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Abstract: Theodor (“Ted”) Otto Diener (* 28 February 1921 in Zürich, Switzerland; † 28 March 2023 in
Beltsville, MD, USA) pioneered research on viroids while working at the Plant Virology Laboratory,
Agricultural Research Service, USDA, in Beltsville. He coined the name viroid and defined viroids’
important features like the infectivity of naked single-stranded RNA without protein-coding capacity.
During scientific meetings in the 1970s and 1980s, viroids were often discussed at conferences
together with other “subviral pathogens”. This term includes what are now called satellite RNAs
and prions. Satellite RNAs depend on a helper virus and have linear or, in the case of virusoids,
circular RNA genomes. Prions, proteinaceous infectious particles, are the agents of scrapie, kuru and
some other diseases. Many satellite RNAs, like viroids, are non-coding and exert their function by
thermodynamically or kinetically controlled folding, while prions are solely host-encoded proteins
that cause disease by misfolding, aggregation and transmission of their conformations into infectious
prion isoforms. In this memorial, we will recall the work of Ted Diener on subviral pathogens.

Keywords: potato spindle tuber viroid; Pospiviroidae; Avsunviroidae; virusoid; satellite RNA of
cucumber mosaic virus; prion diseases

1. Introduction

‘Dogma’ is generally defined as a principle or set of principles thought to be true. A
well-known dogma formulated by Francis Crick in 1958 [1,2] stated that biological infor-
mation flows from DNA to RNA to proteins. With the discovery of reverse transcription,
the first exception became known. Another example of an outdated dogma was that
viruses—and phages—were the smallest infectious agents. They possess a nucleic acid
genome that encodes a few proteins. It was Theodor (“Ted”) O. Diener who first described
a naked RNA, which is 5 to 10-fold smaller than the smallest known viral genome and has
no coding capacity [3–6]. More unexpected was the discovery of proteinaceous particles
called prions, which were first discovered in studies of the infectious agent that causes
scrapie of sheep [7,8]. Notably, Diener was extremely skeptical about prions initially [9], but
he later collaborated with Prusiner on a study that compared the properties of viroids and
prions [10]. Of note, satellite RNAs are similar in size, structure, and pathological effects,
but they do not autonomously replicate; rather, they need a specific virus, or helper virus, to
multiply. Satellite RNAs were discovered at about the same time as viroids [11,12], and dis-
cussing their features here helps to clarify the differences among viroids, subviral satellites
and prions. Figure 1 shows a timeline of discoveries focused on this article’s topics.
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Figure 1. Timeline of research development of viroids (green text) [4,13–44], satellite RNAs (orange
text) [11,12,45–49], prions (red text) [7,50–63], and a few general hallmarks (black text) [64].

2. Viroids

In the late 1960s, Diener and co-workers described a free RNA that is infectious in
plants, which causes potato spindle tuber disease [3,65]. They concluded that the RNA
is too small to contain the genetic information necessary for self-replication and that it
must rely on host enzymes for its replication. Joseph S. Semancik and Lewis G. Weathers
reported similar findings for the causal agent of citrus exocortis disease [66–69]. For such an
unconventional agent, Diener suggested the term viroid [4], which was adopted in 1972. In
the 1970s, the purification methods for small RNAs improved substantially, in particular by
ultracentrifugation and gel electrophoresis, and later by chromatography [25]. In Germany,
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2. Viroids

In the late 1960s, Diener and co-workers described a free RNA that is infectious in
plants, which causes potato spindle tuber disease [3,65]. They concluded that the RNA
is too small to contain the genetic information necessary for self-replication and that it
must rely on host enzymes for its replication. Joseph S. Semancik and Lewis G. Weathers
reported similar findings for the causal agent of citrus exocortis disease [66–69]. For such an
unconventional agent, Diener suggested the term viroid [4], which was adopted in 1972. In
the 1970s, the purification methods for small RNAs improved substantially, in particular by
ultracentrifugation and gel electrophoresis, and later by chromatography [25]. In Germany,
Heinz Ludwig Sänger successfully isolated viroids from several viroid diseases in larger
quantities [70–72]. He convinced the groups of Albrecht K. Kleinschmidt and Günther
Klotz, Hans J. Gross, and Detlev Riesner to jointly study viroids. This cooperation of
the “German team” [73] resulted in several breakthrough publications demonstrating the
following properties: viroid RNA circularity, the molecular weight, secondary structure,
and mechanism of structure formation [30,74]. Hans Gross and his group published the
complete nucleotide sequence of the potato spindle tuber viroid (PSTVd) and confirmed
its rod-shaped secondary structure in 1978 [29,75]. The biophysical studies demonstrated
that certain extra-stable structural elements of viroids, named hairpins I and II, are not part
of the native, thermodynamically favored structure; rather, they are present as metastable
elements in kinetically favored structures during replication and are critical for replication
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and processing [22,23,76–79]. Furthermore, the structural studies contributed to easy, fast
diagnostic methods [80] and were even used later to find or exclude nucleic acids in prions
(see Section 4).

After the structural research, interest turned to the mechanism of viroid replication
and pathogenicity. Ted Diener set the pace, and viroid research groups grew all over the
world, including those who studied avocado sun blotch viroid (ASBVd) [28], coconut
cadang-cadang viroid (CCCVd) [31,32], and others.

Today, viroids are classified into the families Pospiviroidae (named after PSTVd; 39 mem-
bers) and Avsunviroidae (named after ASBVd; 5 members) “on the basis of their biological,
biochemical and structural features. Members of the family Avsunviroidae can form, in the
strands of both polarities, hammerhead ribozymes that mediate replication in chloroplasts,
in which these viroids accumulate. Members of the family Pospiviroidae lack hammerhead
ribozymes but contain a central conserved region (CCR) in their rod-like or quasi rod-like
conformation and replicate in the nucleus, wherein these viroids also accumulate” [81].

3. Viroids: The Archetype of Further Subviral Pathogens?

After the sequence of PSTVd and some early results about the replication mechanism
were determined [26,27,82,83], viroids were established and accepted as subviral pathogens.
The viroid researchers became a worldwide family essentially, meeting in Beltsville [84] and
during many symposia (Figure 2). But during those symposia, other unknown pathogens
were discussed including the agents of kuru [60,85], called unconventional virus, and
scrapie, a sheep disease leading to amyloidosis. Similar to viroids, these particles could
not be seen under a light microscope and nobody knew what to look for using an electron
microscope since a molecular test did not exist. Could this type of unidentified infectious
animal agents be a new class of viroids? Semancik, Hanson and coworkers published
two papers in Nature arguing that scrapie had an essential DNA component of small
molecular weight [86,87]. Even Ted Diener similarly speculated in a contribution to the
2nd International Congress for Virology, Budapest (1971) [9]. After the groundbreaking
publication of Stanley B. Prusiner in Science 1982, in which he coined the term “prion” [88],
controversies were plentiful and discussed during joint sessions on subviral pathogens; the
last one took place at the 6th International Congress for Virology in Sendai (1984). After
that, the scientific directions split, but the earlier often controversial discussions helped
clarify the fundamental differences between the plant and animal subviral pathogens.

For young scientists, the research on subviral pathogens remained very attractive,
and Ted Diener and Detlev Riesner organized a summer school of the Studienstiftung
des Deutschen Volkes (German Academic Scholarship Foundation) in Bled, Slovenia, on
“Subviral pathogens: Viroids and Prions” in 1994.
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Figure 2. At the 7th International Conference of Virology in Edmonton, Canada, 1987. From left to
right: Robert A. Owens, Detlev Riesner, Theodor O. Diener, Heinz Ludwig Sänger.

4. Prions

Stanley B. Prusiner systematically continued the earlier studies of Alper et al. [61]
into the inactivation properties of scrapie infectivity; Latarjet et al. [89] had shown that
the scrapie UV spectrum of inactivation is similar to that of proteins rather than that of
nucleic acids. Several years later, Stanley Prusiner and Detlev Riesner had a prolonged
discussion about viroids and prions prompted by Riesner’s “Viroid Poster” at the 10th
International Congress of Biochemistry, Hamburg (1976). Prusiner came to study the poster
and blocked the whole poster with his voluminous hairstyle (Figure 3). While nobody else
could look at the poster, Prusiner and Riesner fell into an intensive discussion on viroids
and the scrapie agent.

Figure 3. A poster and its visitor at the 10th International Congress of Biochemistry, Hamburg,
Germany (1976). Prusiner in front of the poster sketched from memory by Riesner.

In 1978, during a meeting in Munich, Germany, organized by Sänger, Prusiner reported
that the sedimentation behavior of scrapie infectivity was heterogeneous and different from
viruses and viroids. Prusiner summarized the results of his subsequent studies: chemical
and physical procedures that destroy nucleic acids do not destroy scrapie infectivity, while
chemical and physical procedures that destroy proteins do destroy scrapie infectivity.
In his groundbreaking publication in 1982 [88], he concluded: “Novel proteinaceous
infectious particles cause scrapie”. Whereas viroids were already accepted, prions remained
surrounded by considerable skepticism for many more decades. In contrast to most of the
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4. Prions

Stanley B. Prusiner systematically continued the earlier studies of Alper et al. [61]
into the inactivation properties of scrapie infectivity; Latarjet et al. [89] had shown that
the scrapie UV spectrum of inactivation is similar to that of proteins rather than that of
nucleic acids. Several years later, Stanley Prusiner and Detlev Riesner had a prolonged
discussion about viroids and prions prompted by Riesner’s “Viroid Poster” at the 10th
International Congress of Biochemistry, Hamburg (1976). Prusiner came to study the poster
and blocked the whole poster with his voluminous hairstyle (Figure 3). While nobody else
could look at the poster, Prusiner and Riesner fell into an intensive discussion on viroids
and the scrapie agent.
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In 1978, during a meeting in Munich, Germany, organized by Sänger, Prusiner reported
that the sedimentation behavior of scrapie infectivity was heterogeneous and different from
viruses and viroids. Prusiner summarized the results of his subsequent studies: chemical
and physical procedures that destroy nucleic acids do not destroy scrapie infectivity, while
chemical and physical procedures that destroy proteins do destroy scrapie infectivity.
In his groundbreaking publication in 1982 [88], he concluded: “Novel proteinaceous
infectious particles cause scrapie”. Whereas viroids were already accepted, prions remained
surrounded by considerable skepticism for many more decades. In contrast to most of the
skeptics, Ted Diener, who had published a paper entitled “Is the scrapie agent a viroid” [9]
in 1972, accepted the new data underpinning the prion hypothesis and published a paper on
the fundamental differences between viroids and prions with Prusiner and his colleagues
in 1982 [10].

Using some viroid research approaches, Riesner and colleagues applied the quantita-
tive methods of nucleic acid analysis—even counting single molecules—and showed in
systematic and extended studies that highly infectious samples from hamster brains con-
tained more infectious units than nucleic acid molecules longer than 25 nucleotides [57,58].
We will not outline the whole research development on prions here; Prusiner was awarded
the Nobel Prize “for his discovery of Prions—a new biological principle of infection” [56]
in 1997, and the final molecular proof was found in 2004 when a synthetic prion—i. e., a
synthetic protein that never has seen an animal—was created [55,90].

Due to the ongoing research of Prusiner’s group and others, the present day mecha-
nism of prion amplification was determined. The prion protein (PrP) can exist in a cellular,
non-pathological conformation (PrPc), which is mainly α-helical, or in an aggregated, patho-
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logical conformation (PrPSc, i. e., scrapie), which has a higher proportion of β-sheets. PrPc

is expressed from a single-copy gene of the host [59] and presented on the outer surface of
the cell. If PrPc encounters invading PrPSc during infection, PrPSc forces PrPc to misfold
into the pathological conformation of PrPSc. When PrPSc aggregates, then breaks apart and
encounters nascent PrPc, a PrPSc dimer or oligomer is formed. This replication process
continues until the accumulation of PrPSc prions kills the host cells.

The infectivity of prions results from a conformational change of PrPc into PrPSc. The
first PrPSc particles can be generated spontaneously by the rare aggregation of several PrPc

molecules or can be facilitated by specific mutations. The foregoing process produces prion
diseases that can originate spontaneously, by infection or as familial diseases. Prion disease
was the first example in medicine of three origins of the same disease [91].

5. Satellites and Virusoids

At the conference in Munich in 1978, Jacobus (“Jap”) M. Kaper presented data that
CARNA 5 (cucumber mosaic virus |CMV] associated RNA 5), the satellite RNA of CMV
(satCMV), was able to modify CMV symptoms depending on CMV strain, CARNA 5
variant, and host plant [49,92]. Virions of CMV contain the three genomic RNAs 1–3,
a subgenomic RNA 4, and sometimes a fifth RNA, giving rise to the name CARNA 5.
Thus, an RNA was identified that is similar in size to viroids, can also induce pathological
effects, and—in contrast to viroids—is linear, depending on a helper CMV to replicate and
accumulating in planta in double-stranded form [93].

Plant infections with CMV and necrogenic CARNA 5 variants lead to systemic necrosis
and destruction of plants [46,48], exemplified by several epidemics [45]. In contrast, infec-
tions with CMV and non-necrogenic variants show only marginal symptoms and a yield
that is similar to that of non-infected plants, even above that of plants infected with CMV
without a satellite. This opened the possibility to (cross-)protect crops by pre-infection or
“vaccination” with CMV and non-necrogenic satellites [94,95]. It was important, however,
to verify that during this biological control process, no necrogenic CARNA 5 variants were
emerging; that is, the non-necrogenic variant should differ from any necrogenic variant by
more than a single mutation [96]. Following this line, Tien Po (Academia Sinica, Beijing,
China) analyzed double-stranded CARNA 5 (dsCARNA 5) variants during his sabbatical
stay in Düsseldorf in 1986 and 1987. The major method for analysis was temperature-
gradient gel electrophoresis (TGGE) [97,98] that can separate macromolecules of identical
length that differ by a few or even single mutations, which influence their denaturation
behavior. Indeed, several dsCARNA 5 samples consisted of different molecular species
that were only separated at temperatures leading to a partial denaturation but co-migrated
as dsRNA at low temperature and as single strands after full denaturation. Common to all
samples were three transitions: two low-temperature transitions, due to partial denatura-
tion leading to strong gel retardation, and a high-temperature transition into single strands,
which migrated much faster than the partially denatured molecules. For the non-necrogenic
variants, the transition at the lowest temperature was below the corresponding transition
of the necrogenic variants [99,100].

Virusoids are small, circular, single-stranded satellite RNAs that are encapsidated by
respective plant viruses and replicated by the viral polymerase; their native secondary
structure is mostly rod-like with a few small bifurcations. John W. Randles, recipient of a
Ludwig Leichhardt fellowship from the Alexander von Humboldt Foundation, arrived for
his sabbatical in Düsseldorf with viroid and virusoid samples in 1981. Together, Randles,
Steger and Riesner showed that CCCVd possesses thermodynamic and kinetic features
of a typical viroid including an extra-stable hairpin I but not an extra-stable hairpin II. In
contrast, the virusoids of subterranean clover mottle virus (satSNMV) and velvet tobacco
mottle virus (satVTMoV) are thermodynamically less stable than viroids, despite similar GC
content, and do not possess extra-stable hairpin(s) [24,101]. Thomas C. Goodman, a post-
doctoral fellow of the Alexander von Humboldt Foundation, showed that DNA-dependent
RNA polymerase II, the enzyme that replicates members of Pospiviroidae, binds PSTVd
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specifically at one end of its secondary structure. In contrast, satSNMV and satVTMoV are
only nonspecifically bound, similar to tRNA, for example [102].

6. Outlook

The discovery of viroids was a strenuous dive into the new world of subviral pathogens
and included a prolonged battle against the disbelief of many scientists. Consequently,
we cannot forget the pioneering work of Theodor O. Diener and his successors: Joseph
S. Semancik [69] and Heinz L. Sänger [70], who described first the citrus exocortis viroid;
Rudra P. Singh and his work on PSTVd [103]; John W. Randles and his discovery of
CCCVd [31,32]; and Robert H. Symons, who first described the ASBVd and its self-splicing
by hammerhead ribozymes [28,104]. The discovery of new viroid(-like) RNAs has increased
in recent years mostly due to the use of high-throughput sequencing [105–108].

Of course, the knowledge on these subviral particles has expanded greatly over the
following half century. Viroids are now subdivided into the families Pospiviroidae and
Avsunviroidae, which are located mainly in the nucleus and the chloroplast, respectively.
Their locations also suggest their usage of different replication strategies, host polymerases,
structural elements, and trafficking [13,109–111]. The knowledge on viroid-induced symp-
toms is increasing, but still not solved fully. At least in the case of peach latent mosaic
viroid variants that induce an extensive chlorosis of peach, a specific viroid-derived small
RNA is involved [15,112]; mechanisms are less clear in other cases [113,114]. Elimination
of some viroids during pollen maturation involves a depression of viroid replication and
an increase in degradation processes [115,116].

Current knowledge on replication of virusoids and satellite RNAs by the polymerase of
their helper virus is discussed in recent reviews [117,118] showing that complex secondary
and tertiary structures of satellite RNAs are involved in suppression of the helper virus
and symptoms [119–123].

What started with research in plants and animals had later impact in general molecular
biology, extending to human disease and therapeutic developments. Here follows a few
spot lights:

• Chromatography for viroid purification [25] led to the development of plasmid purifi-
cation kits [124–126], which are now used worldwide in molecular biology research.

• Hammerhead ribozymes have been detected in most genomes [16,127]. Retrotrans-
posons with hammerhead ribozymes, called retrozymes, have been found encoded in
diverse plant genomes [17] and have stimulated new ideas about the possible origin of
viroid and viroid-like RNAs [128–131]. Viroid-like RNAs, termed mycoviroids, have
been detected in fungi [132–134].

• Knowledge of circular RNAs in mammals has expanded in recent years; for example,
they are produced by a process called back-splicing from mRNAs and are involved in
(mis)regulation of many processes [135–137].

• Current knowledge on virusoids and other satellite RNAs has expanded substan-
tially [117,118]. The human hepatitis delta virus satellite (HDV) [138,139] of hepatitis
B virus (HBV) increases the fatality of hepatitis and is today the object of intensive
therapeutic development [140,141].

• In the early 1980s, there was only a minor interest in rare neurodegenerative dis-
eases like kuru, Creutzfeldt–Jakob and Gerstmann–Sträussler–Scheinker in humans
and scrapie in sheep, which seems not to be transmissible to humans. This situa-
tion changed drastically with Prusiner’s concept of prions and the discovery of the
bovine spongiform encephalopathy (BSE) epidemic in the mid-1980s. Later, variant
Creutzfeldt–Jakob disease (vCJD) was found to be due to bovine PrPvCJD prions. With
widespread testing of slaughtered cattle in Europe and elimination of bovine offal as a
source of feed for cattle, sheep, and pigs, BSE has been eliminated from the roster of
lethal human illnesses.

Much more than a spotlight is our knowledge of prions that is leading to effective
therapeutics for Alzheimer’s and Parkinson’s diseases as well as related disorders. Recent
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breakthroughs in cryo-electron microscopy and solid-state NMR spectroscopy are helping
elucidate the fibril structures of proteins that cause prion diseases [50–52,54,142]. Hopefully,
by understanding the biophysics, molecular biology and protein interactions involved in
these diseases, effective therapeutics can be developed.
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