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Abstract: Our current understanding of HSV latency is based on a variety of clinical observations,
and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The
criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics
and biological pathways, as well as mimicking the immune response and viral pathogenesis in
human infections. Although realistically modeling HSV latency is necessary when choosing a model,
the cost, time requirement, ethical constraints, and reagent availability are also equally important.
Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV
infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have
limitations, they provide further insights that add to our understanding of latency. In vivo models
have shed light on natural infection routes and the interplay between the host immune response
and the virus during latency, while in vitro models have been invaluable in elucidating molecular
pathways involved in latency. Below, we review the relative advantages and disadvantages of current
HSV models and highlight insights gained through each.
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1. Introduction
1.1. Prevalence and Pathogenesis

Herpes simplex virus (HSV) includes two neurotropic subtypes (HSV-1 and HSV-2)
that enter the body through mucosal surfaces and establish lifelong infections in neurons of
the peripheral and central nervous systems (PNS and CNS). A majority of HSV infections
are acquired during adolescence as interpersonal intimacy begins, and viral prevalence
increases with age. By age 50, HSV-1 affects nearly 70% of the global population, while
HSV-2 affects approximately 13% of the population [1–3]. HSV-1 is slightly more prevalent
in females, while HSV-2 seroprevalence is doubled in women compared to men. This
is thought to be a result of the increased efficiency of sexual transmission from men to
women [1,2]. Although HSV-1 is typically associated with oral infections and HSV-2 is
associated with genital infections, both subtypes have the ability to cause oral or genital
lesions [4,5]. In fact, current trends in developed countries indicate that genital infections
are now more commonly caused by HSV-1 than HSV-2 [6].

While HSV is most commonly associated with herpetic skin lesions, it also causes
more serious disease, including corneal keratitis and neovascularization, encephalitis, and
meningitis [7–11]. Ocular presentation, a complex pathogenic interplay between lytic
infection and adaptive immune activation, makes HSV the leading cause of infectious
blindness in the United States [12]. In addition, although rare (with an incidence of 1 in
10,000 live births), neonatal HSV-1 infections are devastating, particularly in babies born to
mothers who did not develop protective humoral immunity prior to parturition [1,13,14]. A
recent cohort of publications have drawn attention to a correlation between HSV infection
and neurodegeneration in diseases such as Alzheimer’s disease, multiple sclerosis, and
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Parkinson’s disease. HSV-1 genomes are found with increased frequency in the brains
of multiple sclerosis patients and are co-localized with amyloid-beta (Aβ) deposits in
Alzheimer’s disease patients [15,16]. Moreover, HSV-1 infection results in the accumulation
and abnormal distribution of Aβ in neurons, promoting disease progression [17,18]. As
HSV intercepts cellular pathways that are critical to neuronal health (apoptosis, autophagy,
mitochondrial function, DNA damage, and oxidative stress response), these modifications
are likely to aid in HSV persistence leading to neuronal damage [19].

1.2. HSV Classification and Structure

HSV-1 and HSV-2 are human viruses of the family Herpesviridae, subfamily Alpha-
herpesvirinae, which also includes the varicella zoster virus (VZV), the causative agent of
chicken pox and shingles, and the swine pathogen pseudorabies virus (PRV) [20,21]. The
HSV genome consists of a linear double-stranded DNA molecule of ~150 kb contained
within a capsid [22]. While most of the ~80 HSV genes are haploid, others are encoded
within inverted repeats and are thus diploid [22,23]. Surrounding the capsid, tegument
proteins are packaged for co-delivery with the genome. The genome, capsid, and tegument
are enclosed within the viral envelope, which is studded with numerous glycoproteins
specialized for host cell binding, membrane fusion, and immune evasion [24].

1.3. HSV-1 Lifecycle: Lytic Infection

The primary infection of HSV-1 typically occurs at mucosae such as the eyes, mouth,
and genitals. Once the mucosal surface is breached, viral replication and epithelial cell
lysis ensure its spread to the surrounding epithelium and underlying peripheral neurons.
Virions that bind to the neuronal cell surface glycoprotein nectin-1 enter the axons through
direct membrane fusion or receptor-mediated endocytosis [25]. Genome-filled capsids
are then transported retrogradely by kinesin motors to the neuronal soma, where the
linear viral genome is injected forcibly into the nucleus [26,27]. Once there, it circularizes
and becomes associated with modified histones [28,29]. At this point, the genome may be
silenced, establishing latency, or may be transcribed and replicated for lytic viral production.
During lytic infection, viral gene expression is initiated by a complex consisting of the
tegument protein VP16 and the host transcriptional co-factors HCF-1 and Oct-1, amongst
others [30]. Viral gene transcription and DNA replication occur through the sequential
activation of gene classes, starting with the immediate-early (IE) genes (ICP0, ICP4, ICP22,
ICP27, and ICP47), which, in turn, activate the early (E) genes and, finally, the late (L)
genes. In addition to transcriptional activation, the IE gene products also inhibit cellular
anti-viral defenses [31–42]. The E gene products are primarily involved in viral genome
replication, while L gene products are important for the virion structure, egress, and
immune evasion [43]. While the lytic cycle occurs in both epithelial cells and neurons,
latency is unique to neuronal infection [44]. Viral reactivation from latency is initiated by
pleiotropic stresses that tip the balance of viral-versus-host control. Once the lytic cycle
is re-entered, newly assembled virions travel anterogradely within the axon to reach the
initial or new site of epithelial mucosa within the dermatome, where another round of
replication and spread occurs.

1.4. HSV-1 Lifecycle: Latent Infection

The sporadic reactivation of HSV from latency is a key factor in the lifelong duration of
HSV infections. There are neither effective vaccines against HSV nor anti-viral agents that
can completely prevent the establishment, maintenance, or reactivation of latency. Owing
to the non-renewing and essential nature of neurons, immune targeting of the infected
neuron appears to be specialized and cell-sparing [45]. The regulation of latency has been
linked to the neuronal phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway [46],
illustrated in Figure 1. This pathway is vital for neuronal functions, including synaptic
plasticity, axonal growth and regeneration, and long-term potentiation [47–49]. Nerve
growth factor (NGF) binding to the TrkA receptor tyrosine kinase initiates the activation
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of PI3-K and Akt, which then activate mTOR, consisting of the mTORC1 and mTORC2
complexes. The mTORC1 complex is considered a regulator of neuronal homeostasis due to
its ability to both detect the availability of growth factors and nutrients, and direct responses
that regulate translation, autophagy, cell growth, and metabolism [50,51]. Each of these
processes requires protein synthesis, which is regulated through the mTORC1 substrate,
eIF4E-binding protein (4E-BP) [51,52]. 4E-BP is a translational repressor that inhibits
40S ribosome recruitment to mRNA by associating with the cap-binding initiation factor
eIF4E [53]. Its inactivation through phosphorylation by mTORC1 allows for the continuous
translation and synthesis of proteins necessary to suppress HSV reactivation and maintain
latency [50,52,53]. This regulation of protein synthesis by mTORC1 and 4E-BP may impact
epigenetic chromatin modifications, expression of viral-encoded microRNAs, localization
of HCF-1, and repression of stress-response pathways as mechanisms to promote HSV
latency [54–56].
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Figure 1. HSV lytic gene regulation by mTORC1. Unphosphorylated eIF4E-binding protein (4E-BP)
associates with eIF4E and inhibits recruitment of the 40S ribosome to mRNA, which suppresses
translation. Upon binding of nerve growth factor (NGF) to the TrkA receptor tyrosine kinase,
phosphatidylinositol 3-kinase (PI3-K) and then Akt are activated. Akt activates the mTORC1 complex,
which inactivates 4E-BP through phosphorylation, allowing for translation and protein synthesis
to occur. Newly synthesized proteins possibly aid in maintaining HSV latency through epigenetic
chromatin modification. Created with BioRender.com.

While viral lytic gene expression is silenced, the non-protein coding RNAs termed
latency-associated transcripts (LATs) accumulate during latency. The primary 8.3 kb LAT
is spliced into a stable 2 kb intron and further spliced into a 1.3–1.5 kb intron [57]. This
region of LAT is complimentary to the lytic IE gene encoding infected cell protein 0 (ICP0),
a gene non-essential for viral replication, but pivotal for reactivation [57–60]. LAT may
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regulate latency via antisense RNA binding and the destruction of ICP0 transcripts [57].
Additionally, cellular and viral microRNAs suppress the expression of IE genes involved in
the onset of lytic replication [61]. Viral microRNAs are transcribed by the LAT promoter
and may target either viral lytic genes or host genes involved in transcriptional regulation
and chromatin silencing, as depicted in Figure 2A [61,62]. The viral microRNA miR-H2-3p
suppresses ICP0 expression though antisense pairing to the coding region of ICP0 (akin to
LAT) [63]. Host microRNAs also regulate lytic replication and latency in a similar manner,
restricting viral IE gene expression (Figure 2A) [64]. The neuron-specific microRNA miR-
138-5p represses the expression of ICP0 of both HSV-1 and HSV-2 [65,66]. miR-138-5p
also restricts the expression of host transcription factors Oct-1 and FOXC1, both of which
promote viral replication [67]. Oct-1 is part of a complex essential for initial IE gene
expression, and FOXC1 modulates the heterochromatin structure of viral genes to promote
lytic gene expression [67].
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Figure 2. Mechanisms involved in regulating HSV latency. (A) Host microRNAs can restrict lytic
gene expression by repressing ICP0, which then is unable to suppress latency-associated transcripts
(LATs). Viral microRNAs transcribed from LAT can then restrict lytic gene expression directly or
through chromatin silencing. (B) Chromatin modification can regulate lytic gene expression in three
ways: (1) suppressing RNA polymerase II-mediated transcription through the Polycomb group (PcG)
repression complexes PRC2 and PRC1, (2) lytic gene-dependent deacetylation and demethylation of
the HDAC/LSD1/REST/CoREST (HLRC) complex, and (3) promoting lytic gene expression through
the removal of histone methylation by ICP0 or the VP16/Oct-1/HCF-1 complex. (C) Distinguishing
characteristics of neurons can influence lytic gene expression through the limited formation of the
VP16/HCF-1/Oct-1 complex in the nucleus of neurons in three main ways: (1) the host transcription
factor HCF-1 is localized exclusively in the cytoplasm in sensory neurons, (2) decreased expression of
the host transcription factor Oct-1 in neurons, and (3) decreased VP16 reaching the neuronal nucleus
due to the dissociation of VP16 from the viral capsid during long-distance transport through the
axons. Created with BioRender.com.
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Viral gene expression is regulated, in part, through histone modification of lytic gene
promoter chromatin. Viral lytic genes are silenced when their promotors are enriched in
repressive chromatin histones such as H3 di- and tri-methylated lysine 9 (H3K9me2/3),
lysine-27 (H3K27me3), and reduced acetylated histones [68]. While H3K9me3 is associated
with stable heterochromatin through its interaction with heterochromatin protein 1 (HP1)
bound to nucleosomes, H3K27me3 is a marker of epigenetic silencing by the Polycomb
group (PcG) repression complexes PRC1 and PRC2 [69,70]. The PcG-mediated chromatin
repression occurs through PRC2, which contains the H3K27me3 methyltransferases sub-
unit, recruiting PRC1 to suppress RNA polymerase II-mediated transcript elongation
(Figure 2B) [71]. Another complex consisting of HDAC/LSD1/REST/CoREST (HLRC),
which silences neuronal genes in non-neuronal cells, can also repress viral E and L lytic
genes through deacetylase and demethylase activities [72–75]. ICP0 is able to counter
HLCR gene repression through displacing HDAC1; thus, silencing of viral genes through
the HLRC complex can be regulated by ICP0 expression (Figure 2B) [71,73,76]. While the
REST/CoREST repressor complex is thought to limit viral replication and affect latency
establishment, it does not play a role in reactivation [73]. The repression of viral lytic genes
can be reversed by replacing the histone modifications H3K9me3 and H3K27me3 with
trimethyl histone H3 lysine-4 (H3K4me3) chromatin activating marks [68]. This reversal
of chromatin markers can be initiated by either ICP0 or the VP16/Oct-1/HCF-1 complex
(Figure 2B) [77,78].

Some authors have proposed that it is the unique anatomy and physiology of neurons
that drives cell-selective latency [64,65]. VP16 dissociates from the viral capsid during
entry and transport along the neuronal axon, thus limiting the amount of VP16 that reaches
the neuronal cell body (Figure 2C) [79]. Not only does less VP16 reach the nucleus of
neurons (relative to non-neuronal cells), but in sensory neurons, HCF-1 localizes exclu-
sively to the cytoplasm and Oct-1 expression is low (Figure 2C) [80,81]. This results in
less VP16/HCF-1/Oct-1 complex within the neuronal nucleus and decreased lytic gene
expression, promoting latency. Furthermore, neuronal specific factors differentially regulate
the IE promoters of ICP0 and ICP27 [82,83]. While neurons have limited intrinsic immunity
to HSV-1, they do respond to extrinsic cues, thus affecting latency [39]. Interferons promote
latency establishment in dissociated ganglia cultures and impact reactivation, while neu-
ronal tissue-resident CD8+ T-cells may suppress reactivation from latency through directed
targeting of infected neurons with granzyme B and IFN-γ [84–86]. Our understanding
of the mechanisms that regulate latency establishment, maintenance, and reactivation
was obtained through a variety of in vivo, ex vivo, and in vitro models [56,87,88]. The
limitations and advantages of the most common models used to study HSV latency are
discussed below.

2. In Vivo Models of Latency

A variety of animal models have been developed to mimic different anatomical mani-
festations and stages of HSV infections, as well as for the study of different stages of the
HSV lifecycle (reviewed in [89]). In this section, summarized in Table 1, we discuss and
compare many of these models.

Table 1. In vivo latency model comparison.

Model
Hamster
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reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 
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than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
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antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
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on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
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antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
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on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
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possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
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than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 
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2.1. Mice 
The mouse is a commonly used animal model of HSV infection. This is largely due 

to well-defined inbred and transgenic strains; cost efficiency due to small size, minimizing 
reagent expenditure and per diems; and the wide availability of immunological probes 
and reagents [92,93]. Although these are key advantages, HSV infection in mice has some 
drawbacks, at least in part due to several important differences in immune responses 
between mice and humans. First, viral peptides are displayed at the infected cell surface 
by major histocompatibility complex class I (MHC-I) molecules. In humans, the HSV-1 
ICP47 protein inhibits the transporter associated with antigen processing (TAP), 
preventing peptide loading and presentation by MHC-I and, thus, T-cell detection of 
infected cells [94]. ICP47, however, functions 100-fold less efficiently in mice, resulting in 
increased antigen presentation and robust immune detection [95]. Second, the affinity of 
host immunoglobulin G (IgG) for gE, the HSV IgG Fc receptor protein, is higher in humans 
than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 
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The mouse is a commonly used animal model of HSV infection. This is largely due 

to well-defined inbred and transgenic strains; cost efficiency due to small size, minimizing 
reagent expenditure and per diems; and the wide availability of immunological probes 
and reagents [92,93]. Although these are key advantages, HSV infection in mice has some 
drawbacks, at least in part due to several important differences in immune responses 
between mice and humans. First, viral peptides are displayed at the infected cell surface 
by major histocompatibility complex class I (MHC-I) molecules. In humans, the HSV-1 
ICP47 protein inhibits the transporter associated with antigen processing (TAP), 
preventing peptide loading and presentation by MHC-I and, thus, T-cell detection of 
infected cells [94]. ICP47, however, functions 100-fold less efficiently in mice, resulting in 
increased antigen presentation and robust immune detection [95]. Second, the affinity of 
host immunoglobulin G (IgG) for gE, the HSV IgG Fc receptor protein, is higher in humans 
than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 
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The mouse is a commonly used animal model of HSV infection. This is largely due 

to well-defined inbred and transgenic strains; cost efficiency due to small size, minimizing 
reagent expenditure and per diems; and the wide availability of immunological probes 
and reagents [92,93]. Although these are key advantages, HSV infection in mice has some 
drawbacks, at least in part due to several important differences in immune responses 
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by major histocompatibility complex class I (MHC-I) molecules. In humans, the HSV-1 
ICP47 protein inhibits the transporter associated with antigen processing (TAP), 
preventing peptide loading and presentation by MHC-I and, thus, T-cell detection of 
infected cells [94]. ICP47, however, functions 100-fold less efficiently in mice, resulting in 
increased antigen presentation and robust immune detection [95]. Second, the affinity of 
host immunoglobulin G (IgG) for gE, the HSV IgG Fc receptor protein, is higher in humans 
than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 
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The mouse is a commonly used animal model of HSV infection. This is largely due 

to well-defined inbred and transgenic strains; cost efficiency due to small size, minimizing 
reagent expenditure and per diems; and the wide availability of immunological probes 
and reagents [92,93]. Although these are key advantages, HSV infection in mice has some 
drawbacks, at least in part due to several important differences in immune responses 
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by major histocompatibility complex class I (MHC-I) molecules. In humans, the HSV-1 
ICP47 protein inhibits the transporter associated with antigen processing (TAP), 
preventing peptide loading and presentation by MHC-I and, thus, T-cell detection of 
infected cells [94]. ICP47, however, functions 100-fold less efficiently in mice, resulting in 
increased antigen presentation and robust immune detection [95]. Second, the affinity of 
host immunoglobulin G (IgG) for gE, the HSV IgG Fc receptor protein, is higher in humans 
than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 
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ICP47 protein inhibits the transporter associated with antigen processing (TAP), 
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host immunoglobulin G (IgG) for gE, the HSV IgG Fc receptor protein, is higher in humans 
than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 

Tree Shrew

Viruses 2024, 16, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. In vivo latency model comparison. 

Model 
Hamster 

 

Mouse 

 

Rat 

 

Guinea Pig 

 

Rabbit 

 

Tree Shrew 

 

Non-Human 
Primate 

 
Reagent  

availability Low High Medium Low Medium  Low High  

Overall cost* $ $ $ $ $$ $$$ $$$$$ 

Similarity to 
human immune 

response 
 

Spontaneous  
reactivation Unknown No Yes Yes Yes Yes Yes  

References [90,91] [92–102] [100,103–106] 
[90,93,107–

109] [93,110–115] [116–123] [124–131] 

* Determined based on estimated market rate and per diem in the United States per animal: $ (under 
USD 100), $$ (under USD 300), $$$ (under USD 500), and $$$$$ (over USD 5000). Graphics created 
with BioRender.com. 

2.1. Mice 
The mouse is a commonly used animal model of HSV infection. This is largely due 

to well-defined inbred and transgenic strains; cost efficiency due to small size, minimizing 
reagent expenditure and per diems; and the wide availability of immunological probes 
and reagents [92,93]. Although these are key advantages, HSV infection in mice has some 
drawbacks, at least in part due to several important differences in immune responses 
between mice and humans. First, viral peptides are displayed at the infected cell surface 
by major histocompatibility complex class I (MHC-I) molecules. In humans, the HSV-1 
ICP47 protein inhibits the transporter associated with antigen processing (TAP), 
preventing peptide loading and presentation by MHC-I and, thus, T-cell detection of 
infected cells [94]. ICP47, however, functions 100-fold less efficiently in mice, resulting in 
increased antigen presentation and robust immune detection [95]. Second, the affinity of 
host immunoglobulin G (IgG) for gE, the HSV IgG Fc receptor protein, is higher in humans 
than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 

Non-Human
Primate

Viruses 2024, 16, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. In vivo latency model comparison. 

Model 
Hamster 

 

Mouse 

 

Rat 

 

Guinea Pig 

 

Rabbit 

 

Tree Shrew 

 

Non-Human 
Primate 

 
Reagent  

availability Low High Medium Low Medium  Low High  

Overall cost* $ $ $ $ $$ $$$ $$$$$ 

Similarity to 
human immune 

response 
 

Spontaneous  
reactivation Unknown No Yes Yes Yes Yes Yes  

References [90,91] [92–102] [100,103–106] 
[90,93,107–

109] [93,110–115] [116–123] [124–131] 

* Determined based on estimated market rate and per diem in the United States per animal: $ (under 
USD 100), $$ (under USD 300), $$$ (under USD 500), and $$$$$ (over USD 5000). Graphics created 
with BioRender.com. 

2.1. Mice 
The mouse is a commonly used animal model of HSV infection. This is largely due 

to well-defined inbred and transgenic strains; cost efficiency due to small size, minimizing 
reagent expenditure and per diems; and the wide availability of immunological probes 
and reagents [92,93]. Although these are key advantages, HSV infection in mice has some 
drawbacks, at least in part due to several important differences in immune responses 
between mice and humans. First, viral peptides are displayed at the infected cell surface 
by major histocompatibility complex class I (MHC-I) molecules. In humans, the HSV-1 
ICP47 protein inhibits the transporter associated with antigen processing (TAP), 
preventing peptide loading and presentation by MHC-I and, thus, T-cell detection of 
infected cells [94]. ICP47, however, functions 100-fold less efficiently in mice, resulting in 
increased antigen presentation and robust immune detection [95]. Second, the affinity of 
host immunoglobulin G (IgG) for gE, the HSV IgG Fc receptor protein, is higher in humans 
than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 

Similarity to
human

immune
response

Viruses 2024, 16, x FOR PEER REVIEW 6 of 26 
 

 

Table 1. In vivo latency model comparison. 

Model 
Hamster 

 

Mouse 

 

Rat 

 

Guinea Pig 

 

Rabbit 

 

Tree Shrew 

 

Non-Human 
Primate 

 
Reagent  

availability Low High Medium Low Medium  Low High  

Overall cost* $ $ $ $ $$ $$$ $$$$$ 

Similarity to 
human immune 

response 
 

Spontaneous  
reactivation Unknown No Yes Yes Yes Yes Yes  

References [90,91] [92–102] [100,103–106] 
[90,93,107–

109] [93,110–115] [116–123] [124–131] 

* Determined based on estimated market rate and per diem in the United States per animal: $ (under 
USD 100), $$ (under USD 300), $$$ (under USD 500), and $$$$$ (over USD 5000). Graphics created 
with BioRender.com. 

2.1. Mice 
The mouse is a commonly used animal model of HSV infection. This is largely due 

to well-defined inbred and transgenic strains; cost efficiency due to small size, minimizing 
reagent expenditure and per diems; and the wide availability of immunological probes 
and reagents [92,93]. Although these are key advantages, HSV infection in mice has some 
drawbacks, at least in part due to several important differences in immune responses 
between mice and humans. First, viral peptides are displayed at the infected cell surface 
by major histocompatibility complex class I (MHC-I) molecules. In humans, the HSV-1 
ICP47 protein inhibits the transporter associated with antigen processing (TAP), 
preventing peptide loading and presentation by MHC-I and, thus, T-cell detection of 
infected cells [94]. ICP47, however, functions 100-fold less efficiently in mice, resulting in 
increased antigen presentation and robust immune detection [95]. Second, the affinity of 
host immunoglobulin G (IgG) for gE, the HSV IgG Fc receptor protein, is higher in humans 
than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 

Spontaneous
reactivation Unknown No Yes Yes Yes Yes Yes

References [90,91] [92–102] [100,103–106] [90,93,107–109] [93,110–115] [116–123] [124–131]

* Determined based on estimated market rate and per diem in the United States per animal: $ (under USD 100), $$
(under USD 300), $$$ (under USD 500), and $$$$$ (over USD 5000). Graphics created with BioRender.com.

2.1. Mice

The mouse is a commonly used animal model of HSV infection. This is largely due to
well-defined inbred and transgenic strains; cost efficiency due to small size, minimizing
reagent expenditure and per diems; and the wide availability of immunological probes and
reagents [92,93]. Although these are key advantages, HSV infection in mice has some draw-
backs, at least in part due to several important differences in immune responses between
mice and humans. First, viral peptides are displayed at the infected cell surface by major
histocompatibility complex class I (MHC-I) molecules. In humans, the HSV-1 ICP47 pro-
tein inhibits the transporter associated with antigen processing (TAP), preventing peptide
loading and presentation by MHC-I and, thus, T-cell detection of infected cells [94]. ICP47,
however, functions 100-fold less efficiently in mice, resulting in increased antigen presenta-
tion and robust immune detection [95]. Second, the affinity of host immunoglobulin G (IgG)
for gE, the HSV IgG Fc receptor protein, is higher in humans than in mice [96]. Therefore,
human, but not mouse, IgG is bound with high affinity to gE on extracellular virions and
gE-coated HSV-infected cells, considerably increasing antibody efficacy in mice [96]. Third,
the murine version of the transcription factor Oct-1 has a relatively weaker interaction with
VP16 than the human form, diminishing initiation of lytic viral gene expression [97]. Fourth,
and possibly as a consequence of these differences, HSV-1 spontaneously reactivates from
latency in humans, but not commonly in mouse infections [98]. Fifth, in humans, the HSV
entry coreceptor nectin-1 is expressed on the surface of vaginal epithelial cells throughout
the menstrual cycle [99]. In mice, however, nectin-1 is expressed only during the diestrous
and proestrous phases. Hormone manipulation is therefore necessary to ensure genital
HSV infection in the mouse [100]. The progesterone treatment itself induces thinning of
the vaginal epithelium, causing a 100-fold greater susceptibility to genital HSV-2 infection
in the diestrous phase and possibly reduced immune protection to HSV-2 [101]. Finally,
the lack of spontaneous reactivation means that it is not possible to study horizontal (peer-
to-peer) or vertical (parent-to-progeny) HSV transmission in mice [100]. These difference
in host–virus interactions mean that mice are not always reliable as predictive models for
vaccine development [102]. While preclinical HSV vaccine development has been largely
based on the mouse model, none yet has succeeded [93]. This emphasizes the need for
other animal models for the study of HSV latency and reactivation, and immunologic or
pharmaceutical protection from HSV.

2.2. Rabbits

Like humans, rabbits experience spontaneous reactivation of latent HSV [112]. Typi-
cally used for ocular infections, rabbits shed HSV-1 through tears and have recurrent ocular
lesions resembling human infections [110,111]. As a model of HSV-1 infection, rabbits
have the advantage of ocular morphology and mucosal immunity akin to humans, as
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well as similar T-cell-mediated ocular disease presentation [93,113,114]. Their larger size
makes rabbits more amenable to in vivo, in situ, and ex vivo studies than mice [93]. Im-
munological reagents are not as plentiful as those for mice but are readily available. While
rabbits’ ocular mucosal immune system is known to be similar to that of humans, the rabbit
systemic immune system is not yet well characterized. To address this issue, a human
leukocyte antigen (HLA) transgenic rabbit expressing human HLA class I molecules was
developed to better mimic HSV infection in allowing an immune response to human HSV-1
CD8+ T-cell epitopes [115]. While not broadly used, this model, coupled with spontaneous
reactivation, makes rabbits a suitable model to study vaccine efficacy, perhaps following
initial screening in mice.

2.3. Guinea Pigs

Since the 1980s, the guinea pig has been the most commonly used clinically relevant
model to study genital herpes infections caused by HSV-2. At low doses of HSV-2, guinea
pigs present similarly to a human infection with viral shedding, spontaneous reactivation,
and recurrent lesions [107,108]. Like humans, guinea pigs with intravaginal HSV-2 infec-
tions develop self-limited primary vulvovaginitis and latency in the sacral ganglia and
lumbosacral dorsal root ganglia [109]. Unfortunately, due to limited immunologic reagents
and inbred strains, the scope of immune effector mechanisms is currently not well char-
acterized [93]. While guinea pigs have similar immune system characteristics to humans,
they have incompatibility between endogenous T-cells and HLA-restricted T-cell epitopes.
They therefore cannot be used to model protective efficacy of T-cell epitope vaccines and
immunotherapy [90,93]. Unfortunately, at present, there are no HLA transgenic guinea pig
models with which to study the immune response that controls the lifecycle of HSV-2 and
test vaccine efficacy [93]. In addition, the necessarily exclusive use of female guinea pigs in
this model makes it impossible to account for sex as a biological variable.

2.4. Tree Shrews

The squirrel-like tree shrew has been used by a few groups as a model of HSV latency
since the 1970s [116]. Tree shrews provide a better model for human HSV-1 infection
than the other rodents [117]. This is due to close similarities to humans in their anatomy,
neurodevelopment, and immune and metabolic systems [118]. Tree shrews also have the
advantage of short life and reproductive cycles, and high reproductivity compared to
primates [119]. Unlike mice, in which HSV does not spontaneously reactivate, tree shrews
experience reactivation and recurrent herpetic mucosal lesions similar to humans [120].
Tree shrews represent a more humanlike model in which to study HSV infection, perhaps
providing valuable insights that could not be gleaned from other animal models. A study of
latent HSV-1 in the tree shrew trigeminal ganglion found significant differences in the gene
expression of ICP0, ICP4, and LAT compared to mice [121]. Tree shrews had undetectable
levels of ICP4, correlating with a weaker acute infection but higher levels of ICP0 and
LAT during latency than mice [121]. The same group also found that the route of HSV-1
infection into the CNS was predominately through the olfactory bulb in tree shrews but
through the brain stems in mice [122]. Tree shrews do have limitations as models for
HSV infection, including the lack of an inbred genetic background, and currently limited
research techniques and materials such as gene knockout and tree shrew-specific antibodies.
The complete genome of the tree shrew has been published, and remarkably they appear
closer related to humans than to rodents. Due to this close relation, some molecular tools,
such as anti-human antibodies, cross-react with tree shrew proteins [118]. As this species
is increasingly used in cancer research to model human carcinogenesis, more tools are in
development, carrying promise for the tree shrew as an HSV infection model [123].

2.5. Cotton Rats

The cotton rat, a common New World rodent, is a well-established model of human
viral diseases that is distinct from laboratory mice and rats [100]. Unlike murine models,
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the cotton rat is susceptible to other human viruses, such as respiratory syncytial virus
(RSV) and measles, in addition to HSV. Infection in the cotton rat closely mimics human
oral HSV-1 infection (herpes labialis) and provides an alternative model for genital HSV-2
infections [100,103]. Notably, the cotton rat does not need hormonal manipulation for
vaginal HSV infection that murine models rely upon [100]. Another advantage of the
cotton rat is the spread of virus to organs targeted in disseminated human HSV disease,
including liver, lungs, and kidneys [100]. Cotton rats are also prone to spontaneous
reactivation, similar to a human infection, with self-limited small lesions. The cotton rat
model has additional advantages over other spontaneous reactivating models of HSV. These
include the increasing availability of immunological reagents, the potential for vertical and
horizontal transmission as seen for RSV, and the ability to study coinfections [100,104–106].

2.6. Hamsters

Although the Syrian golden hamster is not a common animal model to study HSV,
it has been used as a human model for viral infections such as alphaviruses, SARS-CoV,
flaviviruses, and bunyaviruses [91]. Overall, the low cost, short reproductive cycle, ease
of handling, and ability to recapitulate disease progression in humans make the Syrian
golden hamster a suitable alternative animal model. Hamsters are outbred, which provides
a model with more genetic diversity. Their immune system, however, is significantly
different from that of humans [90]. Additionally, there are limited reagents available to
study the immune response, as well as insufficient characterization of immune-specific
markers in hamsters [90]. Since the immune response cannot be evaluated, this hinders its
use as a model for vaccine and therapeutic drug development [91].

2.7. Non-Human Primates

While primates are the most expensive animal model with the most ethical concerns,
non-human primates (NHPs) have a genetic background, anatomy, physiology, and im-
mune response that is highly similar to that of humans [124]. Among the New World NHPs
used to study HSV are the owl monkey and the common marmoset. These NHPs have
high susceptibility to HSV and pathology resembling an HSV infection in human newborn
infants [125–127]. While the owl monkey has been recently harder to obtain, the common
marmoset is bred in facilities within the United States and is readily available [128]. The
rhesus macaque, an Old World NHP, has also been used as a model for both HSV-1 and
HSV-2 infections. HSV-1 infection progresses similarly in humans and macaques, in which
the virus is transmitted to nervous tissues by retrograde transport along the peripheral
nerves and establishes latency in the trigeminal ganglia [129,130]. This NHP model de-
velops the clinical manifestations and pathological features observed in humans during
an HSV-1 infection, such as recurrent vesicular lesions, increased body temperature, and
viral shedding in the eyes or mouth [131]. The similar disease progression in NHPs and
humans makes NHPs a valuable, though sparingly used, model to study viral pathogenesis
and latency.

3. Primary Neuron Models of Latency

While in vivo models are critical to decipher the complex relationship between HSV
pathogenesis and host immunity, primary sensory or sympathetic neuron cultures have
yielded invaluable insights into the mechanistic aspects of HSV latency and reactivation
in ex vivo models. In vivo models have limitations such as long turnaround times and
drug toxicity effects, and for neuronal studies, they have difficulty selectively targeting
CNS and PNS tissues with drugs and vectors. Moreover, the cell composition of the typical
ganglion from mice or rabbits is only ~10% neurons, only 10–20% of which are latently
infected [132]. A data analysis from such low numbers of latently infected neurons on a
background of uninfected neurons is complex. Primary neuronal cultures, on the other
hand, have a shorter setup time and facilitate the access of viruses and other experimental
reagents [56]. They can be monitored in real time during infection with HSV-1-expressing
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fluorescent proteins, and they can be readily manipulated by molecular techniques such
as gene delivery or RNAi [56,133]. While primary neurons from prenatal and postnatal
rats or adult mice are historically the best characterized in vitro/ex vivo models to study
HSV latency and reactivation, other species (humans, rabbits, NHPs, and chickens) have
also been used [46,134–138]. Since most studies have focused on mice, we confine our
descriptions within this review to mouse studies unless otherwise noted. These models
fall into two main categories discussed below. In the first, naïve neurons are isolated and
then infected in vitro in the temporary presence of replication inhibitors such as acyclovir
and interferon to promote viral latency [102]. In the second, HSV infection and ensuing
latency are established in the animal prior to ex vivo isolation of a mixed culture of latently
infected and uninfected neurons.

3.1. Sensory and Sympathetic Neurons

The two main classes of primary neurons used for the in vitro study of HSV latency
are sensory and sympathetic neurons, which are isolated from ganglia. Sensory neurons
transmit signals in an afferent manner, that is, from the PNS to the CNS. Sensory neurons
relay important environmental information from the skin and internal organs to the brain
or spinal cord [139]. The sensory tissues naturally and most commonly infected with HSV
are the trigeminal ganglia (TG) and dorsal root ganglia (DRG), although the geniculate
ganglia and vestibular ganglia can also support HSV infection [140,141]. The TG consist
of a bundle of sensory neurons surrounded by satellite glial cells, microglia/macrophage-
like cells, and Schwann cells [142]. TG neurons are specialized pseudounipolar neurons
located at the base of the skull that project directly to the brain stem or upper regions of
the spinal cord [143]. The TG have three nerve branches that travel along the side of the
head and are responsible for detecting and responding to pain, touch, and temperature
stimuli from the face [144]. Like the TG, the DRG are a collection of pseudounipolar sensory
neurons surrounded by satellite glial cells that carry mechanical, chemical, and thermal
signals from the PNS to the CNS [145]. DRG neurons arise from the dorsal root of the
spinal nerves to innervate the body [145]. Sensory neurons are further classified based
on their neurotrophic dependency, myelination, neurofilament type, and neuropeptide
expression [146,147]. The establishment of HSV-1 latency differs in two subtypes of sensory
neurons, classified either as neurofilament heavy-positive (NefH+) or -negative (NefH−).
NefH+ neurons, specifically those co-expressing the calcitonin gene-related peptide α

(CGRP+), have higher LAT promoter activity and are infected at a decreased rate compared
to NefH- neurons [148–151]. This could be due to reduced axonal retrograde transport of
HSV-1 to the cell body of NefH+ neurons, thus benefitting the host anti-viral response and
promoting expression of LAT through miRNAs, chromatin modification, and anti-viral
activity [148].

While sensory neurons are the most common site of HSV latency in humans, latent
HSV infections are also established in sympathetic neurons [152–154]. In contrast to sensory
neurons, sympathetic neurons are motor neurons that relay signals in an efferent manner
from the CNS to the PNS, muscles, or glands [155]. A natural center of HSV infection
and the most common sympathetic neuron model to study HSV is the superior cervical
ganglia (SCG). The SCG consists of a group of sympathetic neurons that are integral to
the autonomic nervous system as the primary source of sympathetic innervation of the
face and head. Since the location and size of rodent SCG facilitate rapid isolation and
dissociation, SCGs are a common source of neurons for in vitro HSV studies [156]. The
isolation of SCG neurons produces relatively homogenous cultures of neurons that are
capable of establishing and recapitulating HSV latency and reactivation in response to
stress, similar to that in animal models [56,133].

HSV reactivation often follows physical or psychological stress, through mechanisms
involving stress hormones (such as epinephrine and cortisol), NGF-deprivation, forskolin,
and intracellular cAMP [56,136,157–160]. Interestingly, epinephrine, which is regulated
by the sympathetic nervous system, can induce the reactivation of HSV-1 both in vivo
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and in vitro, yet it does not induce the reactivation of HSV-2 [161,162]. Furthermore,
epinephrine selectively stimulates the reactivation of HSV-1 in murine sympathetic, but
not sensory, neurons in vitro [135]. Cortisol, which suppresses the immune system and
regulates metabolism, can induce reactivation of both HSV-1 and HSV-2 in vivo and in vitro
models [135,159,163]. Similar to epinephrine, cortisol induces reactivation selectively
in sympathetic neurons [135]. The differing effects of HSV type and neuron source on
reactivation could result from virus type-specific factors and/or varying expression of
epinephrine and cortisol receptors on sensory and sympathetic neurons [135,163–165].
Further research, using both in vivo and in vitro models, will help to determine what
factors influence preferential latency reactivation in sensory and sympathetic neurons.

3.2. Ex Vivo Explant Models of Latency

Latently infected ganglia explants, most commonly from mice (but also from rabbits,
guinea pigs, tree shrews, humans, and NHPs), have been used as an ex vivo model to study
the molecular events occurring upon HSV reactivation [122,166–171]. In contrast to in vitro
models, ex vivo neuronal cultures harbor latent HSV infections established naturally (i.e.,
without DNA replication inhibitors). Rather than relying on drug treatments, reactivation
typically results from the physical disruption of axons during the excision process. This
neuronal axotomy leads to an influx of intracellular calcium, resulting in increased intracel-
lular cAMP, which interacts with the LAT promoter region to induce reactivation [172,173].
In addition to excision, reactivation can also be induced in vivo (prior to dissection) through
hyperthermia, skin abrasions, or CD8+ T-cell depletion [174–176]. While commonly focused
on the PNS, ex vivo latency experiments using brain stems and olfactory bulbs from tree
shrews and mice have demonstrated a difference in HSV reactivation between the CNS and
PNS [122,177]. In comparison to latent TG infections, latent infections in brain stems and ol-
factory bulbs reactivate at a lower frequency [122]. Studies conducted with latently infected
ganglia explants have led to the discovery of the mechanisms and roles of a broad array
of HSV genes in regulating HSV latency and reactivation. For example, through the use
of LAT-deficient HSV-infected explants, it was shown that LAT is associated with latency
establishment, maintenance, and reactivation [60,178,179]. ICP0-null and TK-null latently
infected explants, on the other hand, demonstrated that ICP0 and TK are not required
for latency establishment but are necessary for efficient reactivation [60,180]. Additional
studies have also demonstrated that the reactivation of latently infected ganglia explants
results in decreased LAT expression and decreased LAT enhancer histone acetylation prior
to increasing ICP0 promoter acetylation and transcription [181], supporting the hypotheses
that LAT functions in an antisense mechanism toward IE promoters and that chromatin
remodeling can regulate latency and reactivation. Ganglia explants have also been used to
investigate the kinetics of HSV gene expression during reactivation [182]. In contrast to
lytic infections, reactivation in explant ganglia results in disordered, rather than sequen-
tial, expression of viral genes [182,183]. This could suggest that the establishment of, or
reactivation from, latency is not dependent on the specific expression of the IE genes [183].

Latently infected ganglion explants, in contrast to in vitro primary neurons, also
provide a model to determine how various immune mechanisms influence HSV latency
establishment and reactivation. Experiments using mouse TG explants have demonstrated
that CD8α+ dendritic cells rather than CD8+ T-cells contribute to enhanced HSV-1 latency
and recurrences [184]. In addition, studies using latently infected sensory and sympathetic
ganglia have demonstrated how different signaling pathways modulate HSV latency. For
instance, TG explant studies have determined that activation of the glucocorticoid receptor
through the synthetic corticosteroid dexamethasone induces HSV reactivation [185,186].
Alternatively, NGF is important for maintaining latency, and the deprivation of NGF from
latently infected explant cultures results in accelerated reactivation [183].

Latently infected ex vivo explants have been instrumental in advancing our under-
standing of the key viral genes and molecular mechanisms involved in HSV latency and
reactivation. Although ex vivo explants have factors that more closely mimic the natural
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processes in the HSV lifecycle during a human infection, such as establishing latency with-
out DNA replication inhibitors and reactivating from stress stimuli, there are limitations
to this model. One such disadvantage of this model is that latency is only established in
10–20% of the neurons in the ganglia, and reactivation is induced in 5–10% of those latently
infected neurons [187]. Since stresses in addition to excision can have an additive impact
on reactivation, modifications to ex vivo protocols, such as antibody-mediated depletion of
NGF, can be used to increase the incidence of HSV reactivation in these neurons [188].

4. Differentiated Cell Lines

Primary neuron models consist of a heterogeneous population of neurons co-isolated
with supporting cells, including glia cells, as well as immune cells such as microglia and
resident T-cells [102]. HSV latency and reactivation differ in such heterogenous populations
depending on the unique cellular constituency and reactivation stimulus applied [189].
Culture heterogeneity complicates analyses of host and viral responses since subsets of cells
vary in their susceptibility to infection and ability to support latency establishment [102].
An ideal model to study the establishment and maintenance of HSV latency would consist
of a homogenous monoculture of neurons. A homogenous neuron model can be obtained
through cell lines that can be differentiated into mature, functional, and specific subtypes
of neuron-like cells. In comparison to primary neurons, neuronal cell lines are more cost
effective, are easier to transfect, can be directly gene edited, and allow for high-throughput
studies due to their proliferative nature, unlike primary neurons, which are terminally
differentiated. Another distinct advantage of using cell lines is the avoidance of ethical
and regulatory concerns surrounding the use and treatment of animals. That said, certain
embryonically derived human cell lines may also raise ethical and regulatory issues. The
three main categories of cell lines used as HSV latency models are neural crest-derived,
neuroblastoma-derived, and induced pluripotent stem cells (iPSCs). Each of these models
has advantages and disadvantages, as summarized in Table 2, and careful consideration
should be given when choosing one as a model for HSV latency.

Table 2. In vitro latency model comparison.

Primary
Neurons

Ex Vivo
Explant PC12 Neuro-

2A/C1300 HD10.6 LUHMES SH-SY5Y iPSC Brain
Organoid

Model
origin *
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4.1. Rodent Cell Lines 
Derived from a single-cell clonal line from a transplantable rat adrenal 

pheochromocytoma, the PC12 cell line is neural crest-derived and reversibly 
differentiated into neurons through the addition of NGF [190]. Differentiation begins 
within a week of NGF exposure and progresses over several weeks, during which the cells 
cease division and produce axonal processes similar to sympathetic neurons [190]. If NGF 
is removed during this period, axonal processes are degraded, and cell division resumes 
within 72 h [190]. While PC12 cells synthesize and store dopamine and norepinephrine 
similar to rat adrenal neurons, epinephrine is not synthesized or induced in response to 
treatment such as dexamethasone [190]. Although PC12 cells are similar to mature 
sympathetic adrenal neurons, they lack expression of the functional glutamate receptor 
N-methyl-d-aspartate (NMDA) [191]. PC-12 cells are permissive to HSV-1 infection and 
support the establishment of latent infection and viral reactivation, both induced and 
spontaneous [192]. While the use of DNA replication inhibitors is required to establish 
viral latency in this cell line, the inhibitors are not required to maintain latency [192]. 

The neuroblastoma cell line Neuro-2A is another common neuron model, derived 
from the mouse neural crest [194]. Neuro-2A cells quickly differentiate into neurons 
within days after the activation of extracellular signal-regulated kinase (ERK) through 
addition of forskolin, retinoic acid, 2,4-dinitrophenol, or serum deprivation [195–197]. 
While Neuro-2A cells become dopaminergic in the presence of dibutyryl cAMP 
(dbcAMP), or cholinergic in response to retinoic acid, they are more similar to adrenal 
gland cells and sympathetic neurons like PC12 cells [194,198]. A cell line similar to Neuro-
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The mouse is a commonly used animal model of HSV infection. This is largely due 

to well-defined inbred and transgenic strains; cost efficiency due to small size, minimizing 
reagent expenditure and per diems; and the wide availability of immunological probes 
and reagents [92,93]. Although these are key advantages, HSV infection in mice has some 
drawbacks, at least in part due to several important differences in immune responses 
between mice and humans. First, viral peptides are displayed at the infected cell surface 
by major histocompatibility complex class I (MHC-I) molecules. In humans, the HSV-1 
ICP47 protein inhibits the transporter associated with antigen processing (TAP), 
preventing peptide loading and presentation by MHC-I and, thus, T-cell detection of 
infected cells [94]. ICP47, however, functions 100-fold less efficiently in mice, resulting in 
increased antigen presentation and robust immune detection [95]. Second, the affinity of 
host immunoglobulin G (IgG) for gE, the HSV IgG Fc receptor protein, is higher in humans 
than in mice [96]. Therefore, human, but not mouse, IgG is bound with high affinity to gE 
on extracellular virions and gE-coated HSV-infected cells, considerably increasing 
antibody efficacy in mice [96]. Third, the murine version of the transcription factor Oct-1 
has a relatively weaker interaction with VP16 than the human form, diminishing initiation 
of lytic viral gene expression [97]. Fourth, and possibly as a consequence of these 
differences, HSV-1 spontaneously reactivates from latency in humans, but not commonly 
in mouse infections [98]. Fifth, in humans, the HSV entry coreceptor nectin-1 is expressed 
on the surface of vaginal epithelial cells throughout the menstrual cycle [99]. In mice, 
however, nectin-1 is expressed only during the diestrous and proestrous phases. Hormone 
manipulation is therefore necessary to ensure genital HSV infection in the mouse [100]. 
The progesterone treatment itself induces thinning of the vaginal epithelium, causing a 
100-fold greater susceptibility to genital HSV-2 infection in the diestrous phase and 
possibly reduced immune protection to HSV-2 [101]. Finally, the lack of spontaneous 
reactivation means that it is not possible to study horizontal (peer-to-peer) or vertical 
(parent-to-progeny) HSV transmission in mice [100]. These difference in host–virus 
interactions mean that mice are not always reliable as predictive models for vaccine 
development [102]. While preclinical HSV vaccine development has been largely based 
on the mouse model, none yet has succeeded [93]. This emphasizes the need for other 
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pheochromocytoma, the PC12 cell line is neural crest-derived and reversibly 
differentiated into neurons through the addition of NGF [190]. Differentiation begins 
within a week of NGF exposure and progresses over several weeks, during which the cells 
cease division and produce axonal processes similar to sympathetic neurons [190]. If NGF 
is removed during this period, axonal processes are degraded, and cell division resumes 
within 72 h [190]. While PC12 cells synthesize and store dopamine and norepinephrine 
similar to rat adrenal neurons, epinephrine is not synthesized or induced in response to 
treatment such as dexamethasone [190]. Although PC12 cells are similar to mature 
sympathetic adrenal neurons, they lack expression of the functional glutamate receptor 
N-methyl-d-aspartate (NMDA) [191]. PC-12 cells are permissive to HSV-1 infection and 
support the establishment of latent infection and viral reactivation, both induced and 
spontaneous [192]. While the use of DNA replication inhibitors is required to establish 
viral latency in this cell line, the inhibitors are not required to maintain latency [192]. 

The neuroblastoma cell line Neuro-2A is another common neuron model, derived 
from the mouse neural crest [194]. Neuro-2A cells quickly differentiate into neurons 
within days after the activation of extracellular signal-regulated kinase (ERK) through 
addition of forskolin, retinoic acid, 2,4-dinitrophenol, or serum deprivation [195–197]. 
While Neuro-2A cells become dopaminergic in the presence of dibutyryl cAMP 
(dbcAMP), or cholinergic in response to retinoic acid, they are more similar to adrenal 
gland cells and sympathetic neurons like PC12 cells [194,198]. A cell line similar to Neuro-
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cease division and produce axonal processes similar to sympathetic neurons [190]. If NGF 
is removed during this period, axonal processes are degraded, and cell division resumes 
within 72 h [190]. While PC12 cells synthesize and store dopamine and norepinephrine 
similar to rat adrenal neurons, epinephrine is not synthesized or induced in response to 
treatment such as dexamethasone [190]. Although PC12 cells are similar to mature 
sympathetic adrenal neurons, they lack expression of the functional glutamate receptor 
N-methyl-d-aspartate (NMDA) [191]. PC-12 cells are permissive to HSV-1 infection and 
support the establishment of latent infection and viral reactivation, both induced and 
spontaneous [192]. While the use of DNA replication inhibitors is required to establish 
viral latency in this cell line, the inhibitors are not required to maintain latency [192]. 

The neuroblastoma cell line Neuro-2A is another common neuron model, derived 
from the mouse neural crest [194]. Neuro-2A cells quickly differentiate into neurons 
within days after the activation of extracellular signal-regulated kinase (ERK) through 
addition of forskolin, retinoic acid, 2,4-dinitrophenol, or serum deprivation [195–197]. 
While Neuro-2A cells become dopaminergic in the presence of dibutyryl cAMP 
(dbcAMP), or cholinergic in response to retinoic acid, they are more similar to adrenal 
gland cells and sympathetic neurons like PC12 cells [194,198]. A cell line similar to Neuro-
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pheochromocytoma, the PC12 cell line is neural crest-derived and reversibly 
differentiated into neurons through the addition of NGF [190]. Differentiation begins 
within a week of NGF exposure and progresses over several weeks, during which the cells 
cease division and produce axonal processes similar to sympathetic neurons [190]. If NGF 
is removed during this period, axonal processes are degraded, and cell division resumes 
within 72 h [190]. While PC12 cells synthesize and store dopamine and norepinephrine 
similar to rat adrenal neurons, epinephrine is not synthesized or induced in response to 
treatment such as dexamethasone [190]. Although PC12 cells are similar to mature 
sympathetic adrenal neurons, they lack expression of the functional glutamate receptor 
N-methyl-d-aspartate (NMDA) [191]. PC-12 cells are permissive to HSV-1 infection and 
support the establishment of latent infection and viral reactivation, both induced and 
spontaneous [192]. While the use of DNA replication inhibitors is required to establish 
viral latency in this cell line, the inhibitors are not required to maintain latency [192]. 

The neuroblastoma cell line Neuro-2A is another common neuron model, derived 
from the mouse neural crest [194]. Neuro-2A cells quickly differentiate into neurons 
within days after the activation of extracellular signal-regulated kinase (ERK) through 
addition of forskolin, retinoic acid, 2,4-dinitrophenol, or serum deprivation [195–197]. 
While Neuro-2A cells become dopaminergic in the presence of dibutyryl cAMP 
(dbcAMP), or cholinergic in response to retinoic acid, they are more similar to adrenal 
gland cells and sympathetic neurons like PC12 cells [194,198]. A cell line similar to Neuro-
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pheochromocytoma, the PC12 cell line is neural crest-derived and reversibly 
differentiated into neurons through the addition of NGF [190]. Differentiation begins 
within a week of NGF exposure and progresses over several weeks, during which the cells 
cease division and produce axonal processes similar to sympathetic neurons [190]. If NGF 
is removed during this period, axonal processes are degraded, and cell division resumes 
within 72 h [190]. While PC12 cells synthesize and store dopamine and norepinephrine 
similar to rat adrenal neurons, epinephrine is not synthesized or induced in response to 
treatment such as dexamethasone [190]. Although PC12 cells are similar to mature 
sympathetic adrenal neurons, they lack expression of the functional glutamate receptor 
N-methyl-d-aspartate (NMDA) [191]. PC-12 cells are permissive to HSV-1 infection and 
support the establishment of latent infection and viral reactivation, both induced and 
spontaneous [192]. While the use of DNA replication inhibitors is required to establish 
viral latency in this cell line, the inhibitors are not required to maintain latency [192]. 

The neuroblastoma cell line Neuro-2A is another common neuron model, derived 
from the mouse neural crest [194]. Neuro-2A cells quickly differentiate into neurons 
within days after the activation of extracellular signal-regulated kinase (ERK) through 
addition of forskolin, retinoic acid, 2,4-dinitrophenol, or serum deprivation [195–197]. 
While Neuro-2A cells become dopaminergic in the presence of dibutyryl cAMP 
(dbcAMP), or cholinergic in response to retinoic acid, they are more similar to adrenal 
gland cells and sympathetic neurons like PC12 cells [194,198]. A cell line similar to Neuro-
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within 72 h [190]. While PC12 cells synthesize and store dopamine and norepinephrine 
similar to rat adrenal neurons, epinephrine is not synthesized or induced in response to 
treatment such as dexamethasone [190]. Although PC12 cells are similar to mature 
sympathetic adrenal neurons, they lack expression of the functional glutamate receptor 
N-methyl-d-aspartate (NMDA) [191]. PC-12 cells are permissive to HSV-1 infection and 
support the establishment of latent infection and viral reactivation, both induced and 
spontaneous [192]. While the use of DNA replication inhibitors is required to establish 
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from the mouse neural crest [194]. Neuro-2A cells quickly differentiate into neurons 
within days after the activation of extracellular signal-regulated kinase (ERK) through 
addition of forskolin, retinoic acid, 2,4-dinitrophenol, or serum deprivation [195–197]. 
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(dbcAMP), or cholinergic in response to retinoic acid, they are more similar to adrenal 
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4.1. Rodent Cell Lines

Derived from a single-cell clonal line from a transplantable rat adrenal pheochromocy-
toma, the PC12 cell line is neural crest-derived and reversibly differentiated into neurons
through the addition of NGF [190]. Differentiation begins within a week of NGF exposure
and progresses over several weeks, during which the cells cease division and produce ax-
onal processes similar to sympathetic neurons [190]. If NGF is removed during this period,
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axonal processes are degraded, and cell division resumes within 72 h [190]. While PC12
cells synthesize and store dopamine and norepinephrine similar to rat adrenal neurons,
epinephrine is not synthesized or induced in response to treatment such as dexametha-
sone [190]. Although PC12 cells are similar to mature sympathetic adrenal neurons, they
lack expression of the functional glutamate receptor N-methyl-d-aspartate (NMDA) [191].
PC-12 cells are permissive to HSV-1 infection and support the establishment of latent
infection and viral reactivation, both induced and spontaneous [192]. While the use of DNA
replication inhibitors is required to establish viral latency in this cell line, the inhibitors are
not required to maintain latency [192].

The neuroblastoma cell line Neuro-2A is another common neuron model, derived
from the mouse neural crest [194]. Neuro-2A cells quickly differentiate into neurons within
days after the activation of extracellular signal-regulated kinase (ERK) through addition of
forskolin, retinoic acid, 2,4-dinitrophenol, or serum deprivation [195–197]. While Neuro-2A
cells become dopaminergic in the presence of dibutyryl cAMP (dbcAMP), or cholinergic
in response to retinoic acid, they are more similar to adrenal gland cells and sympathetic
neurons like PC12 cells [194,198]. A cell line similar to Neuro-2A, C1300, derives from
a different part of the same mouse neuroblastoma as Neuro-2A [199]. Both Neuro-2A
and C1300 cells have been utilized as models of different aspects of the HSV lifecycle,
including acute infection and latency. One caveat of using immortalized cell lines is that
they differ considerably from primary neurons, due in part to genetic drift and mutations
accumulating over recurrent passaging [191,200]. One example is the dampened sensitivity
of Neuro-2A cells to neurotoxins, thought to result from an altered density of cell membrane
receptors and ion channels, similar to a lack of NMDA receptors in PC12 cells [200,226].
Notwithstanding these caveats, these cell types have allowed useful contributions to our
understanding of HSV latency [64,193,199].

4.2. Human Cell Lines

Since HSV is a human virus, human neurons are the ideal model to study neurotropic
infection. While primary human neurons can be obtained from post-mortem tissue, this
is not a generally feasible source of neurons with which to model viral infection [227].
Not only is viable post-mortem nervous tissue difficult to obtain, but also such neurons
are very commonly latently infected with neurotropic herpesviruses, including VZV and
HSV, thus precluding the study of HSV in a controlled manner [228]. Most commonly,
human neurons for HSV studies are derived from the differentiation of embryonic stem
cells, induced pluripotent stem cells, neuronal stem cells, and immortalized neuron cell
lines. These differentiated or immortalized neurons can be used to study the mechanisms
that influence HSV latency and reactivation in the physiologically relevant setting of the
human neuron.

Lund human mesencephalic (LUHMES) cells are human embryonic neuronal precur-
sor cells, which express a tetracycline-regulatable (Tet-off) v-myc transgene that, when
activated, causes differentiation into mature dopaminergic neurons [132,203]. These cells
are derived from a subclone of the MESC2.10 cell line, which originated from 8-week-old
human ventral mesencephalic tissue and was characterized at the Lund University in
Sweden [204,229]. Since LUHMES cells function under a Tet-off system, they remain prolif-
erative and can be propagated routinely prior to differentiation by tetracycline. LUHMES
cells thus are useful for large-scale and high-throughput studies, pointing to a common
limitation of primary neuron models. Another significant advantage of LUHMES cells is
that differentiation into mature neurons takes place within 5 days after tetracycline addi-
tion, compared to the weeks or months of maintenance for in vivo, ex vivo, and primary
neuron cultures [132]. These cells support HSV-1 infection, and latency is established
and maintained after two days of ACV treatment, as determined by decreased lytic gene
expression and increased LAT expression six days post-infection [132]. This provides a
distinct advantage compared to other in vitro and primary neuron cultures that require five
days of ACV treatment in order to establish and maintain latency. Latency in LUHMES cells
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is similar to that in latently infected ganglia, in which most cells harbor the HSV-1 genome
yet only a fraction express detectable LAT [132,230,231]. While spontaneous reactivation
is uncommon, viral reactivation can be induced upon the inhibition of phosphoinositide
3-kinase (PI3K) [132].

Derived from the DRG of a first-trimester fetus, the HD10.6 immortalized cell line
also uses a doxycycline inducible Tet-off oncogene to drive differentiation into neonatal
sensory-like neurons with nociceptive properties [201,202]. While the establishment of
replicative HSV infection in HD10.6 neurons is delayed relative to primary neurons, they
do support latent infection in the presence of ACV at a low multiplicity of infection
(MOI) [202]. Although reactivation can be induced through combined superinfection with
UV-inactivated virus and NGF deprivation, stressors commonly used to induce reactivation
in other neuronal models are ineffective in HD10.6 cells [202]. The unusual difficulty in
eliciting reactivation could be related to various factors, including lower levels of LAT, or
mutations accumulated during immortalization or cell passaging that causes attenuation of
neurotrophic signaling [102].

The cell line SH-SY5Y is an embryonic stem cell line derived through consecutive
sub-clonings of the SK-N-SH neuroblastoma cell line commonly used in neurological
studies [205]. Undifferentiated SH-SY5Y cells are non-polar and resemble neuroblast-like
cells and immature catecholaminergic neurons [206,207]. A unique advantage of SH-SY5Y
cells is that they can differentiate into homogenous populations of cholinergic, adrenergic,
or dopaminergic neurons depending on their exposure to neurotrophins [207]. They are
frequently differentiated into cholinergic neurons through exposure to retinoic acid, but
they can develop a dopaminergic phenotype when retinoic acid is used in combination with
phorbol esters [208]. When cultured with phorbol esters alone, such as 12-O-tetradecanoyl-
phorbol-13 acetate (TPA), they will differentiate into adrenergic neurons [209]. In the context
of HSV infection, differentiated SH-SY5Y cells are highly permissive for the replication
of HSV-1. In these cells, viral replication still occurred in the presence of ACV at an MOI
1000-fold lower than what is sufficient for controlling infection in rat SCG models [46,102].
This is perhaps due to a more permissive environment in human neurons, the neuron
subtype, or the source of neurotropic support [46]. Although the virus is not controlled at
high MOIs, after six days in the presence of ACV and interferon-α at a low MOI, the virus
is able to establish a stable latency-like infection [102]. This latent infection, characterized
by increased LAT and decreased lytic gene expression, can be maintained for several weeks
in the absence of ACV before induced reactivation with a stimulus such as sodium butyrate.
While SH-SY5Y cells can be used as a human neuronal model to study HSV-1, the process
of differentiating SH-SY5Y requires the stepwise addition of inhibitors and growth factors
over a month in order to mimic neurogenesis. This can result in high variability of neuronal
subtypes between labs using the same cell line and protocols [102,210,232–234]. Due to
these limitations, it is becoming more common to use neuronal transcription factor-driven
differentiation to induce rapid and reproducible neurogenesis.

Directed neuronal differentiation, through constitutive or induced overexpression of
transcription factors, bypasses the progenitor stage in differentiation, resulting in signifi-
cantly faster neuron generation [211–213]. In vivo neuron generation is a highly complex
process driven by both intrinsic and extrinsic factors, which ultimately influence the neu-
ronal subtype. The determination of which transcription and growth factors are essential
to neurogenesis has made it possible to differentiate iPSCs into specific subtypes [210].
The transcription factors from the neurogenin family (NGN), consisting of NGN1, NGN2,
and NGN3, are of particular interest. This family of transcription factors is expressed
throughout the nervous system and affects the commitment of progenitors to neurons by
promoting subtype-specific gene expression [210]. In particular, NGN2 is a key regulator
of differentiation to glutamatergic, dopaminergic, motor, and sensory neurons, but it in-
hibits differentiation into GABAergic neurons, oligodendrocytes, and astrocytes [210]. This
master regulator role for NGN2 in neurogenesis has made it a common focus for overex-
pression to rapidly yield a variety of mature neurons in a reproducible manner [211–216].
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The overexpression of NGN2 and related neuronal transcription factors provides a scalable,
high-throughput, rapid, and reproducible human neuronal model for HSV studies. While
NGN2 has been widely used to generate differentiated neurons, other transcription factors
can efficiently generate a homogenous neuronal population [217]. In particular, NGN3 over-
expression can lead to rapid differentiation of iPSCs into mature sensory neurons [64,217].
These differentiated human neurons are permissive to HSV-1, and under the influence of
ACV, HSV can establish a quiescent latency-like state that can be stimulated with histone
deacetylase inhibitors to induce HSV reactivation.

4.3. Organoid Cultures

A variety of models have been used to gain insight on HSV latency and reactivation,
each of which has advantages and disadvantages that should be carefully considered when
planning experiments. While some in vitro cell lines have the advantage of a human-like
model, they lack the complex multicellular and immune interactions found in vivo. For
instance, ganglia consist primarily of non-neuronal cells, such as satellite and immune
cells, that could influence mechanisms within neurons to control viral gene expression, the
establishment and maintenance of latency, and virion production [187]. Neurons produce
low levels of IFN, relying on support cells to produce IFN or inflammatory cytokines
in response to an HSV-1 infection [235,236]. In order to accurately recapitulate HSV-1
infections, a model that captures both multicellular and immune interactions in the context
of a human cell source is especially needed. One way to achieve this is through three-
dimensional (3D) organoids, in vitro cell aggregates derived from stem cells which exhibit
self-organization and organ-like functionality [218,219]. Three-dimensional organoids can
mimic aspects of the composition and architecture of the brain, with intercellular and
cell-to-extracellular matrix (ECM) interactions that are lacking in 2D neuron cultures [220].
The differentiation protocols used to generate brain organoids are relatively cost-effective,
are scaffold-free, and produce organoids with a consistent diameter. Three-dimensional
organoids may thus provide a promising, highly malleable, complex cellular model to
study host–pathogen interactions that does not suffer the limitations of in vivo models.

Human iPSC-derived brain organoids are permissive to HSV-1 and express LAT in
the outer layers without the need for antivirals that are necessary to drive latency in 2D
neuron cultures [220]. One caveat of this model is a low rate of reactivation in latently
infected organoids, which differs from a high reactivation efficiency characterized by iPSC-
derived neuron cultures. When infected in the presence of antivirals, however, HSV-1
spontaneously reactivates in 17% of brain organoids after the removal of antivirals [220].
This discrepancy could be due to the different cell-to-cell and cell-to-ECM interactions
and the gene expression variations between 3D and 2D environments [221,222]. This
emphasizes the importance of a model that most accurately mimics the human nervous
system for the study of HSV-1 latency and reactivation. While brain organoids provide a
model that mimics the architecture and multicellular interactions of the human brain, they
cannot account for systemic aspects and the role of the adaptive immune response in HSV-1
infections. To address this, a brain organoid-on-a-chip model can be used to allow for
precise control over the neuron microenvironment through microfluidics that mimics the
blood–brain barrier, fluid flow in cerebrospinal spaces, and vascular structures [223,224].
This is achieved through the gravity-driven, continuous flow of nutrients and the removal
of metabolic waste to and from the organoids. Additionally, using a 3D-printed microfluidic
device, neurovascular brain organoids capable of permeability and perfusion can be used
to deliver membrane-diffusible molecules from blood vessels to the organoids [223]. Such
fluid-flow models in combination with 3D organoid cultures may better mimic the human
neuro-microenvironment, particularly in light of different stimuli, including those involved
in adaptive immunity [225].
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5. Concluding Remarks

Our understanding of HSV latency has been obtained through clinical observations in
humans and a variety of in vivo, ex vivo, and in vitro model systems. One such important
clinical observation is that individuals with HSV-1 genital infections, in comparison to
HSV-2, experience less frequent reactivation and asymptomatic shedding [6]. This could
simply result from differences between HSV strains and neuronal subtypes which can
affect disease progression, as discussed previously. Additionally, immune responses likely
differ between ganglion type and anatomy, with distinct local immune responses. This
difference in immune response may potentially be influenced by sex hormones such as
estrogen and progesterone [237]. Several studies have shown that estrogen/progesterone
can alter T-cell and cytokine function and increase susceptibility to HSV infection and
reactivation from latency [101,238,239]. Further research is necessary to determine how the
immune responses are different in TGs and DRGs, and between HSV-1 and HSV-2, and
whether those differences affect mechanisms involved in HSV latency and reactivation.

The in vivo models have been instrumental in determining viral–host interplay that
result in latency, while the in vitro models have been more valuable in elucidating molecular
pathways involved in the establishment, maintenance, and reactivation of latency [87].
Unfortunately, each of the current models has limitations, such as immune responses that
differ significantly from humans, ethical concerns, cost, time, and reagent availability.
Additionally, careful consideration must be taken to ensure reproducibility and limited
variability, using different in vivo and in vitro models. The variability seen within the
field could be a result of the different species, cell types, neuronal subtypes, and HSV
strains used. Both in vivo and in vitro studies have shown that there are strain-specific
differences in the virulence and latency/reactivation of HSV-1 [240]. There is also evidence
that cell type-specific factors, in addition to virus-specific factors, contribute to HSV-1
pathogenesis [241]. Although there has been concern about the divergence of common HSV
laboratory strains over time, this can be mitigated through the low passage of laboratory
strains and correlative use of clinical isolates [242,243]. Learning about strain-specific
differences in latency and reactivation could yield important information regarding the
roles of specific viral genes in pathogenesis. Therefore, to ensure standardization within
the field, multiple in vivo and in vitro model systems and HSV strains should be used in
combination to validate both the current and past findings.

While new animal models and technological advancements have been made to im-
prove current HSV models, there still remains the need for a model that more accurately
replicates human HSV infections in a time- and cost-efficient manner. This would require a
model utilizing human cells that can address the immune and multicellular interactions
during an HSV infection. The field is currently shifting to incorporate animal systems, as
well as human cell lines or 3D organoid models to study latency mechanisms and host–
virus interactions [56]. These new technologies and model systems should provide further
insight regarding some ongoing questions in the field: Why is HSV latency selectively
established in neurons? What host factors and pathways influence latency and reactivation?
What host and viral mechanisms control gene expression during latency? Can we use
these models to identify points in the latency/reactivation pathway that would represent
therapeutic targets to alter the establishment, maintenance, or reactivation of latency?
Given the broad array of outcomes following HSV infection in humans, it seems unlikely
that one model could mimic all aspects of HSV pathogenesis and address these questions.
By utilizing salient aspects of different models, we can integrate information to collectively
and reliably predict the determinants of HSV pathogenesis in humans.
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