in-field verification of the replicability, scalability, and
standardization of the proposed approach, as well as the generation of new business
models. Specifically, four industrial pilots within the manufacturing sector are focused
on delivering predictive maintenance services. These services leverage sensor data to
predict the time to failure, subsequently generating maintenance plans that optimize
overall maintenance costs. Three large-scale test-beds concerning facility management
cover online monitoring and optimization in IT facilities and smart grids, as well as
intervention planning and infrastructure maintenance/renovation on sport facilities based
on data collected by sophisticated and heterogeneous monitoring infrastructures. The
five final test-beds, on the other hand, have been carefully chosen to demonstrate the
replicability of the proposed IoTwins methodology in diverse industries, the scalability of
the adopted solutions, and their ability to assist SMEs in developing new business models.
In Table 1, the 12 IoTwins test-beds are listed along with a synthetic description of their
claimed objectives.

https://www.iotwins.eu/
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Table 1. The 12 IoTwins test-beds.

Test-Bed Description

Manufacturing Test-beds

TB1: Wind Turbine
Predictive Maintenance

Developing a digital twin of a wind farm
by aggregating simulation and Machine
Learning models of single turbines for
predictive maintenance.

TB2: Machine Tool Spindle
Predictive Behavior

Developing multiple target-oriented
digital twins of machine tools for the
production of automotive components.

TB3: Predictive Maintenance for
a Crankshaft Manufacturing System

Developing a digital twin for the
predictive maintenance of a
crankshaft manufacturing system

TB4: Predictive Maintenance
and Production Optimization
for Closure Manufacturing

Developing a digital twin for the
optimization and predictive maintenance
of a closure manufacturing system

Facility Management Test-beds

TB5: Sport Facility
Management and Maintenance

Developing a digital twin for the
management of facilities involving the flow
of large crowds in the Nou Camp stadium

TB6: Holistic Supercomputer Facility
Management

Developing a digital twin for the
maintenance and optimization of
large computing facilities.

TB7: Smart Grid Facility Management
for Power Quality Monitoring

Developing a digital twin for the
computation and monitoring of a
smart power grid’s KPIs

Replicability Test-beds

TB8: Patterns for Smart Manufacturing
for SMEs

Defining a general and replicable
smart manufacturing methodology for SMEs
based on physics-based simulation

TB9: Examon Replication
to INFN/BSC Datacentres

Defining a methodology for reuse of
data center monitoring infrastructure in
new and different contexts

TB10: Standardization/Homogenization
of Manufacturing Performance

Defining a methodology for reuse of
digital twins models for closure manufacturing
in a wider series of machinery and other plants

TB11: Replicability towards
Smaller Scale Sport Facilities

Defining a methodology for replicating and
scaling facility management monitoring
in other sport facilities.

Business-Oriented Test-beds

TB12: Innovative Business Models
for IoTwins PaaS in Manufacturing

Defining a methodology to validate
innovative PaaS-based business models
in the machine monitoring sector

The DT model crafted by IoTwins utilizes big data and domain expert knowledge
to depict a complex system (such as an industrial plant, process, or facility) along with
its application-specific performance indicators. The ambition is to accurately predict the
temporal evolution and dynamics of the system. Conceptually, IoTwins envisions the
development of the following DT types: simulation-based, employing either agent-oriented
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modeling or physical modeling; data-driven, utilizing cutting-edge ML/DL techniques;
hybrid, combining the strengths of both physics and data modeling. A sample hybrid
DT was developed in Test-bed 3. Here, in the aim of developing a predictive model of
a machine part’s faults, a ML model was implemented and trained with real-time data
gathered from the sensors on board on the machine part. Given the scarcity of data sensed
when the component ran in a near-to-faulty mode, the manufacturing company had to
resort to simulation in order to generate synthetic data related to the malfunctioning of
the part. Such data were then used along with real data to train a robust ML model
for the prediction purpose. Furthermore, in order to cater for the computing needs of
factories, as well as for the strict requirements of certain types of industrial applications,
IoTwins fosters a hierarchical distribution and interworking of DTs that includes: (i) IoT
Twins, which employ lightweight models of specific components, and conduct big-data
processing and local control for quality management operations with a focus on low latency
and high reliability; (ii) Edge Twins, situated at plant gateways, which offer higher-level
control functionalities and orchestrate Internet of Things (IoT) sensors and actuators within
a production locality. This facilitates local optimizations and promotes interoperability;
(iii) Cloud Twins, which engage in time-consuming, typically off-line parallel simulation
and deep-learning processes. They provide the edge twin with pre-elaborated predictive
models, efficiently executed at production plant premises for monitoring, control, and
tuning purposes.

From a methodological perspective, the whole DT model definition process envisaged
two iterations: in the first iteration, requirements elicited from the industrial manufacturing
and facility management IPs (say “group A”) were used to design a first draft of the DT
model, which was then prototyped in collaboration with the scientific partners and vali-
dated on the test-beds owned by group A IPs; in the second iteration, results collected from
the mentioned experiments and new requirements elicited from the so-called replicability
IPs (say “group B”) contributed to refining the DT model, which was eventually validated
on a second set of test-beds owned by group B IPs.

Finally, in Figure 1, we depict a graphical representation of the hybrid and distributed
DT model developed within the IoTwins project. First, a DT (illustrated as a blue-filled box)
is a distributed entity with the potential to encompass the entire spectrum of an industrial
scenario. This spans from the remote Cloud down to the factory premises, where it can
operate on Edge nodes and on field devices/PLC (labeled as “IoT”). Some samples of
concrete DT-based applications have been depicted in the figure as red-filled boxes with
a blue outline. Second, operating a distributed DT requires a well-designed, robust and
scalable data backbone that will have to support the exchange of signals among the DT
components (depicted as red hollow arrows) and shipping a big amount of data from the
field to the Cloud (red-filled arrows). Finally, three types of models are allowed in this
scenario: agent-based simulation, physics model simulation, and trained ML models. A
DT belongs to one of these categories, or can be a hybrid implementation that mixes the
simulation and the data-driven approach to achieve its goal (as is the case of test-bed 3).
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Figure 1. IoTwins: a distributed and hybrid Digital Twins model.

4. A RAMI-Inspired Reference Architecture

The IoTwins architecture was designed to support the DT model discussed in Section 3.
According to the model specification, the supporting architecture will have to accommodate:
(i) the development of digital objects modeling physical industrial entities and industrial
processes; (ii) the design and deployment of pipelines for shipping data from the physical
entities to the digital objects, back and forth; (iii) the deployment and operation of digital
objects in a distributed and heterogeneous computing environment (i.e., the OT-to-Cloud
computing continuum). First, due to the unbalance of resources in the continuum, the
architecture will have to provide functions to build virtualized and uniform execution
environments out of the physical computing power. Second, due to the intrinsic distributed
nature of the conceived digital twins, the architecture will provide a solid mechanism
and a choice of protocols to support reliable communication among the multiple digital
objects that will populate the above-mentioned virtualized environment. Third, a service is
needed to orchestrate the life-cycle (creation, configuration, resource provisioning, roll out,
running) of all digital objects. Finally, the architecture will have to guarantee the fulfillment
of strict security requirements of compute resources included in the OT perimeter (IoT
and Edge ones in our scenario) and of real-time requirements imposed by mission-critical
industrial applications.

The IoTwins architectural model draws inspiration from the Reference Architectural
Model Industry 4.0 (RAMI 4.0) [5] developed by the German Electrical and Electronic
Manufacturers’ Association (ZVEI) to support Industry 4.0 initiatives. We chose to base
our architectural model on the one proposed by RAMI since the latter is a well-established
and world-wide recognized reference architecture to implement digital transformation
processes in industrial settings, and it also already embeds many of the features that we
seek to build a DT-based platform upon. RAMI 4.0 provides a unified model that ensures
all the stakeholders involved in an I4.0 ecosystem share data and information in an efficient
and effective way. The RAMI 4.0 model comprises three “axes” named Life Cycle value
stream, Hierarchy levels, and Architecture Layers, respectively. Grounding on the IEC62890
standard [25] the Life cycle value stream axis provides a view of the product life cycle from
conception to disposal. The foundation of the Hierarchy levels axis are IEC62264 [26] and
IEC61512 [27] respectively, which aim to represent different functional levels of a factory.
Finally, the Architecture layers axis enables the transformation of industrial assets into their
interoperable Digital Twins. This axis support most of IoTwins research objectives. In the
following, we report a short description of it.
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The Architecture layers axis defines a framework where the physical world meets the
digital one and a strong interconnection among the manufacturing operations is enabled.
A layered view of the axis is depicted in the left-end of Figure 2. At the bottom, the Assets
layer identifies and describes the real assets in the physical world. It comprises sensors,
devices, machine parts, machines, machine groups, etc. The Integration layer describes the
digital equivalents of physical assets. This layer is where the transition from the physical
world to the cyber space begins. The Communications layer addresses mechanisms for the
interoperable exchange of information between digital assets. The Information layer defines
data services such as provisioning and integration that can be leveraged to exchange data
among functions, services, and components. The Functional layer provides the runtime and
modeling environment to build functions and services to support the business. Finally,
the Business layer defines organizational and business-related applications, processes, and
operations. Inspired by the RAMI4.0 Architecture layers axis, the IoTwins architecture aims
to provide a reference architecture to guide the implementation of software platforms for
building, operating and maintaining DT-based industrial applications. IoTwins proposes a
logical, layered architecture defining the functions that the software platform will have to
offer. In Figure 2, we illustrate the IoTwins architecture [2,28] and highlight the mapping
between the architecture functions and the RAMI4.0 concepts that each function addresses.
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Figure 2. IoTwins-RAMI 4.0 mapping.

The IoTwins architecture addresses RAMI concepts ranging from the ‘Integration’
to the ‘Functional’. The RAMI ‘Asset’ layer represents physical things in the shop floor
(production line machines, sensors, actuators, etc.) that need to be connected to the digital
world; therefore, as IoTwins is a reference architecture for software platforms, it will build
on top of those assets. Similarly to the RAMI4.0 model, the IoTwins architecture adopts
a layered approach, with each layer leveraging the functionalities provided by the lower
layer and offering services to the upper layer. In the following, a detailed description of
such layers and the RAMI4.0 concepts they address is given.

4.1. Runtime Layer

In order to project an industrial physical object (“thing”, in the following) into the
digital world, it is necessary to set up a computing environment where the digital alter ego of
the thing can live. This layer is responsible for abstracting the available computing resources
(which may range from very small IoT devices to large High Performance Computing (HPC)
clusters) and providing a virtualized execution environment that can flexibly accommodate
the computational demand of DTs. Technologies that may serve the mentioned purpose
include lightweight virtualization, hypervisor-based virtualization, and HPC middleware.

4.2. Resource Layer

We refer to a “resource” as a virtual computing entity that can be activated on demand
on the virtualized execution environment. A very simple form of a digital copy of a
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physical thing can even be implemented by means of a simple resource (e.g., a microservice
mirroring a sensor’s data). This layer recommends a set of services that aim to guarantee
full dependability of resources when they are operational. Among others, this layer takes
care of tracking all running resources, scheduling new resources on demand, monitoring
the resources status, and implementing resource resilience strategies.

4.3. Platform Layer

This layer offers functions to build more complex and faithful digital reproduction
of any factory asset (be it an operating machine, a production line, or the supply chain
process). In IoTwins, a DT is conceived as a composite digital object, consisting of a certain
number of simpler digital entities capable of interacting with one another to achieve the
DT business goal and of executing anywhere in the computing continuum. The Platform
layer will include components that offer services to: (i) support one-to-one, one-to-many
and many-to-many communication among a DT’s entities and among DTs; (ii) meet the
data persistence needs of the DTs; (iii) orchestrate the composition, deployment, operation,
and maintenance of DTs; (iv) constantly monitor and guarantee the DT service continuity.

4.4. Application Layer

This layer includes application templates and toolkits to assist developers in imple-
menting the DT business logic. In this regard, two approaches are supported for the
development of DTs: a data-driven approach, which makes intensive use of ML/DL and
Big Data analytics, and a model-driven approach, which relies on the use of software
simulation. The support for a combined use of data-driven and model-driven techniques
for the development of a hybrid DT is also provided.

4.5. Authentication and Authorization

This is the ingress point to access the services offered in the Platform layer and in the
Application layer. Here, access procedures are put in force in order to grant a safe and
controlled access to both data and services.

4.6. Data Security

Privacy is a strong requirement that cross-cuts all the layers. Since private and sensitive
data may be handled, both raw data coming from the shop floor and those elaborated
along the path must be secured. In that respect, procedures to protect data at rest (e.g.,
data anonymization, data encryption) as well as data in transit (e.g., secure communication
channels) must be enforced.

5. The IoTwins Platform: A Software Prototype

We implemented a software platform that adheres to the design principles specified by
the IoTwins reference architecture. As mentioned in Section 3, the platform went through
two refinement iterations governed by an overarching process of (i) requirements elicitation
from industrial test-beds and (ii) use case validation. In this section, we will disclose some
implementation details of the platform prototype, illustrating the software environment
that we instrumented to operate industrial Digital Twins in the computing continuum.
Finally, we will discuss the point of view of software developers, taking advantage of the
tools offered by the IoTwins platform to build and deploy a DT-based application.

5.1. IoTwins Platform’s Implementation Details

To support the coding of the platform’s prototype, many commonly available and
highly mature open-source software products have been used. Considering the maturity
level of such software, whose Technology Readiness Level (TRL) is in the range 8–9, and
the extensive tests that all industrial partners ran to attain their goals, we can claim that
the final version of the platform released at the end of the project achieved an estimated
maturity level of TRL 6.
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The platform is a distributed system made up of a number of software components
that can be deployed in the continuum. As the reader may recall, the architectural design
addresses three levels of computing environment, namely, IoT, Edge, and Cloud. The
DTs model adopted in the IoTwins project was conceived to cater the need (expressed
during the requirement elicitation phase) that the software components of the applications’
business logic should be able to run across all computing environments (IoT, Edge, Cloud)
according to the specific goal they need to accomplish, and still manage to communicate
with other peer components in a seamless fashion. For example, a ML model must be run
on the Cloud for training purpose, but it then needs to be migrated closer to the industrial
machine (e.g., on the Edge) to make certain predictions in a responsive way. Data streamed
from the shop floor can be used to feed the model both during the training session and
when it makes inference. To cater for this need of facilitating the components portability
and intercommunication, we designed and implemented the distributed platform in a way
that one software stack could fit the three computing environments. Therefore, the three
software bundles deployed on IoT, Edge, and Cloud will all look the same with only slight
differences. Each has a communication layer leveraging asynchronous messaging, reusable
adapters for data streaming and data storage, a virtualization layer to manage in a flexible
way the underlying computing power. The software stack on the Cloud also includes the
logic for orchestrating the data pipelines and workflows (Orchestrator), while the one on
the IoT is equipped with plug-ins to collect data from field devices that speak different
industrial protocols.

For the sake of brevity, in the following we are going to give a description of the
platform components that are commonly deployed on the Cloud side and on the Edge
side, as depicted in Figure 3 and Figure 4, respectively. In the final tests conducted at
the end of the project, the Cloud-side platform components were deployed in the private
data center of one of the technology providers that participated in the project. For what
concerns the Edge components, they were deployed on a commodity PC equipped with
Linux Ubuntu 20 OS.

Bottom-up, we are going to briefly discuss the software products that provide an
implementation of the functions/services populating the hierarchical layers of the RAMI-
inspired IoTwins architecture. In each figure, a colored legend recalls which RAMI’s layer
a given platform component addresses. At the bottom of Figure 3 the software tools
implementing the RAMI’s integration layer on the Cloud side are depicted. Virtualization
software such as Openstack (https://www.openstack.org/, last accessed on 9 February
2024) Docker (https://docker.com, last accessed on 9 February 2024), and Kubernetes
(https://kubernetes.io, last accessed on 9 February 2024) was employed to abstract the
underlying physical computing and storage resources and offer them as a pool of virtual
resources that can be managed in an easier and more uniform way. The heart of the platform
is the INDIGO Orchestrator [29], which contributes to implement services belonging to
the RAMI’s functional layer. The INDIGO Orchestrator is a TOSCA-compliant [30] cloud
orchestrator in charge of accepting application deployment requests, scheduling virtual
computing resources, and enforcing provisioning workflows that serve the requests. Beside
fulfilling the application deployment task, INDIGO is capable of enforcing actions that
guarantee the scalability and fault-tolerance of the deployed applications. In the next
section, a sample provisioning workflow enforced by the INDIGO orchestrator is described.
The platform provides services to help the developer implement the data backbone of their
DTs. On the left-end of the figure, the RabbitMQ message broker and a set of streaming data
adapters are depicted in yellow, signifying their belonging to the RAMI’s Communication
layer. These components are responsible for the gathering of data from the Edge and their
adaptation to the application’s required format. On the right-end of the picture, some
DBMS tools (MinIO (https://min.io, last accessed on 9 February 2024) as object-storage,
InfluxDB (https://www.influxdata.com, last accessed on 9 February 2024) as time-series,
MongoDB (https://www.mongodb.com, last accessed on 9 February 2024) as NoSQL)
are depicted along with the adapters that developers can craft with the support of the

https://www.openstack.org/
https://docker.com
https://kubernetes.io
https://min.io
https://www.influxdata.com
https://www.mongodb.com
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telegraf (https://www.influxdata.com/time-series-platform/telegraf/, last accessed on
9 February 2024) tool. The support for data management is then enriched with two open
repositories that store Docker-based modules that can be re-used for DT development
purpose. Finally, in the figure a sample of potential industrial applications is depicted:
Control logic is a software application that implements the business logic of an industrial
control loop; Data pre-processor is a component that filters/adapts streamed data before
feeding them to the control logic; and ML training is a neural network that needs to be
trained both on locally-stored historical data and on real-time data streamed from the Edge.

Simulation

ML training
(Tensorflow, Keras)

Optimization /
Assessment

ML/DL Model Repository

Application Repository

IoTwins Platform - Cloud

ML/DL Model(s)

Data 
Preprocessor(s)

Data Storrage
Adapter(s)

Streaming Data
Adapter(s)

Data Storrage
Adapter(s)

Streaming Data
Adapter(s)

Data Storrage
Adapter(s)

Data Storrage
Adapter(s)

2Streaming Data
Adapter(s)

Streaming Data
Adapter(s)

Cloud-to-Edge
Data Messaging

Interface

Cloud-to-Edge
Edge-Orchestration

Interface

Data Storrage
Adapter(s)

Control logic Data Storrage
Adapter(s)

Streaming Data
Adapter(s)

RAMI 4.0 Integration layer RAMI 4.0 Communication layer RAMI 4.0 Information layer RAMI 4.0 Functional layer

Data Storrage
Adapter(s)

Legend

Figure 3. Software components of the IoTwins platform deployed in the Cloud.

In Figure 4, the software components implementing the Edge side of the IoTwins
platform are depicted. In the bottom, the virtualization tools Apache Mesos (https://
mesos.apache.org/, last accessed on 9 February 2024), Marathon (https://github.com/
mesosphere/marathon, last accessed on 9 February 2024), and Docker implement the
integration layer prescribed by the RAMI architecture. Despite that the Mesos tool is
designed to virtualize and manage a cluster of computing nodes, it perfectly accomplishes
the management duties of just one node. Furthermore, in future developments it will
cope well with scenarios where multiple Edge nodes need to be managed. Tools such as
Marathon and Chronos, in their turn, will offer the developer the opportunity of running
long-running and job-like computing instances, respectively. The reader may have noticed
that there is no orchestrator component deployed in the Edge. The reason is that, at
design time, we decided to centralize the orchestration functionality in the Cloud, so there
is just one component (the INDIGO orchestrator, indeed) responsible for orchestrating
the computing resources belonging to the Cloud/Edge continuum. On the Edge side,
orchestration instructions are remotely triggered by the INDIGO orchestrator to the Mesos
tool via the REST interface. Similarly to the Cloud deployment, software adapters are
provided to meet both data stream and data storage adaptation needs. On the left end of
the picture a Data Collector component is displayed. It will cater for the need of collecting
data from IoT devices in the field independently of the communication protocol they

https://www.influxdata.com/time-series-platform/telegraf/
https://mesos.apache.org/
https://mesos.apache.org/
https://github.com/mesosphere/marathon
https://github.com/mesosphere/marathon
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use. Finally, a list of sample components is depicted in green that represent potential
applications that the developer may decide to run on the Edge.

Data Collector(s)

Comm Adapter
Wi-Fi

Comm Adapter
Bluetooth

Comm Adapter
5G

Data Storrage
Adapter(s)

ML Model(s)

Data Enrichment and
Aggregation

Long Term Data
Upload

Protocol Adapter
MQTT

Protocol Adapter
UPC-UA

Protocol Adapter
Coap

Control logic

Protocol Adapter
Modbus

Data Preprocessor(s)
(Filter, FFT, RMS,

etc.)

Data Storrage
Adapter(s)

Data Storrage
Adapter(s)Streaming Data

Adapter(s)

Streaming Data
Adapter(s)

Streaming Data
Adapter(s)

Data Storrage
Adapter(s)

Cloud-Edge
Data Messaging

Interface

Cloud-Edge
Edge-Orchestration

Interface

Streaming Data
Adapter(s)

Data Storrage
Adapter

Edge-IoT
Data Messaging

Interface(s)

RAMI 4.0 Integration layer RAMI 4.0 Communication layer RAMI 4.0 Information layer RAMI 4.0 Functional layer

Legend

IoTwins Platform - Edge

Figure 4. Software components of the IoTwins platform deployed in the Edge.

5.2. Digital Twins Implementation Guidelines

As mentioned in Section 3, the IoTwins project aimed at “democratizing” access to most
advanced information technology, i.e., providing SMEs with cheap instruments to embark
the digital transformation facilitated by I4.0. The IoTwins open platform is one of the
most remarkable project outcomes, benefiting both the research community and industry.
The platform not only allows users to easily build DT-based services to support their
own businesses; it also enables service developers to implement new, re-usable software
modules that will contribute to the consolidation of an ecosystem of freely accessible and
composable services from which the community can draw to accelerate the development
path of their DTs. To support this objective, the IoTwins initiative created an open service
repository and populated it with some representative and popular services. It also created
a set of rules for service developers to follow in order to design platform-compatible DTs.

In the IoTwins framework, a DT can be a very simple software module, running in
either the Cloud or the Edge, or can take the form of a complex chain of interworking
modules deployed and running along the continuum. Because the Docker framework is
used as containerization technology in both Cloud and Edge-level runtime environments,
each IoTwins DT must be developed as a (composition of) Docker container(s). This enables
“coding” the DT once and deploying it anywhere along the Docker-powered Cloud/Edge
continuum. Furthermore, in order to meet the INDIGO’s “orchestrability” criteria, an
ad-hoc TOSCA template including instructions on how to deploy the software module
must be provided for each DT. We will use the term “Toskerization” to designate to the
process of creating a new DT, which stems from a crasis between the phrases TOSCA
and Docker.

A Toskerized DT is a software bundle that embeds a Dockerized image of the service
(i.e., a service that can run in a Docker runtime environment) and a TOSCA file (indeed,
the service template) that instructs the INDIGO PaaS Orchestrator on how to correctly
deploy the service upon the user request. The Dockerized service can be built out of a
plain Docker image publicly retrievable from any of the available Docker repositories, by
optionally adding extra layers according to the specific needs. Basically, the Dockerized DT
must be configured to accept a list of input parameters, that the user may want to pass for
correctly configuring the service, and a list of output parameters needed to configure other
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Dockerized services that might be deployed along in a service chain fashion. The described
approach simplifies the service deployment operations in a consistent way. In fact, the user
does not have to directly handle the software package/tool that they need, nor do they
have to manipulate configuration files. The declarative approach offered by the TOSCA
standard (and enforced by the INDIGO orchestrator component of the IoTwins platform)
offers the user an easy way to declare what their deployment objectives are and takes care
of the entire deployment process (i.e., pulling the software tools from a repository, install
it in a private computing space, configure it, re-run the deployment in case of temporary
failures, etc.). Service developers who want to make their DTs orchestrable by the IoTwins
platform must follow a few simple principles that show how the Toskerization process
works. The process includes the following steps:

1. Creating the Docker image. The developer will have to explore public Docker reposito-
ries to search for existing dockerized images of the service that they wish to implement.
If such an image is not available, they will have to build the image from scratch. When
editing the Dockerfile, the developer will have to make sure that the image accepts
input values for the correct configuration of the service at runtime: the easiest way
to accomplish this goal is to pass input data values through C-shell environment’s
variables, as most ready-to-use docker images are already set to read variables from
the environment where they execute; in the case that further configuration work is
needed, the developer will have to create ad hoc scripts to be injected in the Docker
image and run them;

2. Uploading the Docker image to the IoTwins repository. The platform is provided
with a private docker container repository that offer storing, image retrieval, and
text-based search functionalities. Once uploaded on the repository, the docker im-
age can be accessed by the orchestrator in a transparent way in order to enforce
provisioning tasks;

3. Coding the TOSCA template. The TOSCA standard offers a declarative approach to
define the topology and the provisioning workflow of cloud-based and distributed
application. The developer is in charge of mastering the TOSCA-compliant blueprint
containing the instructions to provision the software modules implementing the
DT. Instructions are declarative statements concerning, e.g., the computing capacity
requested by the DT, the configuration properties of the software modules (docker
components) that the DT is composed of, their mutual dependencies, etc.;

4. Testing the DT orchestrability. In order to run functional tests on the mastered TOSCA
template and on the related provisioned services, the developer can make use of two
front-end tools: a command line interface (CLI) and a web-based interface. Both
tools let the developer send deployment commands to the INDIGO orchestrator and
monitor/debug the provisioning process in a sandbox environment.

6. Building and Provisioning an Industrial Digital Twin

We present an illustrative case study that delves into the definition, implementa-
tion, and deployment of a DT adhering to the IoTwins reference model and spanning the
Cloud/Edge industrial continuum. The case under discussion is a tangible instance of a
developmental initiative conducted within the framework of an IoTwins test-bed imple-
mentation. The collaborating partner owning the test-bed expressed the need of developing
an AI-driven application for identifying irregularities within an industrial machine tool
during its production process. In pursuit of this objective, the machine was outfitted with
sensors designed to capture specific physical metrics (such as load, forces, vibrations, etc.).
The intention was to accumulate an extensive dataset, which would subsequently be used
to train a ML model proficient in detecting potential functional anomalies associated with
the aforementioned machine tool. Due to the time-critical nature of the control loop (detect-
ing potential anomalies quickly reduces the risk of tool damage), it is essential to execute
the trained ML model as approximately as feasible to the data sources. While an Edge
computing node satisfies this demand, it cannot ensure the computational power necessary
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for ML model training. In contrast, the Cloud emerges as the more suitable computing
environment, offering the requested capacity for training the ML model. Developers may
encounter various technical and administrative challenges when implementing such an
application. To begin, they must establish a data path across the continuum (from sensors
through Edge to Cloud) to ensure a continuous flow of data to both the ML models—the
one under training and the trained one. Secondly, the modules constituting the DT applica-
tions need appropriate configuration, interconnection, and deployment within a distributed
computing environment. Subsequently, once the Cloud-based ML model has been suc-
cessfully trained on data at rest, it must be transferred to the Edge where it will receive
real-time data.

The IoTwins platform equips developers with tools and services to confront these
challenges and expedite application development. Following the guidelines outlined in
the previous section, developers will explore the platform’s repository to identify reusable
modules that align with the application’s objectives. Fortunately, the repository provides
a range of Docker containers for constructing the DT’s data backbone. These encompass
message brokers for data distribution, adaptable connectors for data format and protocol
conversion, as well as databases for diverse data storage requirements. These software
components can be effortlessly assembled by developers to create the desired data path.
Developers are tasked with implementing the ML model and any supplementary elements
pertinent to the application’s business logic. These components should be containerized
using the Docker framework and uploaded to the repository. When all DT components are
available in Dockerized forms, developers will focus on mastering the TOSCA blueprint that
governs the entire DT structure. This involves populating the blueprint with configuration
parameters for the components, instructions for component interconnections, and the
callback mechanism necessary for migrating the ML model component from Cloud to
Edge following its training. An excerpt from the TOSCA blueprint, demonstrating the
interdependencies between two components of the DT data infrastructure (specifically, the
message broker and a connector), is displayed in Listing 1.

Subsequently, the developer will submit the TOSCA blueprint to the orchestrator,
which is responsible for deploying the DT components based on the provided instructions.
The orchestrator has the capability to deduce the correct order of deployments to be
executed. In Figure 5, we present a visual representation of the DT components deployed
within the cloud continuum. In this illustration, reused components are denoted in a deep
blue color, while components that the developer crafted from scratch are shown in a light
blue hue. The solid lines indicate the exchange of data between pairs of components, while
the dashed line represents the migration path of the ML model. Some components are
deployed on an Edge node within the factory premises, while others are provisioned in
the Cloud. The data backbone supporting the application’s logic comprises several key
components:

• Message Broker (RabbitMQ): This component serves as a central hub for data exchange.
It collects data generated in the field by various sources and ensures its delivery to the
intended recipients.

• Data Stores:

– InfluxDB (Time-series Database): This database is responsible for storing time-
series data, which can be crucial for analyzing trends and patterns;

– MinIO (Object Storage Database): MinIO serves as an object storage database,
housing data objects and making them accessible for various purposes.

• Connectors:

– RabbitMQ-to-InfluxDB Connector: this connector facilitates the transfer of data
from the message broker to the InfluxDB, enabling data to be stored for further
analysis;

– InfluxDB-to-MinIO Connector: this connector assists in moving data from In-
fluxDB to MinIO, possibly for archival or other use cases.
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Listing 1. Exert of a TOSCA blueprint for the provisioning and wiring of a RabbitMQ docker instance
and a Telegraf connector instance.

topology_template:
inputs:

#params for RabbitMQ, Telegraf and InfluxDB
#....omitted code.....#

node_templates:

rabbitmqnode:
type: tosca.nodes.indigo.Container.Application.

Docker.Marathon
#....omitted code.....#

artifacts:
image:

file: rabbitmq:management
type: tosca.artifacts.Deployment.Image.

Container.Docker
requirements:
- host: rabbitmqdockerruntime

rabbitmqdockerruntime:
type: tosca.nodes.indigo.Container.

Runtime.Docker
#....omitted code.....#

telegrafnode:
type: tosca.nodes.indigo.Container.

Application.Docker.Marathon
properties:

environment_variables:
RABBITMQ_ENDPOINT:

type: string
value:
{concat: [ "mqtt://",

{get_attribute :
[rabbitmqnode,

load_balancer_ips, 0 ] }, ':',
{get_attribute :

[rabbitmqdockerruntime,
host, publish_ports, 1, target]}]}

#....omitted code.....#
artifacts:

image:
file: iotwins-harbor.cloud.cnaf.infn.it/

data-services/
iotwins-connector-rabbitmq-influxdb:1.0

type: tosca.artifacts.Deployment.
Image.Container.Docker

requirements:
- host: telegrafdockerruntime

telegrafdockerruntime:
type: tosca.nodes.indigo.Container.

Runtime.Docker

#....omitted code.....#
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The data generated in the field is first collected by the message broker and then routed
to its intended destinations through these components. On the Cloud side, the ML model
component, depicted as the “Anomaly Detection (AD) Model”, retrieves data from the
MinIO object storage. This data is essential for the training process of the ML model, which
is a critical part of anomaly detection. On the Edge end, the trained AD model component
subscribes to the message broker in order to receive fresh data generated by the sources.
Based on those data, it will have to detect potential anomalies and notify with the Alarm
component. Finally, the Data Polisher filter and cleans in-transit data before they get to
the Cloud.

Figure 5. Digital Twins software components provisioned by the orchestrator.

7. Conclusions

This paper provides an overview of Digital Twins reference model as presented in the
EU-funded IoTwins project. In particular, the paper focuses on the design and development
of a software prototype of an open platform to support the agile implementation of Digital
Twins-based applications in industrial settings. One of the factors that contributed to the
success of the IoTwins project is the enthusiastic participation of several players coming
from diverse sectors of the industry. In the first phase of the project, a doubly-iterated
requirements elicitation process was triggered to assess and refine the specific needs of
the involved industrial test-beds. The variegated set of functional and non-functional
requirements contributed to the definition of a hierarchical and hybrid Digital Twins model;
then, it guided both the design of the IoTwins architecture and the implementation of
the open-source platform prototype that can be adopted in industrial settings for the
development of digital twins-based application. One more remarkable objective attained by
the project is the tear down of cultural and economical barriers that prevent stakeholders
from fully leveraging the relevant technology adopted within the project. To this end, the
project developed a set of development guidelines that will help developers to build Digital
Twins by composing existing containerized software. In the final part of the project, intensive
tests conducted by the industrial partners in real industrial settings proved that operators
with medium-level IT skills successfully implemented and operated distributed Digital-
Twins-based applications by simply leveraging the tools offered by the IoTwins platform.

Overall, this work contributes to the state of the art in the field by proposing a RAMI-
inspired Digital Twins reference architecture and delivering a novel and practical “build-
by-compose” approach and easy-to-use tools to the development of industrial applications
in the industrial continuum, i.e., the environment spanning the whole chain of computing
resources ranging from the shop floor to the remote cloud. The positive achievements
attained in IoTwins, encompassing improved time-to-market of digital twin applications
and decreased financial investment, mark a substantial advancement. We claim that these
achievements will contribute to motivate SMEs to expedite the digitazation processes
fostered by Industry 4.0. As future work, we are going to enhance the DevOps tools
delivered by the project in order to streamline the time-to-production and operation of
distributed industrial applications that leverage the Digital Twins paradigm. While doing
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so, we also intend to extend the use of the platform in other industrial fields to further
refine the model and the architecture devised by the project.
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