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Abstract: Oncolytic virotherapy constitutes a promising treatment option for many solid cancers,
including peritoneal carcinomatosis (PC), which still represents a terminal stage of many types of
tumors. To date, the in vitro efficacy of oncolytic viruses is mostly tested in 2D-cultured tumor cell
lines due to the lack of realistic 3D in vitro tumor models. We have investigated the feasibility of
virotherapy as a treatment option for PC in a human ex vivo peritoneum co-culture model. Human
HT-29 cancer cells stably expressing marker genes GFP and firefly luciferase (GFP/luc) were cultured
on human peritoneum and infected with two prototypic oncolytic viruses (GLV-0b347 and MeV-
DsRed). Both viral constructs were able to infect HT-29 cells in patient-derived peritoneum with
high tumor specificity. Over time, both GFP signal and luciferase activity decreased substantially,
thereby indicating successful virus-induced oncolysis. Furthermore, immunohistochemistry stainings
showed specific virotherapeutic infections of HT-29 cells and effective tumor cell lysis in infected
co-cultures. Thus, the PC model established here provides a clinically relevant screening platform
to evaluate the therapeutic efficacy of virotherapeutic compounds and also to investigate, in an
autologous setting, the immunostimulatory potential of oncolytic viruses for PC in a unique human
model system superior to standard 2D in vitro models.

Keywords: peritoneal carcinomatosis; ex vivo peritoneal culture model; virotherapy; oncolytic
measles vaccine virus; oncolytic vaccinia virus

1. Introduction

The peritoneum is the largest serous membrane of the human body, lining the internal
organs, the abdominal wall, and the pelvis [1]. The large surface area of roughly 2 m? as
well as the permanently circulating peritoneal fluid make the peritoneum one of the organs
most frequently affected by metastases of various tumor types, especially of gastrointestinal
and gynecologic origins [2]. Once the diagnosis of peritoneal carcinomatosis (PC) is made,
curative therapy is no longer possible in most cases and the prospects of any palliative
therapy are very limited. Currently, multiple novel experimental therapies for solid tumors
are being developed, including virotherapeutics, immunotherapies, novel antibodies, and
innovative small molecule compounds; however, they are not yet clinically licensed for the
treatment of PC.
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The principle of oncolytic virotherapy relies on replication-competent viral vectors
that selectively infect tumor cells, then replicate rapidly, and subsequently destroy
the tumor cells (so-called oncolysis) while releasing thousands of new progeny viral
particles [3]. It has been shown that the virus-induced tumor cell lysis triggers a
systemic antitumoral immune reaction, which is the key success factor of this biological
form of cancer therapy [4].

Thus, oncolytic virotherapy constitutes an upcoming treatment option for many
solid cancers, including PC. However, the in vitro efficacy of oncolytic viruses so far
can only be tested in 2D-cultured cell lines, as there is a lack of more realistic 3D in vitro
tumor models to provide predictive preclinical results for PC patients [5]. Thus far,
neither adequate in vitro nor human ex vivo models exist for PC. Several 3D-cultured
organoids/spheroids or tissue slices of several tumor entities are currently exploited
in the context of preclinical oncolytic virotherapy [5]. Hence, the establishment of
peritoneal ex vivo models is of particular relevance not only for cancer research, in-
cluding the study of treatment options for PC in a physiologically adequate tumor
microenvironment but also for the development of personalized virotherapy in the
future. Recently, a human ex vivo model was established to mimic PC formation and
to test possible treatment options for PC [6,7].

In this study, we investigated the feasibility of oncolytic virotherapy as a treatment
option for PC in a human ex vivo peritoneum co-culture model. In order to exploit a
wide range of detection capabilities of this system, patient-derived healthy /nontumorous
peritoneal tissue was co-cultivated with human HT-29 colorectal cancer cells, stably
expressing marker genes GFP and firefly luciferase. These PC models were then
infected with one of two prototypic oncolytic viruses from two different viral families.
GLV-0b347 is a vaccinia virus (VACV) that belongs to the poxvirus family and has many
advantages over other oncolytic vectors. It is a double-stranded DNA virus that can
replicate extremely efficiently in the cytoplasm and can produce up to 5000 progeny
virions per cell within 20 to 40 h. In addition, VACV is able to selectively infect and
subsequently lyse almost any tumor type, thus being a highly versatile virotherapeutic
agent [8,9]. The VACV construct GLV-0b347 has the unique feature of encoding the
far-red-fluorescent marker protein TurboFP635, thereby allowing the in vitro detection
of the successful infection of tumor cells with fluorescence microscopy [10]. The second
oncolytic viral construct used in this work was the measles vaccine virus MeV-DsRed,
which belongs to the paramyxovirus family. In general, MeV constructs used for
virotherapy are derived from strains that have been utilized for years as vaccines
and are therefore known to have an excellent safety profile. MeV-DsRed encodes the
red-fluorescent marker protein DsRed, which also enables tracking of successful tumor
cell infection [11].

Moreover, the double-labeled GFP/luc-positive HT-29 cells not only allow visual
documentation of therapeutic success via GFP expression, but they also provide a direct
quantification of the remaining (living) tumor cell population on the peritoneal tissue
through the measurement of luciferase activity. These features, combined with the ability
to track successful infection with oncolytic viruses based on marker gene expression, make
the model system presented here a clinically relevant platform for the investigation of
PC therapy.
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2. Materials and Methods
2.1. Cell Culture

The human GFP/Luciferase (luc) dual-labeled HT-29 cancer cell line was purchased
from GeneCopoeia™ (Cat. SCL-C06-HLG, Rockville, MD, USA) and authenticated by
short tandem repeat analysis (Eurofins, Ebersberg, Germany). Prior to use in experiments,
GFP/luc HT-29 cells were tested for mycoplasma by polymerase chain reaction (PCR)
using a Venor®GeM Classic kit (11-1025; Minerva Biolabs, Berlin, Germany) according
to the manufacturer’s instructions. Cells were cultivated in McCoy’s 5A Medium with
L-glutamine (Pan Biotech GmbH, Aidenbach, Germany) supplemented with 1% peni-
cillin/streptomycin, 10% fetal calf serum (FCS) and with 1 ug/mL puromycin (Thermo
Fisher Scientific, Waltham, MA, USA) for maintenance of selection in a 5% CO, incubator
at37 °C.

2.2. Preparation and Culture of Peritoneal Tissue

Fresh peritoneal tissue was obtained directly from the operating room, with informed
consent from the patients, and transferred immediately to the laboratory in E199 medium
(Biochrom AG, Berlin, Germany). The tissue samples were then incubated for 15 min
in phosphate-buffered saline (PBS) containing penicillin/streptomycin and amphotericin
B (Sigma-Aldrich Chemie, St. Louis, MO, USA). Extraperitoneal fat was removed, and
7 x 7 mm tissue pieces were inserted between two stainless steel rings, which are available
in various sizes, and thus enable large variations in the setting of these experiments.
Moreover, stainless steel rings are more stable than plastic rings. In this setup, the
ring system allows for tissue orientation with the mesothelial cells pointing upwards,
thereby better reflecting the peritoneal cavity in the in vivo setting. The peritoneum was
cultured in E199 medium containing penicillin/streptomycin, L-glutamine (Biochrom
AG), FCS (Thermo Fisher Scientific), hydrocortisone (Sigma-Aldrich Chemie), fibroblast
growth factor (PeproTech GmbH, Hamburg, Germany), and heparin (Biochrom AG), as
described previously [12].

2.3. Preparation of Ex Vivo Peritoneum Co-Culture Model

Peritoneal tissue samples were inserted between stainless steel rings (internal diameter
4.4 mm). For co-culture, 2 X 10° immortalized GFP/luc-labeled human HT-29 colorectal
cancer cells were seeded onto the peritoneum and cultured in peritoneum medium for the
indicated times in a 5% CO, incubator at 37 °C.

2.4. Oncolytic Viral Constructs

The vaccinia virus (VACV) construct GLV-0b347 used in our studies was kindly provided
by the Genelux Corporation (San Diego, CA, USA). In GLV-0b347 derived from the Western
Reserve (WR) strain of vaccinia, the gene locus for thymidine kinase (J2R) was deleted by the
insertion of the gene encoding for the far-red-fluorescent protein TurboFP635 under control of a
vaccinia synthetic early/late promoter (Psg;,) (Supplementary Materials Figure S1A).

The second oncolytic viral construct used was the measles vaccine virus MeV-DsRed, a vector
derived from the measles Edmonston B vaccine strain, which carries the red-fluorescent marker
gene DsRed in the leader position next to the N gene (Supplementary Materials Figure S1B).
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2.5. Infection of GFP/luc—HT-29 Cells in Cell Culture or in Ex Vivo Peritoneum Co-Culture Model

GFP /luc-HT-29 cells in 24-well plates were infected with GLV-0b347 or MeV-DsRed at
different multiplicities of infection (MOI) in 250 uL of DMEM + 2% FCS (GLV-0b347)
or OptiMEM (MeV-DsRed) (Invitrogen, Darmstadt, Germany). At 1 (GLV-0b347) or
3 (MeV-DsRed) hours postinfection (hpi), the inoculum was removed and a growth medium
was added to the cells. At 72 and 96 hpi, the remaining tumor cell mass was analyzed
using a sulforhodamine B (SRB) cell viability assay, via the measurement of luciferase
activity, or by fluorescence intensity. Furthermore, fluorescence images were taken using a
Leica DMiS8 fluorescence microscope equipped with a DMC 4500 camera (Leica Biosystems,
Wetzlar, Germany).

Ex vivo peritoneum co-culture models were cultured for 2—4 days. Then, infections
with 1.5 x 10° pfu (plaque-forming units) of GLV-0b347 or MeV-DsRed were performed in
50 puL of peritoneum medium without FCS. At 1 (GLV-0b347) or 3 (MeV-DsRed) hpi, the
inoculum was removed and peritoneum medium with 20% FCS was added to the cells.
Infected co-culture models were observed for 7 days postinfection (dpi), and at 2, 4, and
7 dpi, luciferase activity was measured and fluorescent images were taken using a Leica
MZ10F stereo-fluorescence microscope (Leica Biosystems).

2.6. Sulforhodamine B (SRB) Cell Viability Assay

As described previously [13], cells were washed with ice-cold PBS at 72 hpi, fixed with
cold 10% trichloroacetic acid (TCA), and incubated at 4 °C for 30 min. After removing the
TCA and drying, 0.4% SRB (Sigma-Aldrich, Taufkirchen, Germany) dissolved in 1% acetic
acid was added, and cells were stained at room temperature (RT) for 10 min. After washing
with 1% acetic acid and drying, 10 mmol/L Tris base (pH 10.5) was added to extract the
protein-bound dye, and the cells were then incubated at RT for 10 min. Optical density
was measured in a microtiter plate reader (Synergy HT, BioTek Instruments GmbH, Bad
Friedrichshall, Germany) at a wavelength of 550 nm (reference wavelength at 620 nm).

2.7. Measurement of Luciferase Activity of GFP/luc—-HT-29 Cells in Cell Culture or in Ex Vivo
Peritoneum Co-Culture Models

The luciferase activity of GFP/luc-HT-29 cells in 24-well plates was measured in
triplicate using the Bright-Glo"" Luciferase Assay System (Promega, Madison, W1, USA)
according to the manufacturer’s instructions. HT-29 cells in 75 pL of medium were lysed
with the addition of 75 uL of Bright-Glo™ Reagent and incubation for 2 min. Cell lysates
were transferred into white 96-well plates, and the luminescence was measured with a
Synergy HT reader (BioTek Instruments GmbH, Bad Friedrichshall, Germany).

For the measurement of luciferase activity in ex vivo peritoneum co-culture models,
peritoneal tissue samples were removed from the steel rings and transferred into a 96-well
plate with 70 pL of peritoneum medium. Cells were lysed by the addition of 70 pL of
Bright-Glo"" Reagent and incubated for 5 min. Again, cell lysates were transferred into
white 96-well plates and the luminescence was measured with a Synergy HT reader.

2.8. Immunohistochemistry

Formalin-fixed, paraffin-embedded sections (4 um) of peritoneal tissue were stained
with Mayer’s hematoxylin (Sigma-Aldrich Chemie) and eosin (Merck Chemicals GmbH,
Darmstadt, Germany). For virus-specific antibody staining, the following antibodies and
pretreatments were used: Measles (NP cl. 120 hybridoma cells, 1:1.000, heat-induced
epitope retrieval at pH 6, ECACC Hybridoma Collection); Vaccinia (ab35219, 1:2.000, Ab-
cam, Cambridge, United Kingdom). After antibody-specific epitope retrieval (Pronase
1g/L, 107433, Merck Chemicals GmbH), endogenous peroxidase blocking (Dako, S2023)
was performed for 10 min at RT. Primary antibody staining was performed at 4 °C overnight
followed by peroxidase/DAB+-based detection using the Dako REAL EnVision Detection
System (Dako, K7005). After proteinase K treatment, epithelial cell adhesion molecule (Ep-
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CAM) antibody staining (1:50, 248M-96, Cell Marque, Rocklin, CA, USA) was performed for
25 min on a Lab Vision Autostainer (Thermo Fisher Scientific GmbH, Waltham, MA, USA).

2.9. Statistical Analysis

Statistical analysis was performed with GraphPad Prism Version 9 (GraphPad Soft-
ware Inc., San Diego, CA, USA). Treated samples from cell culture experiments without the
co-culture of patient-derived peritoneum were compared to MOCK-treated control groups
and the p-values were calculated using ordinary one-way ANOVA and Dunnett’s multiple
comparison tests. In co-culture experiments regarding luciferase measurements, the signifi-
cance between the two treatment groups was analyzed using unpaired ¢-tests. Four different
p-values were determined: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****).

3. Results
3.1. Virotherapeutic Treatment of GFP/luc-Labeled Human HT-29 Tumor Cells in Cell Culture

We initially investigated the efficacies of oncolytic vaccinia and measles viruses in a
selected cancer cell line without the addition of patient-derived peritoneum.

In a first approach, GFP/luc-labeled human HT-29 colorectal cancer cells were in-
fected in vitro with increasing MOlIs of vaccinia virus GLV-0b347 or measles vaccine virus
MeV-DsRed, both labeled with a red-fluorescent marker protein in a complementary way
to the green fluorescent HT-29 tumor cells. This sophisticated combination allows not
only the visual documentation of successful viral infection, replication (red fluorescence),
and oncolysis (green fluorescence) via fluorescence microscopy but also the tracking of
therapeutic success by direct quantification of the residual living tumor cells through the
measurement of remaining luciferase activity (Figure 1A).

Fluorescence microscopy images taken at 72 hpi showed that GFP/luc-HT-29 cells
could be successfully infected by both GLV-0b347 (Figure 1B) and MeV-DsRed (Figure 2) in
an MOI-dependent manner. In tumor cells infected with GLV-0b347, an increasing fluores-
cent signal of the marker protein TurboFP635 was detected until a maximum was reached
at an MOI of 0.01. At higher MOIs of 0.1 and 1, the fluorescent signals of TurboFP635 and
GFP were significantly reduced, thereby indicating that oncolysis had already occurred
substantially at this stage of infection after 72 h (Figure 1B).

In GFP/luc-HT-29 cells infected by MeV-DsRed, a maximum of marker protein DsRed
expression was reached at the highest examined MOI of 10, whereas GFP signaling was found
to already decrease at MOIs of 1 and 10, an observation that indicates the onset of profound
oncolysis. Furthermore, tumor cell death was confirmed in the corresponding transmitted
light images (see buckling and detachment of the respective tumor cells) (Figure 2).

3.2. Comparison of Different Detection Options for the Oncolytic Activity of
Virotherapeutic Compounds

Besides the possibility of visually detecting successful virus-mediated oncolysis by
a reduction in the GFP signal in the fluorescence microscope, the sophisticated and thus
state-of-the-art system used here allowed further analytical methods to prove the suc-
cess of our tumoricidal therapy. Firstly, apart from the visual observation of either GFP
or TurboFP635/DsRed fluorescence, the direct quantification of activity is possible by
the determination of the expression of luciferase. This is because the human HT-29
cancer cell line used here is labeled not only with GFP but also with luciferase, which
opens the possibility of quantifying the viability of remaining cells after virotherapy
by the measurement of luciferase activity. Secondly, since the general susceptibility of
cancer cells to virotherapeutic treatment with GLV-0b347 or MeV-DsRed alone, without
co-culture on peritoneal tissue, was investigated here, it was also possible to evaluate
the efficacy with a standardized cytotoxicity assay (e.g., with the sulforhodamine B (SRB)
assay, which is the standard assay of the US National Cancer Institute to screen all kinds of
cytotoxic substances [13]).
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First, we investigated and compared the sensitivity of the different detection ap-
proaches to select the best analytical method for the measurement of the virotherapeutic
efficacy in the ex vivo peritoneal co-culture model.

For this purpose, GFP/luc-labeled human HT-29 colorectal cancer cells were infected
in vitro with increasing MOls of vaccinia virus GLV-0b347 (Figure 3A) or measles vaccine
virus MeV-DsRed (Figure 3B). At 72 hpi, virus-mediated oncolysis was analyzed using
(i) the SRB assay, (ii) the measurement of luciferase activity, and (iii) the quantification
of GFP and TurboFP635/DsRed fluorescence (Figure 3). As expected, the quantification
of GFP and TurboFP635 fluorescence signal in GLV-0b347-infected cells mirrored the ob-
servations in the fluorescence microscopy images. The greatest infection was seen with
an MOI of 0.01, as reflected by the maximum TurboFP635 signals at 72 hpi, while GFP
fluorescence decreased markedly when tumor cells were infected with MOlIs higher than
0.01. Furthermore, the results of the SRB assay confirmed the successful MOI-dependent
GLV-0b347-induced oncolysis of HT-29 cells with nearly identical sensitivity. This assay also
showed that the remaining tumor cell masses decreased markedly at 72 hpi with GLV-0b347
at an MOI of 0.01 and higher. When luciferase activity was examined, a slight increase was
observed at an MOI of 0.01, which may be explained by an initial virus-mediated boost in
general cell metabolism [14,15]. However, at higher virus concentrations (MOls of 0.1 and
1), the expected pronounced reduction in luciferase activity occurred, which again could be
attributed to the significant oncolysis of HT-29 cells (Figure 3A).

In MeV-DsRed-infected cells, a nearly identical pattern of results for each detection
method was observed (Figure 3B). The greatest infection was seen with MOIs of 1 and
10, as reflected by the maximum DsRed signals, while GFP fluorescence decreased
markedly in these samples. The determination of both luciferase activity and remaining
tumor cell mass with the SRB assay confirmed the data that had already been obtained
by the measurement of GFP fluorescence, namely that the MeV-DsRed infection of
HT-29 cells with increasing amounts of infectious virus particles resulted in a dose-
dependent oncolysis of tumor cells (Figure 3B).

In all the different assays tested, GLV-0b347 had a higher cell-killing capacity com-
pared to MeV-DsRed, leading to higher oncolysis at lower MOIs. This is in accordance
with previous studies, which showed that vaccinia viruses replicate faster and thus
lead to almost complete cell death within a shorter time as compared to other oncolytic
viruses such as measles viruses [16,17].

Notably, since an MOI-dependent increase in oncolysis of HT-29 cells was observed
when applying both virus constructs, we believe that it is important to use sufficiently
high virus concentrations for the study of ex vivo peritoneum co-culture models. Since all
detection options showed almost comparable sensitivity in HT-29 cells alone, we decided
to use the easy-to-perform luciferase measurements to determine treatment efficacies in the
co-culture model.

3.3. Human Ex Vivo Peritoneum Model as a Platform for Virotherapeutic Applications

In the next step, the virotherapeutic effectiveness of GLV-0b347 and MeV-DsRed
was tested for the first time with normal/nonmalignant peritoneum obtained from
noncancer patients co-cultured with GFP/luc-labeled HT-29 cancer cells. For this
purpose, the peritoneum obtained from the surgery room was inserted immediately
between stainless steel rings, as described before [6] (Figure 4A,B). Next, GFP/luc-HT-
29 cancer cells were seeded onto the peritoneum and, after subsequent attachment,
infected with the oncolytic viruses GLV-0b347 or MeV-DsRed at a fixed virus dosage
of 1.5 x 10° plaque-forming units (pfu) (Figure 4C). The successful growth of tumor
cells on the peritoneum as well as their successful infection and oncolysis could be
demonstrated by (i) fluorescence microscopy, (ii) luciferase measurements, and (iii)
immunohistochemistry (IHC) (Figures 5 and 6).
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3.4. Virotherapeutic Treatment of PC Models with Recombinant Vaccinia Virus GLV-00347

Infection of co-cultures with GLV-0b347 showed a significantly higher TurboFP635
signal (Figure 5A) compared to the MOCK-infected co-cultures (Figure 5B). This effect
was observed in the infected sample as early as 2 dpi but subsequently decreased
slightly over time. The GFP signal of tumor cells was stable in GLV-0b347-infected
co-cultures but increased over time in MOCK-infected co-cultures. In addition, lu-
ciferase activity was clearly reduced in virus-infected co-cultures starting at 2 dpi, and
further decreased strongly until 7 dpi compared to MOCK-treated samples, thereby
indicating successful virus-induced oncolysis (Figure 5C). The IHC staining of co-
cultures with GFP/luc-HT-29 revealed an effective tumor cell lysis and almost no
remaining tumor cells in GLV-0b347-infected co-cultures compared to MOCK-treated
co-cultures, as indicated by staining with hematoxylin and eosin (H&E) (Figure 5D)
and EpCAM antibody (Figure 5E). Moreover, virus-specific stainings showed a selec-
tive infection of GFP /luc-HT-29 cells with GLV-0b347 without any signs of peritoneal
infection (Figure 5F).

3.5. Virotherapeutic Treatment of PC Models with Recombinant Measles Vaccine
Virus MeV-DsRed

When comparing MeV-DsRed-infected (Figure 6A) with MOCK-treated co-cultures
(Figure 6B) under the fluorescence microscope, a significantly higher DsRed signal
was observed in the infected sample as early as 2 dpi, which remained at a con-
stant level until the end of the experiment at 7 dpi. The GFP signal of tumor cells
obtained before infection was clearly visible with comparable intensities in both
samples but decreased over time in the MeV-DsRed-treated co-culture. In addition,
luciferase activity was clearly reduced in virus-infected co-cultures starting at 2 dpi,
and further decreased until 7 dpi compared to MOCK-treated samples, thereby also
indicating successful virus-induced oncolysis (Figure 6C). In addition, IHC staining
was performed, which showed efficient tumor cell lysis and reduced numbers of
tumor cells in MeV-DsRed-infected compared to MOCK-treated co-cultures, as indi-
cated by staining with H&E (Figure 6D) and EpCAM antibody (Figure 6E). Moreover,
virus-specific stainings revealed a selective infection of GFP/luc HT-29 tumor cells
with MeV-DsRed without infection of normal cells constituting the nontumorous
peritoneal tissue (Figure 6F). This tumor cell-restricted infection was also confirmed
when infections were performed in ex vivo peritoneum models without the co-culture
of HT-29 tumor cells (Supplementary Materials Figure 52). In ex vivo models without
co-culture, neither infection with GLV-0b347 (Supplementary Materials Figure S2A)
nor with MeV-DsRed (Supplementary Materials Figure S2B) resulted in the fluores-
cence microscopic detection of TurboFP635 or DsRed on the peritoneal tissue at 7 dpi.
In contrast, both a distinct TurboFP635 (Supplementary Materials Figure S2A) and a
pronounced DsRed fluorescence signal (Supplementary Materials Figure S2B) were
observed at the same time point in peritoneum models with HT-29 tumor cells.

In summary, these results show that this platform could be highly valuable in testing
patient- and tumor-specific responses to oncolytic virotherapy to determine the most effec-
tive virotherapeutic compound for each PC patient, thus paving the way for personalized
virotherapy in PC.
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Figure 1. Virotherapeutic treatment of GFP/luc-labeled human HT-29 tumor cells in cell culture

with GLV-0b347. (A) Schematic illustration of the three-step virotherapeutic process and associated
detection capabilities: (1) GFP/luc-labeled HT-29 tumor cells were seeded into a 24-well cell culture
plate. Successful plating of the cells can be verified by the determination of GFP fluorescence.
(2) The treatment of HT-29 cells with oncolytic viruses encoding a red-fluorescent marker protein.
The successful infection of the tumor cells can be verified by the determination of red fluorescence.
(3)/(4) The viral oncolysis can be determined by a decrease in GFP as well as in luciferase activity.
Over time, enhanced red fluorescence indicates an increasing number of tumor cells being infected by
the red-fluorescence marker gene encoding virotherapeutic compounds. (B) The fluorescence images
of HT-29 GFP /luc-labeled cells at 72 h postinfection (hpi) with GLV-0b347 at different multiplicities
of infection (MOls), as depicted. BF, brightfield; OL, overlay of GFP and TurboFP635 signal.
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Figure 2. Virotherapeutic treatment of GFP/luc-labeled human HT-29 tumor cells in cell culture with
MeV-DsRed. Fluorescence images of HT-29 GFP /luc-labeled cells at 72 h postinfection (hpi) with
MeV-DsRed at different multiplicities of infection (MOlIs), as depicted. BE, brightfield; OL, overlay of
GFP and DsRed signal.
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Figure 3. Comparison of different detection options for the oncolytic activity of virotherapeutic
compounds GLV-0b347 (A, images to the left) and MeV-DsRed (B, images to the right) in HT-
29 GFP/luc tumor cells. HT-29 GFP/luc cells were infected with GLV-0b347 (A) or MeV-DsRed
(B) at different multiplicities of infection (MOIs) ranging from 0.0001 to 1 for GLV-0b347, from
0.001 to 10 for MeV-DsRed, or remained uninfected (MOCK). At 72 h postinfection (hpi), remaining
tumor cell masses were determined by either (i) SRB viability assays, (ii) the measurement of the lu-
ciferase activity, or (iii) the quantification of the GFP or red-fluorescence intensity. Each measurement
was calculated relative to the MOCK control. The mean + SD of at least two independent experi-
ments performed in triplicate is shown. ANOVA test relative to MOCK-infected control: * p < 0.05,
** p <0.01, ** p <0.001, and **** p < 0.0001.
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Figure 4. Human ex vivo peritoneum model and schematic illustration of the three-step virother-
apeutic process in co-cultures with GFP/luc-labeled human HT-29 tumor cells. (A) Photographic
image of the human ex vivo peritoneal model cultivated between stainless steel rings in a 24-well
plate. (B) Photographic image of the peritoneum in the ex vivo model through a light microscope.
(C) (1) Preparation of co-cultures of the peritoneum from noncancer patients and human GFP/luc-
labeled HT-29 tumor cells. Successful plating of the cells can be verified by fluorescence microscopy.
(2) Virotherapeutic treatment of co-cultures with oncolytic viruses carrying a red-fluorescent marker
protein. Successful infection of the tumor cells can be verified by the determination of red fluorescence
via fluorescence microscopy. (3) Viral oncolysis can be determined by a decrease in GFP and red
fluorescence as well as by a decrease in luciferase activity.
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Figure 5. Virotherapeutic treatment of PC models with recombinant vaccinia virus GLV-0b347.
The fluorescence images of GLV-0b347-infected co-cultures ((A); 1.5 x 10° plaque-forming units
(PFU)) or MOCK-infected (B) co-cultures consisting of the peritoneum of noncancer patients and
adherently growing GFP/luc-labeled human HT-29 tumor cells at days 2, 4, and 7 postinfec-
tion (dpi); original magnification 4x. (C) Luciferase activity of GFP/luc-HT-29 cells growing
on peritoneum at 2, 4, and 7 dpi, either GLV-0b347-infected or MOCK-infected. Each measure-
ment is normalized to the MOCK control. The mean £ SD of one experiment performed in
triplicates is shown. t-test relative to MOCK-infected control: * p < 0.05 and ** p < 0.01. ns;
not significant. (D) The hematoxylin and eosin staining of human peritoneal tissue with and
w/o co-culture of GFP/luc-labeled HT-29 cells at 7 dpi, either GLV-0b347-infected or MOCK-
infected. (E) The EpCAM staining of peritoneal tissue with the co-culture of HT-29 cells at
7 dpi, either GLV-0b347-infected or MOCK-infected. (F) The vaccinia virus staining of peritoneal
tissue with co-culture of HT-29 cells at 7 dpi, either GLV-0b347-infected or MOCK-infected. Experi-
ments were conducted with the peritoneal tissue from different patients and show representative
data from at least three different experiments. P; peritoneum. Black arrows indicate intact or infected
and lysed HT-29 cells on the surface of the peritoneum. Scale bars represent 100 pm.
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Figure 6. Virotherapeutic treatment of PC models with recombinant measles vaccine virus MeV-

DsRed. The fluorescence images of MeV-DsRed-infected co-cultures ((A); 1.5 x 10° plaque-forming

units (PFU)) or MOCK-infected (B) co-cultures consisting of the peritoneum of noncancer patients
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and GFP/luc-labeled human HT-29 tumor cells at days 2, 4, and 7 postinfection (dpi); original
magnification 4 x. (C) The luciferase activity of GFP/luc-HT-29 cells growing on peritoneum at 2, 4,
and 7 dpi, either MeV-DsRed-infected or MOCK-infected. Each measurement is normalized to the
MOCK control. The mean =+ SD of one experiment performed in triplicates is shown. t-test relative
to MOCK-infected control: * p < 0.05. ns; not significant. (D) The hematoxylin and eosin staining
of human peritoneal tissue with and w/o co-culture of GFP/luc-labeled HT-29 tumor cells at 7 dpi
with MeV-DsRed or MOCK infection. (E) The EpCAM staining of peritoneal tissue with co-culture of
HT-29 cells at 7 dpi with MeV-DsRed or MOCK infection. (F) The MeV staining of peritoneal tissue
with co-culture of HT-29 cells at 7 dpi with MeV-DsRed or MOCK infection. The experiments were
conducted with peritoneal tissue from different patients and show representative data from at least
three different experiments. P; peritoneum. Black arrows indicate intact or infected and lysed HT-29
tumor cells on the surface of the peritoneum. Scale bars represent 100 pm.

4. Discussion

Oncolytic virotherapy is a novel concept for the treatment of solid tumors that
has expanded in recent years with a multitude of technology innovations directed
at oncolytic viruses, showing promising results for several tumor entities [18-20].
However, most virotherapeutic compounds that are available today have only limited
activity when given intravenously, which is attributed to (i) rapid clearance of the
virus by the immune system before reaching the tumor, (ii) low infection rates of tumor
sites when accessed by the blood circulation, and (iii) a low penetration depth into
solid tumors.

PC is currently treated by cytoreductive surgery followed by intraperitoneal (i.p.)
administration of chemotherapeutic agents (via pressurized intraperitoneal aerosol
chemotherapy (PIPAC) or intraperitoneal hyperthermic chemoperfusion (HIPEC)).
Since the peritoneal cavity can be reached quite easily, other possibilities for local
treatment also exist, such as the direct intraperitoneal application of virotherapeutic
compounds [21]. Thus, problems of blood-borne virus neutralization can be avoided
(e.g., via the interaction with blood proteins and circulating antibodies). Moreover,
it has been shown that aerosolization and hyperbaric pressure did not impact the
suitability of adenoviruses when injected i.p., thereby allowing the possibility of using
pressurized i.p. aerosolized virotherapy applications for the treatment of PC [22].
As a consequence, established clinical i.p. application methods such as PIPAC or
HIPEC would be well suited for the i.p. application of novel therapeutics such as
oncolytic viruses.

In line with this, Zhang et al. investigated the efficacy, safety, and immunomodula-
tory effect of i.p. injection of the oncolytic adenovirus H101 against malignant ascites in
40 patients. They showed that i.p. injection of the oncolytic virus H101 led to a marked
tumor cell depletion without any major side effects. Moreover, H101 was found to
mediate a tumor-specific immune activation on day 14 after treatment [23]. In ad-
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dition, an ongoing phase III study is currently investigating the combination of an
i.p. administered oncolytic vaccinia virus olvimulogene nanivacirepvec (Olvi-Vec;
formerly known as GL-ONC1) in conjunction with platinum-doublet chemotherapy
and bevacizumab in women diagnosed with platinum-resistant/ refractory ovarian
cancer including primary peritoneal cancer (clinicaltrials.gov: NCT05281471). This
phase III study builds on the promising results of a previous phase I study in which
patients with platinum-resistant or refractory ovarian cancer were treated with the i.p.
administration of Olvi-Vec as a monotherapy [24]. This trial demonstrated successful
infection, in-patient replication, and subsequent oncolysis in the majority of patients
during the first treatment cycle and defined a dosage of 3 x 10° pfu/day i.p. on two
consecutive days for phase II (RP2) trials.

In a subsequent phase II trial (NCT02759588), the treatment regimen consisted
of two consecutive days of the i.p. application of 3 x 10° pfu Olvi-Vec followed
by intravenous (i.v.) carboplatin-doublet (CD) + bevacizumab (Bev). Thereafter,
maintenance treatment was continued with single-agent therapies + Bev. The mean
number of applied cycles of CD + Bev was determined as 6 (£3). The median follow-
up was 26.5 months. RECIST ORR was 54% (95% CI: 33-74%) with 2 (8%) complete
responses, 11 (46%) partial responses, and 8 (33%) stable diseases. The median duration
of response was 7.6 months (95% CI: 3.7-9.6). The median PFS was 11.0 months (95%
CI: 6.7-13.0), and the PFS-6-month was 77%. Thus, the majority of patients achieved
RECIST response with a median PFS exceeding their prior line of therapy [25].

Other clinical trials in patients with PC from primary ovarian cancer and primary
PC, but not primary colorectal cancer, are currently investigating the antitumor effect
of different oncolytic viruses (measles [26], reovirus [27], vaccinia (NCT02759588),
and adenovirus families (NCT00562003)) alone or in combination therapies. However,
the oncolytic potential of these viruses in preclinical studies was mostly investigated
in 2D-cultured cell lines. For example, the oncolytic herpes simplex viruses G207 and
NV1020 were shown to successfully infect, replicate, and kill human gastric cancer
cells in vitro and to reduce tumor burden in a murine xenograft model of peritoneally
disseminated gastric cancer [28]. In another study, the oncolytic adenovirus OBP-
401 synergistically suppressed the in vitro viability of human gastric cancer cells in
combination with paclitaxel and inhibited the growth of peritoneal metastatic tumors
and the number of malignant ascites in an orthotopic human gastric cancer peritoneal
dissemination model [29]. Thus, these studies relied on 2D-cultured cell lines “only”
and in in vivo mouse models (in part employing rather artificial xenograft tumor
models), because meaningful 3D in vitro/ex vivo models for PC were not available
at the time.

In our study, we have successfully established a human ex vivo peritoneum
co-culture model for investigating and screening oncolytic virotherapeutics. In our
state-of-the-art ex vivo setting, the GFP/luc-labeled human colorectal cancer cell line
HT-29 grew well on patient-derived peritoneum and can be successfully infected and
lysed by oncolytic vaccinia and measles vaccine viruses, as documented by microscopy
and different analytical methods. In addition, oncolytic virotherapy was specific for
HT-29 tumor cells without the noticeable infection of healthy human peritoneal tissue.
Tumor specificity is a key prerequisite for the successful treatment of patients, as it
reduces side effects and adverse events.
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Beyond that, our ex vivo PC model can be used for screening different oncolytic
virotherapeutics in a clinically relevant model [7] using patient-derived primary cancer
cells for co-culture [6] or patient-derived PC tissue. In this context, it is of the utmost
importance to keep in mind that the immune system has a crucial influence on the efficacy
of oncolytic virotherapy, which is why the immunological characterization of virotherapy
in a possible autologous PC model provides promising insights in an application-oriented
manner. Here, it would be of particular interest to assess whether immunogenic cell death
(ICD) does occur, which is then accompanied by the release of proinflammatory cytokines
and damage-associated molecular patterns (DAMPs), and whether IFN-stimulated genes
(ISGs) are induced as a result of virotherapy. Furthermore, our new platform enables us
to investigate the effects of co-cultured autologous PBMCs (either unstimulated or after
stimulation with IL-2), NK cells, myeloid cells, and whether macrophages, and to determine
these autologous cells play a significant tumor patient-individual role in combating PC.
After the successful establishment of autologous immune cell applications, combination
therapies with immune checkpoint inhibitors (e.g., pembrolizumab and atezolizumab)
would also be conceivable, to investigate an enhanced synergistic antitumor effect. Taken
together, our new platform offers multiple possibilities to obtain personalized data, which
might predict the interplay of PC with immune cells in the respective tumor patients who
are then treated with virotherapy based on our novel form of a companion diagnostic.

5. Conclusions

Here, we have successfully shown that a newly established human ex vivo PC model
could be a suitable screening platform for testing various oncolytic virus constructs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15020363/s1, Figure S1: Schematic structure of the used oncolytic
viruses; Figure S2: Selective virotherapeutic infection of tumor cells in PC models.
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