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Abstract: During viral infection, the innate immune system utilizes a variety of specific intracellular
sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that
produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi’s sarcoma-associated
herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with
a variety of human malignancies, including Kaposi’s sarcoma, primary effusion lymphoma, and
multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including
cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the
innate immune response to antagonize the virus. To counteract this, KSHV has developed countless
strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes
the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-
sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling
pathways to successfully establish latent infection and undergo lytic reactivation.

Keywords: KSHV; DNA-sensing pathways; antagonism; type I IFNs; proinflammatory cytokines;
chemokines

1. Introduction

The innate immune system is the most ancient form of host defense; it responds
almost immediately to microbes (pathogen-associated molecular patterns, PAMPs) and
injured host molecules (damage-associated molecular patterns, DAMPs) and invokes
innate immune responses. Once a pathogen (such as a virus, bacterium, fungus, or parasite)
invades a cell, a set of host pattern-recognition receptors (PRRs) recognizes pathogen-
specific molecules, such as lipids, lipoproteins, sugars, and nucleic acids, and activates an
innate antiviral response to eliminate the pathogen [1]. Over the past few years, several
intracellular DNA sensor candidates have been identified, as well as an essential adaptor
protein, STING, through which most of these sensors operate. The sensors that function
in a STING-dependent manner include DAI, DDX41, cGAS, IFI16, and DNA-PK [2–6].
However, some sensors recognize cytosolic DNA in a STING-independent manner, such as
the helicases DHX9 and DHX36, which detect DNA in plasmacytoid dendritic cells (pDCs)
and trigger immune immunity via the adaptor protein MyD88 [7]. In addition, the sensing
of endosomal DNA by TLR9 also occurs through the adaptor MyD88 [8]. Although these
DNA sensors function through different adaptor proteins, they can activate the innate
immune response by inducing the production of interferon or inflammatory factors.

Kaposi’s sarcoma-associated herpes virus (KSHV) is a large double-stranded DNA
virus, belonging to the gamma herpesvirus subfamily, that has been implicated in the
etiology of Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multicentric
Castleman disease (MCD) [9–11]. Like other herpesviruses, KSHV has two distinct life
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cycle phases: latency and lytic replication. After infection, KSHV becomes latent in B
lymphocytes and endothelial cells, and the viral genome is circularized into an episome
and maintained in the infected nucleus [12]. The entry of foreign DNA into the nucleus
of eukaryotic cells triggers numerous innate immune responses, such as the induction of
type I IFNs, inflammatory cytokines, and DNA damage responses. KSHV genomic DNA
can be detected in the nucleus [13,14] or in the cytoplasm due to the premature release of
its genomic DNA into the cytoplasm [15]. Despite these innate immune responses, KSHV
establishes lifelong persistence, suggesting that it has evolved to evade antiviral immunity.
KSHV utilizes a variety of viral gene products expressed in latent or lytic replication to
exert immune-evasive functions. In this review, we focus on recent developments in the
molecular mechanisms underlying viral DNA sensing and the signaling pathways of the
innate immune system. In addition, we discuss the role of the DNA-sensing pathway in
KSHV infection and summarize recent advances in identifying the viral proteins that KSHV
uses to evade innate immune responses.

2. Viral DNA-Sensing Pathways

DNA sensors detect viral DNA and trigger the innate immune response through
distinct signaling pathways. The signals of exogenous DNA converge to adaptor proteins
and are subsequently transduced to transcription factors that initiate the transcription of
IFNs, cytokines, and proinflammatory cytokines. Upon detection, viral DNA primarily
activates three critical signaling pathways—STING–TBK1–IRF3–interferon signaling, the
NF-κB pathway, and the inflammasome pathway.

2.1. STING–TBK1–IRF3–Interferon Axis

The induction of the type I IFN response, which is regulated primarily at the transcrip-
tional level by IFN regulatory factors (IRFs), is an important hallmark of the host response
to pathogen invasion. Type I IFNs are mainly produced through signaling pathways that
include three crucial proteins, known as STING, TBK1, and IRF3. STING is a crucial endo-
plasmic reticulum (ER)-located adaptor and is critical for regulating the production of type
I IFNs in response to cytoplasmic DNA [16]. TANK binding kinase 1 (TBK1) is another
crucial protein that is an important member of the IκB protein kinase (IKK) family that
plays a key role in inducing the activation of IRF3 and IRF7, which further leads to the
induction of interferon-stimulated genes (ISGs) and the production of type I IFNs. Upon
receipt of a signal from DNA-sensing receptors, STING translocates from the ER to the
Golgi complex and activates TBK1 [17]. Activated TBK1 promotes the phosphorylation of
interferon (IFN) regulatory factor 3 (IRF3) and triggers the dimerization and nuclear translo-
cation of IRF3, which ultimately promotes the production of type I IFNs and inflammatory
cytokines [18,19].

2.2. Nuclear Factor-Kappa B (NF-κB) Pathway

NF-κB is a family of highly conserved transcription factors composed of several DNA-
binding proteins of the Rel family, such as RelA (p65), Rel B, and c-Rel [20]. NF-κB can
be found in most cell types and is involved in a wide range of biological processes, such
as inflammation, immunity, differentiation, cell growth, tumorigenesis, and apoptosis. In
unstimulated cells, NF-κB is sequestered in the cytoplasm and is tightly controlled by a
family of inhibitory proteins known as IκBs. IκB proteins interact with NF-κB and mask
its nuclear localization signal, thereby preventing its activity. In the case of microbial
invasion, an inhibitor of the IKK complex is activated, resulting in the phosphorylation of
the regulatory protein IκB. The phosphorylation of IκBα is a signal for its ubiquitylation
and subsequent proteasome-dependent degradation by the 26S proteasome, which allows
NF-κB to translocate to the nucleus and initiate the transcription of genes encoding various
proinflammatory cytokines, chemokines, and cell adhesion molecules [21].
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2.3. Inflammasome Signaling

Inflammasomes comprise another key signaling platform that responds to microbial
DNA in the cytoplasm and induces the activation of inflammatory caspases and the produc-
tion of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) [22].
The transcription of pro-IL-1β and pro-IL-18 is initially regulated by NF-κB, whereas their
maturation is mediated by a multimeric protein complex known as an inflammasome. In-
flammasome complexes are formed after the activation of some sensor molecules containing
pyrin domains (PYDs) that interact with the adaptor protein apoptosis-associated speck-like
protein (ASC) through PYD–PYD association. Then, the CARD of ASC recruit procaspase-1
to the inflammasome complex. Once procaspase-1 is recruited into the inflammasome
complex, it results in self-cleavage of procaspase-1 to form active caspase-1. Caspase-1
is an aspartate-specific cysteine protease that cleaves its substrates pro-IL-1β/pro-IL-18
into their mature forms, IL-1β/IL-18, and induces their release via a nonclassical secretion
pathway [23].

3. Intracellular Sensors of Viral DNA

Intracellular sensors of viral DNA can generally be divided into three groups on the
basis of their subcellular localization and expression pattern: toll-like receptor 9 (TLR9),
cytosolic DNA sensors, and nuclear DNA sensors.

3.1. TLR9

TLR9 is a member of the toll-like receptor (TLR) family that is located on the endo-
somal membrane and functions mainly in immune cells, such as dendritic cells (DCs),
macrophages, and B cells. TLR9 preferentially senses single-stranded DNA (ssDNA) from
bacteria or viruses, particularly unmethylated CpG DNA motifs [24]. In addition to ssDNA,
TLR9 has been reported to bind to DNA containing cytosine at the second position from
the 5’ end (5’-xCx DNA) [25] and sense the herpesvirus genome. The interaction between
TLR9 and DNA triggers one of two different signaling pathways, depending on the cell. In
nonplasmacytoid dendritic cells (nonpDCs), such as conventional dendritic cells (cDCs)
and macrophages, this association leads to the activation of NF-κB and AP-1, which are
required for the transcription of proinflammatory cytokines, including IL-6, IL-12, and
TNF [26]. However, in pDCs, the activation of TLR9 predominantly induces the production
of type I IFNs [27] (Figure 1).
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dimerizes and binds to two dsDNA strands, which induces a conformational change allowing the
synthesis of cGAMP from GTP and ATP. cGAMP binds to STING and recruits TBK1 to activate
IRF3 for type I IFN production. In addition to cGAS, several DNA sensors, including the receptors
IFI16, DNA-PK, DDX41, DAI, and hnRNPA2B1, also induce type I IFN production through the
STING–TBK1–IRF3 axis. However, RNA Pol-III regulates type I IFN induction through the RIG-
1/MAVS signaling pathway. Once bound to AT-rich dsDNA, RNA Pol-III will convert this DNA to
5′-triphosphate dsRNA (5′-ppp-dsRNA), which is recognized by RIG-I and interacts with MAVS to
mediate type I IFN production. Aside from their role in activating IRF3, a few sensors are also involved
in activating IRF7. DHX36 binds to CpG-DNA via its DEAH domain and leads to the activation of
IRF7 and the release of IFN-α. In addition to IFN signaling, the cytosolic sensors cGAS and DHX9 and
the endosomal receptor TLR9 can activate NF-κB signaling. After viral invasion and DNA recognition,
TLR9 recruits MyD88, which induces the formation of the IRAK4/IRAK1/TRAF3/IKKα complex.
This complex then triggers the activation of the NF-κB pathway and IRF7, which in turn promotes
the release of proinflammatory cytokines and IFN-α. DHX9 binds to CpG-DNA and activates the
IRF7 pathway, promoting the release of IFN-α.

3.2. Cytosolic DNA Sensors

Cytosolic DNA sensors detect DNA in the cytoplasm of almost all cell types. Putative
cytosolic DNA sensors include DAI, RNA polymerase III, DHX9/DHX36, DDX41, IFI16,
AIM2, DNA-PK, and cGAS. Different sensors perform different functions. The details are
shown as follows:

3.2.1. DNA-Dependent Activator of IFN-Regulatory Factors (DAI)

Since DAI was proposed as the first TLR9-independent sensor for cytosolic DNA in
2007, DAI (also known as Z-DNA binding protein/ZBP-1 or DLM-1) has been extensively
studied to reveal its role in antiviral immunity [2]. DAI was shown to directly bind to DNA
through its Z-α and Z-β domains at the N-terminus, which preferentially sense Z-form
DNA, and the D3 domain following Z-β contributes to the binding of B-form DNA. Upon
recognizing DNA, DAI triggers the innate immune response through the TBK1-IRF3 and
NF-κB signaling pathways. However, DAI expression has limited effects on poly(dA:dT)-
induced IFN-β in mouse embryonic fibroblasts (MEFs), indicating that the function of DAI
in DNA-driven innate immune responses may be dependent on cell type [28]. Moreover, in
contrast to TBK1- and STING-deficient mice, mice lacking DAI displayed normal immune
responses to DNA virus infection and DNA vaccines [29] (Figure 1). Thus, DAI may
not function as an indispensable sensor for cytosolic DNA. To date, the role of DAI in
innate immunity has not been fully explained, and the details of its mechanism need to
be revealed.

3.2.2. RNA Polymerase III

RNA pol III, known as a eukaryotic RNA polymerase, is considered to be an intracel-
lular DNA sensor that functions as a stimulatory ligand for RIG-I by transcribing AT-rich
dsDNA into a RIG-I-stimulating AU-rich RNA intermediate and inducing a type I IFN
response [30,31]. Due to the requirement for AT-rich sequences, RNA pol III is the only
intracellular DNA sensor that recognizes DNA in a clearly sequence-dependent manner.
At least 30 bp poly(dA:dT) must be detected by RNA pol III to induce an IFN response in a
manner dependent on the RIG-I-MAVS pathway [31] (Figure 1).

3.2.3. Interferon-Inducible Protein 16 (IFI16)

IFI16, a member of the human interferon (IFN)-inducible p200-protein (PYHIN) family
of proteins, was initially reported as a human IFN-γ-inducible gene and a DNA damage
response protein in the nucleus [32,33]. Recently, it was identified as a DNA sensor using
vaccinia virus (VACV) DNA pulldown from cytoplasmic extracts of human monocytes and
shown to initiate the innate immune response [3]. Upon DNA stimulation, IFI16 directly
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binds to DNA and recruits STING to activate the TBK1–IRF3 axis, which in turn triggers
type I IFNs and cytokine production [3,34]. In addition to its role in regulating the type I
IFN signaling pathway, IFI16 also activates the inflammasome pathway in the nucleus. It
has been suggested that immune cells and nonimmune cells trigger different IFI16 DNA-
sensing patterns. These differences are likely attributed to intrinsic cell type-dependent
processes. Immune cells, such as macrophages and DCs, play a vital role in the onset
of defense against viral infection. During pathogen invasion, IFI16 may localize to the
cytoplasm to rapidly sense foreign nucleic acids (Figure 2). In contrast, nonimmune cells
have various functions and may maintain IFI16 in the nucleus to regulate and control viral
infection events.
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Figure 2. The activation of proinflammatory cytokines. Upon DNA virus infection, AIM2 and IFI16
recognize dsDNA via their HIN-200 domains. Once bound to DNA, they recruit the adaptor protein
ASC through their PYD domains, which recruits pro-caspase-1 via its CRAD domain, resulting in the
formation of the inflammasome complex. Inflammasome complex formation initiates the activation of
caspase-1. Then, caspase-1 cleaves pro-IL-1β and pro-IL-18 into their mature forms, IL-1β and IL-18,
respectively. In addition to AIM2- and IFI16-induced inflammasome activation, proinflammatory
cytokines can also be upregulated by nuclear RPSA. Upon DNA virus infection, nuclear RPSA is
phosphorylated. Phosphorylated RPSA interacts with the SMARCA5 complex and synergistically
promotes proinflammatory cytokine transcription via the activated transcription factor NF-κB.

3.2.4. Absent in Melanoma 2 (AIM2)

AIM2 is a cytosolic innate immune receptor that responds to dsDNA from both the
host and pathogens to trigger inflammasome activation [35]. AIM2 binds to DNA through
its HIN-200 domain. Beyond dsDNA, both ssRNA and RNA:DNA hybrids engage with the
HIN terminus. This facilitates the migration of AIM2 and ASC into the cytoplasm, setting
the stage for inflammasome assembly. The activation of caspase-1, in turn, triggers the
maturation of the proinflammatory cytokines IL-1β and IL-18 [36–38] (Figure 2). Although
AIM2 recognizes DNA-RNA hybrids, not all DNA-RNA hybrids bind to AIM2. Therefore,
it is important to understand which sequences, structures, or characteristics of DNA–RNA
hybrids activate the inflammasome.
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3.2.5. Cyclic GMP-AMP Synthase (cGAS)

Most cytosolic DNA sensors in mammals transmit signals through the adaptor pro-
tein STING to induce IFNs in response to dsDNA [39]. Using a cell-free assay, Chen and
colleagues identified a cyclic dinucleotide, cGAMP, as a second messenger that can bind to
and activate STING to induce type I IFNs [40]. Subsequently, they performed biochemical
purification coupled with quantitative mass spectrometry to identify the signaling molecule
mediating cGAMP, and finally, they identified cGAS as a cytosolic DNA sensor that synthe-
sizes cGAMP in a DNA-dependent manner [6]. Structurally, cGAS contains a single domain
of a nucleotidyl transferase and two dsDNA-binding domains. cGAS binds DNA through
electrostatic interactions and hydrogen bonds with the sugar-phosphate backbone of both
DNA strands across the minor groove, explaining the sequence independence of cGAS-
dependent DNA sensing and the requirement for dsDNA [41–43]. Once microbial dsDNA
binds to the active site of cGAS, a conformational change occurs in the C-terminus, which
then catalyzes the formation of a unique isomer of cGAMP from ATP and GTP [6,44]. This
isomer, cGAMP, binds to the active site of STNG and causes conformational changes. Then,
STING is activated by cGAMP and transported from the ER to the Golgi complex through
the ER–Golgi intermediate compartment where it assembles into punctate structures that
contain the kinase TBK1. During this trafficking process, TBK1 is activated. Activated
TBK1 induces the phosphorylation of IRF3 and activation of the IKK complex. In brief,
phosphorylated IRF3 dimerizes and translocates into the nucleus, where IRF3 binds to
IFN-encoding genes and induces the production of IFNs [19,45,46] (Figure 1). The activated
IKK complex phosphorylates IκB and induces the release and translocation of NF-κB into
the nucleus, after which NF-κB binds to IFN-associated genes and induces inflammatory
cytokines [39].

3.2.6. DExD/H-Box Helicases

The DExD/H-box helicase (DDX) protein family includes a large number of RNA
helicases. Members of this family have been shown to mediate gene regulation at multiple
points, including signal-transduction pathways, pre-mRNA splicing, and transcriptional
regulation. Recently, several DExD/H-box helicases, such as RIG-I and MDA5, and DNA
sensors, have been shown to be involved in antiviral immunity by functioning as RNA
sensors [47]. It was shown that knockdown of DDX41 expression impaired the production
of IFNs and proinflammatory cytokines in response to dsDNA in murine myeloid DCs
(mDCs) and human monocytic THP1 cells [4]. In addition to binding to DDX41, DHX9
and DHX36 bind to CpG DNA and interact with the TIR domain of MyD88, triggering
MyD88-dependent TNF-α and IFN-α responses [7]. Intriguingly, in addition to its role in
DNA sensing, DHX9 can also interact with dsRNA and induce MAVS-dependent IFN and
cytokine expression in myeloid DCs [48] (Figure 1). This raises the question of how the
same protein can detect different types of nucleic acid ligands and then induce signaling
through different pathways.

3.2.7. DNA-Dependent Protein Kinase (DNA-PK)

DNA-PK, which is known to be involved in the nuclear DNA damage response, is a
heterotrimeric complex composed of the catalytic subunit DNA-PKcs and a heterodimer
of Ku70 and Ku80. To facilitate DNA repair, the Ku heterodimer binds directly to the
free ends of DNA, leading to the recruitment of DNA-PKcs to damaged sites of DNA,
promoting DNA double-strand break (DSB) repair through the nonhomologous end join-
ing (NHEJ) pathway [49,50]. In addition to its established role in nonhomologous end
joining (NHEJ), DNA-PK is also implicated in cytosolic DNA sensing and the activation of
innate immunity. DNA-PK can trigger innate immunity through both STING-dependent
and STING-independent pathways, and which pathway is activated depends on the cell
type [51,52] (Figure 1).
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3.3. Nuclear DNA Sensors

Previously, IFI16 was characterized as the first DNA sensor to function within the
nucleus, detecting herpes viral DNA in human primary fibroblasts and triggering innate
immunity in a STING/IRF3-dependent manner [53]. However, the role of IFI16 in nuclear
DNA sensing is controversial. Subsequently, DNA-PK, a nuclear localized protein, emerged
as a DNA sensor that activated the innate immune response through the STING–TBK1–
IRF3 pathway. However, it senses DNA in the cytoplasm but not in the nucleus [5]. Recent
studies revealed the presence of cGAS in the nucleus, where it interacts with centromeres
and long interspersed nuclear element (LINE) DNA repeats, where it produces cGAMP to
induce innate immunity in human monocyte-derived DCs [54,55]. Nevertheless, compared
with exogenous cytosolic DNA, nuclear cGAS exhibits significantly reduced activity toward
self-DNA. In DCs and macrophages, nuclear cGAS promotes IFN gene expression by
associating with protein arginine methyltransferase 5 (PRMT5), facilitating the ability of
IRF3 to promote IFN production [56].

In 2019, Cao et al. explored novel viral DNA sensors in the nucleus that recognize
viral DNA and then translocate to the cytoplasm to activate the TBK1–IRF3 pathway [57].
Among these sensors, hnRNPA2B1 was identified as a potential nuclear DNA sensor,
challenging the notion of nuclear immune privilege concerning DNA [58] (Figure 1). Al-
though hnRNPA2B1 is thought to be a nuclear sensor for type I IFN induction, there are
no studies indicating whether and how viral nucleic acids are recognized in the nucleus
to selectively induce the transcription of proinflammatory cytokine genes to enhance the
antiviral innate response. In 2023, Cao et al. discovered ribosomal protein SA (RPSA) as a
nuclear innate sensor that selectively induces proinflammatory cytokine gene transcription
upon the detection of nucleic acids from HSV-1 and IAV. Phosphorylated RPSA coordinates
with the imitation switch (ISWI) chromatin remodeling complex to regulate chromatin
accessibility and cooperatively activates the expression of inflammatory factors via the
activated transcription factor NF-κB [59] (Figure 2).

DNA sensors involved in the activation of IFN signaling and the NF-κB pathway are
shown in Figure 1, while Figure 2 depicts DNA sensors that activate proinflammatory
cytokines.

4. Sensing of DNA during KSHV Infection

The innate immune system is the first line of defense against pathogen invasion, and
the induction of type I IFNs or inflammatory cytokines is critical for host innate defense
mechanisms. Upon infection with KSHV, diverse DNA sensors initiate DNA-sensing
pathways, which ultimately induce the production of IFNs and inflammatory cytokines
through DNA sensor–adaptor–transcription factor cascades. Here, we will review the
DNA-sensing mechanisms involved in KSHV infection.

4.1. IFI16 Senses KSHV Genomic DNA

IFI16 is responsible for the nuclear sensing of KSHV genomic DNA. IFI16 colocalizes
with the KSHV genome in the nucleus of infected HMVEC-d cells and B cells and induces
inflammasome activation [13,14]. During early KSHV infection (2 h), IFI16 forms a complex
with ASC and caspase-1 in the nucleus. However, when exposed to ultraviolet (UV)-
inactivated virus, IFI16 fails to form complexes with ASC. Interestingly, in later stages of
KSHV infection, most of the activated caspase-1 is translocated from the nucleus to the
cytoplasm, and ASC, caspase-1, and IFI16 are also redistributed in the perinuclear area [13].
However, the reason for this subcellular redistribution in response to the KSHV genome
is unclear.

Excessive activation of inflammasomes in the nucleus induces widespread negative
impacts on cells and tissues, including exacerbating inflammatory responses and causing
cell death and dysfunction. Therefore, subcellular reorganization of IFI16, ASC, and
Caspase-1 may help to prevent excessive inflammasome activation and maintain cellular
homeostasis and health.
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It has been suggested that large amounts of viral DNA in the nucleus can also be
sensed as aberrant extrachromosomal DNA, which activates the DNA damage response
(DDR) signaling pathway. Recently, an increasing number of studies have shown that IFI16
can form complexes with BRCA1 and BRCA1-H2B. These complexes recognize the KSHV
genome in the nucleus, leading to BRCA1-mediated recruitment of p300 and acetylation
of IFI16 and H2B by p300. IFI16 acetylation results in the formation of the BRCA1–IFI16–
ASC–procaspase-1 inflammasome in the nucleus, which subsequently translocates to the
cytoplasm. After cytoplasmic translocation, acetylated IFI16–H2B–BRCA1 binds to cGAS
and STING, resulting in TBK1 and IRF3 phosphorylation, p-IRF3 nuclear translocation and
IFN-β production [60,61]. In addition to leading to the induction of the innate interferon and
inflammasome pathways, IFI16 directly binds to KSHV gene promoters and silences KSHV
gene expression through epigenetic modification. IFI16 can interact with H3K9MTases,
SUV39H1, and GLP in the nucleus and recruit these MTases to the KSHV genome, resulting
in H3K9 methylation and KSHV lytic gene silencing [62].

4.2. DExD/H-Box Helicases Sense KSHV Genomic DNA

Retinoic acid-inducible gene I (RIG-I), a member of the DExD/H box helicase family,
is regarded as a cytosolic RNA helicase sensor that plays a significant role in the induction
of type I IFN responses following viral infection. Previous studies have shown that RIG-I
can also sense DNA viruses in an RNA Pol III-dependent manner, transcribing cytosolic
AT-rich DNA from DNA viruses into RNA, which is then recognized by RIG-I and activates
innate immunity [30,31]. Interestingly, a recent study revealed that KSHV can activate a
canonical RNA-sensing pathway. Many RNA regions in KSHV (ORF8 10420-10496, repeat
region (LIR1) 119059-119204, and ORF25 43561-43650) bind to RIG-I and stimulate RIG-I-
dependent, but RNA Pol III-independent, IFN-β signaling [63]. These RNA regions bound
to RIG-I have no obvious sequence similarity but are highly structured. However, the
details of their structure remain to be investigated.

To determine whether other DExD/H box helicases can affect KSHV lytic reactivation,
a knockdown screen revealed that DDX24 and DDX49 have antiviral activity [64]. DDX24
predominantly localizes to the nucleus and targets KSHV miRNAs [65]. In contrast, nuclear
localization of DDX49 plays a crucial role in regulating RNA transcription, RNA stability,
and efficient export of nonspliced poly(A)+ RNAs from the nucleus [66]. Notably, since most
KSHV lytic transcripts are not spliced and require nuclear export facilitated by ORF57 [67],
the presence of DDX49 suggests that a critical recognition process occurs within the nucleus.
Furthermore, KSHV encodes ORF10, which inhibits host cellular spliced mRNA export
from the nucleus, underscoring the intricate interplay within viral–host dynamics [68].

4.3. cGAS Senses KSHV Genomic DNA

KSHV infection was shown to activate the cGAS–STING pathway [69]. Considering
that cGAS and STING mainly recognize cytoplasmic DNA, how can viral DNA distributed
in the nucleus be recognized within the cytoplasm? Several different hypotheses have been
proposed to reveal how the cGAS–STING pathway recognizes DNA distributed in the
nucleus. First, during KSHV lytic replication, newly synthesized viral DNA is incorporated
into the capsid in the nucleus and subsequently transferred to the cytoplasm. During this
process, incomplete capsids may release viral DNA, promoting recognition by cGAS and
initiating the cGAS–STING–IRF3 signaling cascade [70]. Second, during apoptosis or other
types of cell death, viral or cellular DNA released to the cell membrane can activate cGAS,
thus stimulating innate immune responses [15]. Third, cytoplasmic accumulation of DNA
fragments from virus-induced DNA damage can activate DNA sensing mechanisms [71].
Finally, virus-induced mitochondrial DNA (mtDNA) instability also induces a cGAS–
STING–IRF3-mediated antiviral innate immune response [72]. In summary, the cGAS–
STING signaling pathway serves as a pivotal defense mechanism against viral infections,
as well as a surveillance system for genomic instability and cellular damage. Through
the detection of cytosolic DNA, the cGAS-STING pathway helps orchestrate immune
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responses essential for host defense, immune regulation, and maintaining cellular integrity.
Dysregulation of this pathway can contribute to autoimmune diseases, inflammatory
disorders, and cancer, emphasizing its significance in cellular homeostasis and immunity.

5. KSHV Antagonizes DNA-Sensing Pathways

KSHV, as well as other herpesviruses, can cause lifelong infections in its host. The
ability of KSHV to persist in the host relies heavily on its capacity to evade and coun-
teract host antiviral defenses by targeting crucial cellular pathways. One such pathway
is the DNA-sensing mechanism, which is vital for detecting viral DNA and initiating
antiviral responses. However, KSHV has evolved sophisticated strategies to counteract
this surveillance system, enabling its survival and replication within host cells (Figure 3).
Understanding the mechanisms by which KSHV antagonizes DNA-sensing pathways is
critical for developing effective therapeutic strategies.
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5.1. KSHV Antagonizes the Type I IFN Signaling Pathway
5.1.1. KSHV Antagonizes cGAS and STING

KSHV encodes various viral proteins that antagonize the cGAS–STING signaling
pathway, including the tegument proteins ORF52 and ORF33 and the N-terminally trun-
cated LANA isoform. KSHV ORF52 is an abundant gamma-herpesvirus-specific tegument
protein that can interact with cGAS and inhibit the transcriptional activation of IFN-β
mRNA [73]. Mechanistically, the KSHV inhibitor of cGAS (KicGAS), encoded by ORF52,
undergoes self-oligomerization and binds to dsDNA, thereby inhibiting the association
between DNA and cGAS. Upon binding to DNA, KicGAS forms liquid droplets and in-
hibits the DNA-induced phase separation and activation of cGAS. This finding revealed a
novel mechanism by which KSHV targets host protein phase separation to suppress DNA
sensing [74].
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During KSHV de novo infection, the tegument protein ORF33 emerges from the KSHV
virion into the cytoplasm. ORF33 directly interacts with STING and recruits PPM1G, result-
ing in enhanced dephosphorylation of p-STING, impaired recruitment of IRF3, and inhibi-
tion of type I IFN production. When KSHV is reactivated from latency, newly synthesized
ORF33 may also promote viral lytic replication by recruiting PPM1G to dephosphorylate
p-STING, thereby suppressing host antiviral activities [75].

Latency-associated nuclear antigen (LANA) is encoded by KSHV ORF73, a latent
viral protein that is essential for the maintenance of KSHV latency [76]. Depletion of
LANA by an inducible protein knockdown approach induced rapid degradation of viral
genomic DNA. Knockdown of cGAS, STING, and other autophagy-related genes rescued
the degradation of viral genomic DNA after LANA depletion. These findings revealed
that LANA plays a vital role in preventing KSHV episomes from being sensed by the
cGAS–STING pathway [77]. Full-length LANA is localized and functions in the nucleus of
latently infected cells; however, the N-terminally truncated LANA isoform is localized in
the cytoplasm and can interact with cGAS directly. Upon binding to cGAS, the truncated
LANA isoform inhibited cGAS–STING-dependent phosphorylation of TBK1 and IRF3,
thereby promoting the reactivation of KSHV from latency [78]. The inhibitory role of LANA
cytoplasmic isoforms in DNA sensing extends the function of LANA in lytic replication
and could provide an explanation for the existence of a lytic LANA promoter.

5.1.2. KSHV Antagonizes IRFs and IFNs

The transcription of type I IFNs is mainly controlled by two IRFs (IRF3 and IRF7).
Constitutively expressed IRF-3 is activated upon initial viral infection and induces IFN-β
expression. This initial induction of IFN-β stimulates the type I IFN receptor, leading to
the activation of IRF-7, which effectively induces the IFN-α and IFN-β genes, initiating a
positive feedback loop [79,80].

Viral interferon regulatory factors are a group of proteins that are homologous to
the cellular transcription factors of the interferon regulatory factor (IRF) family. KSHV
encodes four vIRFs, vIRF1, vIRF2, vIRF3, and vIRF4. All of these vIRFs play a vital role
in interfering with the interferon signaling pathway. vIRF1, encoded by KSHV ORFK9,
exerts a broad inhibitory effect on IFN-β production in endothelial cells. This viral protein
employs diverse strategies to inhibit IFN-β activation. First, vIRF1 interferes with IRF3
and the coactivator CBP/p300, effectively inhibiting the formation of transcriptionally
active IRF-3–CBP/p300 complexes and thereby reducing IFN-β expression [81]. Second,
vIRF1 directly binds to STING, preventing its interaction with TBK1 and thereby reducing
STING phosphorylation and consequent IFN-β production [69]. vIRF2, which originates
from KSHV ORFK11 and ORFK11.1, suppresses the transcriptional activation of IFN-β by
interacting with IRF1 and IRF3. It also decreases IFN-α production through its interaction
with IRF2. Mechanistically, vIRF2 disrupts the type I IFN-driven antiviral response by
recruiting caspase-3 to IRF3, leading to IRF3 degradation. Furthermore, vIRF2 interfaces
with p65 to inhibit the early expression of proinflammatory cytokines [82,83]. In contrast
to vIRF1 and vIRF2, vIRF3 (encoded by ORFK10) regulates the production of both IRF3-
and IRF7-mediated type I IFNs [84]. However, vIRF4 (encoded by ORFK10) selectively
interacts with IRF7, suppressing the IFN-α-associated signaling pathway by impeding IRF7
dimerization [85]. In summary, all four vIRFs interfere with the production of IFNs.

In addition to vIRFs, the immediate early (IE) genes encoded by KSHV, including bZIP,
ORF45, and RTA, are required to regulate viral lytic reactivation and antagonize innate
immunity. bZIP is encoded by KSHV K8, which binds tightly to the IRF3 binding site
of the IFN-β promoter and thus prevents IRF3 binding [86,87]. KSHV ORF45 is a viral
tegument protein that interacts with IRF7 to inhibit both its phosphorylation and its nuclear
accumulation. This interaction effectively suppresses the induction of type I IFNs [88]. IRF7
is phosphorylated and activated by IKKε and TBK1 upon viral infection. However, during
KSHV infection, ORF45 is efficiently phosphorylated at Ser41 and Ser162 by IKKε and
TBK1, thereby competing with the associated IRF7 and inhibiting its phosphorylation by
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IKKε or TBK1 [89]. In addition to ORF45, another IE gene, RTA, also blocks IRF7-mediated
IFN-α and IFN-β mRNA production. RTA promotes IRF7 ubiquitination and degradation
in a proteasome-dependent manner [90].

MyD88 is an adaptor for all TLRs and mediates the production of inflammatory factors
and IFNs. RTA can act as an E3 ligase to degrade MyD88 via the ubiquitin-proteasome path-
way and block the TLR signaling pathway. These findings provide a potential mechanism
by which KSHV evades innate immunity [91].

Herpesvirus-encoded ORF36 is a conserved serine/threonine viral protein kinase
(vPK) that plays an important role in regulating the viral life cycle and evading host
immunity [92]. To counteract the antiviral immune response, ORF36 specifically binds to
the activated form of IRF3 in the nucleus, inhibiting the interaction between IRF3 and the
cotranscriptional activator CBP, which, in turn, inhibits the recruitment of RNA polymerase
II to the IFN-β promoter and ultimately reduces IFN-β production [93].

RIF, the product of ORF10, blocks IFN signaling by forming inhibitory complexes that
contain IFNAR subunits, the Janus kinases Jak1 and Tyk2, and the STAT2 transcription
factor. This in turn inhibits Tyk2 and Jak1 activation and affects the phosphorylation
of STAT2 and STAT1, which, in turn, leads to the failure of ISGF3 to accumulate in the
nucleus [94]. The presence of viral genes that block IFN induction highlights the importance
of the IFN pathway in the control of KSHV infection.

5.2. KSHV Antagonizes the NF-κB Signaling Pathway

NF-κB plays a pivotal role in the innate immune response, acting as a key regulator of
various genes involved in innate immunity. During viral infection, NF-κB is activated to
induce proinflammatory cytokines and chemokines. However, a number of KSHV products,
such as LANA, vFLIP, and vIRF3, modulate NF-κB to evade host immune surveillance,
promote cell survival, and enhance viral replication. Cytosolic LANA may antagonize
cGAS, thereby blocking the interferon response triggered by cGAS. Recent studies have
shown that cytoplasmic LANA isoforms also regulate the activation of the NF-κB pathway.
The cytoplasmic LANA isoform recruits the MRN (Mre11-Rad50-NBS1) repair complex
members Rad50 and Mre11 to the cytoplasm and inhibits Rad50–Mre11–CARD9-dependent
activation of NF-κB [95]. Modulation of cGAS-dependent type I IFN responses and NF-κB
activation demonstrated the importance of LANA in promoting KSHV lytic replication.

vFLIP (viral FLICE inhibitory protein) is encoded by KSHV ORF71 and is a homol-
ogous protein of cellular FLIP. vFLIP functions as a potent activator of NF-κB signaling,
which is required for viral latency, survival, and tumorigenesis in PEL cells [96]. To activate
the canonical NF-κB pathway, vFLIP directly binds to IKKγ and activates the IKK com-
plex [97]. Virus-induced NF-κB activation is important for maintaining KSHV latency and
inhibiting KSHV reactivation. It has been shown that KSHV RTA is necessary for initiating
KSHV reactivation. This RTA-induced reactivation may be achieved by suppressing NF-κB
activation. This effect is facilitated by the recruitment of the cellular ubiquitin E3 ligases
RAUL and Itch by RTA, which leads to the degradation of vFLIP, thereby impeding the
expression of NF-kB-responsive genes during lytic reactivation [98]. Controversially, a
growing number of studies have shown that vFLIP may have a reverse impact on NF-κB,
helping viruses evade innate immunity. vFLIP is able to promote A20 expression in en-
dothelial cells and PEL cells, whereas A20 blocks NF-κB activation through the cooperative
activity of its two ubiquitin-editing domains [99]. A20 negatively regulates the NF-κB
pathway through disassembling K63-linked ubiquitin chains that bind to the essential
adaptor RIP and mediate the degradation of RIP through the addition of the K48-linked
ubiquitin chain to RIP [100]. Notably, this double-edged sword may favor viral survival
and propagation in humans, where transient or low activation of NF-κB may lead to lytic
replication of KSHV, whereas constitutive or persistent activation of NF-κB may lead to
KSHV latency, tumor formation, and maintenance.

vIRF3, a homolog of cellular IRF, not only mediates the production of IFNs but also
inhibits NF-κB activity and NF-κB-dependent transcription in a dose-dependent manner.
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In vivo studies revealed the ability of vIRF3 to inhibit IKKβ activity, which, in turn, reduced
IKKβ phosphorylation. Furthermore, vIRF3 subtly disrupts the nuclear translocation of
NF-κB, thereby affecting its antiviral function [101].

5.3. KSHV Antagonizes the Inflammasome Signaling Pathway

The inflammasome is a protein complex consisting of a sensor, an adapter (ASC), and
an effector (caspase-1) that promotes the maturation and release of proinflammatory cy-
tokines in response to infections. Studies have shown that three groups of inflammasomes
are involved in antiviral immunity: the NLRP (nucleotide-binding domain leucine-rich
repeat-containing family) inflammasome, the RIG-I inflammasome, and the AIM2 inflam-
masome. Among these, AIM2 primarily senses DNA viruses, RIG-I mainly senses RNA
viruses, and NLRPs sense both viral DNA and RNA.

Modulation of NLR-mediated innate immunity is important for the lifelong persistence
of herpesviruses. Recently, a study revealed that ORF63, a novel KSHV tegument protein,
directly interacts with the NLR family members NLRP1, NLRP3, and NOD2 but shows
sequence similarity only to NLRP1 and disrupts the association between NLRP1 and
procapase-1, thereby inhibiting procaspase-1 processing and the secretion of IL-1β and
IL-18 [102,103].

The SOX protein, encoded by KSHV ORF37, interacts with the AIM2 HIN domain
through the C-terminal motif VII region and disrupts AIM2:dsDNA polymerization and
ASC recruitment and oligomerization. The finding that SOX suppresses AIM2 inflamma-
some activation and pyroptosis, thereby promoting KSHV lytic replication, and reveals
a unique mechanism for the evasion of inflammasome activation during the KSHV lytic
cycle [104].

6. Conclusions and Perspectives

Over the past decade, we have witnessed tremendous advances in understanding
the recognition of pathogen-derived nucleic acids and their role in initiating host defense
responses. Diverse approaches in biochemistry and genetic and structural biology have
been used to identify potential DNA sensors and reveal their unique signaling mecha-
nisms. Each DNA sensor plays a specific role in mediating innate immunity in response
to pathogen DNA invasion. However, the role and the mechanism of the DNA-sensing
pathway in KSHV infection have not been fully revealed.

Nuclear IFI16 and several DExD/H-box helicases can sense KSHV genomic DNA in
the nucleus. The mechanism by which IFI16 senses KSHV genomic DNA suggests that
nuclear sensors may sense viral DNA in two ways. First, activated nuclear sensors shuttle
to the cytoplasm to initiate the cGAS–STING signaling pathway or the inflammasome
pathway. Second, these activated nuclear sensors may directly interact with chromatin
epigenetic regulatory factors, mediate their epigenetic modifications, and then transport
them to the cytoplasm, thereby participating in virus sensing. Although new nuclear DNA
sensors have been identified, it remains unclear whether they play a role in KSHV infection.

In addition to being sensed in the nucleus and translocated to the cytoplasm, viral
DNA can activate the cGAS–STING pathway directly in the cytoplasm if it is released from
incomplete capsids or as a result of other virus-induced damage. However, the underlying
mechanisms need to be investigated. DNA sensors normally recognize DNA, but there
are also RNA sensors that recognize viral DNA. After entry into the host cell, viral DNA
needs to be transcribed into RNA. These RNAs, including viral genome mRNAs, IncRNAs,
microRNAs, and other viral RNAs, can be recognized by RNA sensors in the host cell.
During KSHV reactivation, several members of the DExD/H-Box helicase family can sense
highly structured viral RNA fragments, microRNAs, or nonspliced RNAs, but the exact
mechanism involved remains to be investigated.

Although diverse DNA sensors or RNA sensors have been reported to recognize KSHV
nucleic acids, further research is needed to elucidate how KSHV or other DNA viruses
are controlled by innate immune sensors and cells. For example, how do different nucleic
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acid-sensing pathways function in the same cell, and how do such pathways crosstalk?
How does DNA sensing distinguish between self and non-self DNA in the nucleus? What
is the relationship between the nuclear sensing of DNA and the sensing of DNA damage?
How are RNA sensors activated during dsDNA virus infection, and how do the DNA-
sensing and RNA-sensing pathways crosstalk? Although KSHV is generally considered to
be lymphotropic, numerous cell types are permissive to infection with KSHV; therefore,
cell type-specific DNA sensing during infection needs to be fully characterized. Answering
these interesting questions would increase our understanding of KSHV–host interactions.

To establish persistent infections and promote viral replication, KSHV has developed
several mechanisms to evade the host immune response by interfering with key molecules
within the DNA-sensing pathway. The cGAS–STING–TBK1–IRF-interference signaling
pathway is the main DNA sensing pathway activated by DNA sensors upon viral infection.
KSHV can antagonize these signaling cascades at multiple levels and through various
mechanisms. This includes disrupting crucial posttranslational modifications necessary
for signaling, such as modifying the phosphorylation or ubiquitination status of signaling
molecules. Additionally, viral proteins can also prevent the adequate formation of signaling
complexes by steric hindrance. Furthermore, viruses can also promote the degradation of
signaling proteins involved in IFN induction. In addition to eliciting the classical type-I
IFN signaling pathway, KSHV infection can elicit NF-κB and inflammasome activation,
which contribute to restricting viral infection.

Although KSHV utilizes a variety of strategies to antagonize the DNA sensing pathway,
there are still unresolved issues that need to be addressed. These include exploring whether
KSHV counteracts additional DNA sensors not previously identified in KSHV infections,
comprehending the precise mechanisms through which KSHV avoids DNA detection,
clarifying whether the strategies employed by KSHV to evade DNA detection remain
consistent across various vulnerable cell types, and investigating the potential interaction
of these strategies with KSHV-related pathogenesis.

In conclusion, investigating the interplay between DNA-sensing pathways and viral-
evasion strategies is crucial for advancing our knowledge of viral infections, immune
responses, and host–virus interactions.
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