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Abstract: Bats are at the origin of human coronaviruses, either directly or via an intermediate host.
We tested swabs from 4597 bats (897 from the Democratic Republic of Congo (DRC), 2191 from
Cameroon and 1509 from Guinea) with a broadly reactive PCR in the RdRp region. Coronaviruses
were detected in 903 (19.6%) bats and in all species, with more than 25 individuals tested. The highest
prevalence was observed in Eidolon helvum (239/733; 39.9%) and Rhinolophus sp. (306/899; 34.1%),
followed by Hipposideros sp. (61/291; 20.9%). Frugivorous bats were predominantly infected with
beta coronaviruses from the Nobecovirus subgenus (93.8%), in which at least 6 species/genus-specific
subclades were observed. In contrast, insectivorous bats were infected with beta-coronaviruses from
different subgenera (Nobecovirus (8.5%), Hibecovirus (32.8%), Merbecovirus (0.5%) and Sarbecovirus
(57.6%)) and with a high diversity of alpha-coronaviruses. Overall, our study shows a high prevalence
and genetic diversity of coronaviruses in bats and illustrates that Rhinolophus bats in Africa are infected
at high levels with the Sarbecovirus subgenus, to which SARS-CoV-2 belongs. It is important to
characterize in more detail the different coronavirus lineages from bats for their potential to infect
human cells, their evolution and to study frequency and modes of contact between humans and bats
in Africa.

Keywords: bat; coronavirus; Africa; diversity; Sarbecovirus; Rhinolophus

1. Introduction

Emerging infectious diseases (EID) represent a major threat to global health. The
majority of EIDs are the result of spillover events of pathogens from wildlife and the
current COVID-19 pandemic with a new coronavirus, severe acute respiratory syndrome
coronavirus, SARS-CoV-2, is a perfect illustration of the impact of zoonotic transmission.
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Since the first cases have been reported in China, almost 6.6 million people died and
630 million individuals became infected by mid october 2022 [1]. Most likely these numbers
are even underestimated, because a high discordance has been observed between confirmed
cases and seroprevalence in sub-Saharan Africa [2–5]. The presumed host reservoir for the
current COVID-19 pandemic is insectivorous Rhinolophus bats in Asia, and a recent study
suggests at least two zoonotic events with one lineage that became predominant [6].

To date, seven human coronaviruses (HCoVs) are known, including the recent SARS-
CoV-2 virus [7,8]. They belong to the alpha (HCoV-229E and HCoV-NL63) and beta-CoV
genera (HCoV-OC43, HCoV-HKU1, SARS-CoV-1 and 2, Middle East respiratory syndrome
coronavirus (MERS-CoV)). Whereas HCoV-229E, HCoV-OC43, HCoV-HKU1 and HCoV-
NL63 usually cause mild symptoms, such as common cold and/or diarrhea, SARS-CoV-1
and MERS-CoV are highly pathogenic, causing severe lower respiratory tract infection [7,8].
The newly identified SARS-CoV-2 is less pathogenic and more transmissible compared to
SARS-CoV-1 and MERS-CoV but more pathogenic than the other HCoVs [7,8]. All seven
HCoVs have a zoonotic origin; some have been directly transmitted to humans from bats,
but for others, an intermediate host was required, such as camels for MERS-CoV and civets
for SARS-CoV-1 [9–15]. For SARS-CoV-2, the role of an intermediate species has not yet
been clarified [16–18]. However, all HCoVs have an evolutionary origin from bats, where
viruses are well adapted and presumably non-pathogenic. The prevalence of coronaviruses
is high in certain bat species, and a high genetic diversity with multiple subgenera of
alpha and beta coronaviruses has been reported, thus providing multiple opportunities for
spill-over events and the emergence of novel HCoVs [19].

It is thus important to be prepared for new outbreaks with coronaviruses. A major
step in understanding the risk of zoonotic infections is to characterize pathogen diversity
at the interface between humans and animals. Knowing the animal sources, extent of the
animal reservoir (i.e., prevalence and geographic distribution) and the genetic diversity
or evolutionary history of pathogens in wildlife is critical to predict risk for potential
emergence or re-emergence of diseases. Bats are the most widely distributed terrestrial
mammals in the world and constitute nearly 20% of mammalian biodiversity, with almost
1400 species now recognized [20]. Contacts between humans and bats are diverse and
range from direct exposure to infected blood or tissues through hunting and butchering to
indirect exposure to bat guano or fruit contaminated by their saliva, urine or feces [21,22].
A wide diversity of bat species are hunted for food or medicine, and bushmeat hunting
is increasingly recognized as a major conservation threat for bats, primarily in Southeast
Asia and West and Central Africa [21,23–25]. Given the frequent contact between bats
and humans in Africa, it is important to document in detail the genetic diversity of CoVs
in African bats, especially in the context of limited or under-equipped health facilities
that could not allow early detection or recognition of new diseases. Although more than
26,000 bats have been tested in Africa and sequences close to HCoVs have been reported
in bats from Africa, certain species and regions are still underrepresented [26]. Here, we
report the prevalence and diversity of coronaviruses in bats sampled in West and West
Central Africa.

2. Materials and Methods
2.1. Study Sites and Sample Collection

Samples were collected from free-ranging frugivorous and insectivorous bats in
Guinea, Cameroon and the Democratic Republic of Congo (DRC) between November
2015 and February 2022, as previously described [27]. Briefly, bats were captured using mist
nets or harp traps in roosting and foraging sites and released immediately after sampling.
Venipuncture was done of the propatagial or brachial vein and blood drops were directly
transferred onto Whatman 903 filter paper (GE-Healthcare, Feasterville-Trevose, PA, USA),
which were air-dried and preserved individually in plastic bags containing silica desiccant
and stored in a hermetic box as dried blood spots (DBS). DBS (a maximum of 2–3 weeks
after collection) were subsequently stored frozen (−20 ◦C) until analysis. Rectal and/or
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oral swabs were collected and stored in 500 µL RNA-later (Ambion, Austin, TX, USA) in the
field at ambient temperature for a maximum of two weeks and subsequently frozen in the
laboratory. For each bat that was sampled, information on capture sites (GPS coordinates,
ecological environment), capture method, morphology (body measurements, weight, color),
sex, age class (adult, juvenile) and visual species identification were recorded. In Cameroon,
adults were also classified into subadults and mature adults based on the presence of
enlarged testes and/or distended cauda epididymis for males and the development and
morphology of the mammary glands and thoracic (axillary) and pubic nipples for females.

2.2. Nucleic Acid Extraction and Screening for the Presence of Coronavirus RNA

Total DNA and RNA were extracted from swabs and feces using the NucliSENS
EasyMAG platform (BioMérieux, Marcy-l’Etoile, France) or the Qiagen Viral RNA mini
kit (Les Ulis, France). Briefly, for the Nuclisens method, 250 µL of sample was incubated
with 2 mL of lysis buffer for 15 min and extraction was performed using the manufac-
turer’s instructions. The total nucleic acids were resuspended in 60 µL elution buffer.
For the Qiagen method, nucleic acids were extracted from 250 µL of sample as per the
manufacturer’s instructions. RNA was eluted in 60 µL elution buffer. Extracted RNAs
were stored at −80 ◦C until use. For the detection of coronaviruses, cDNA was first syn-
thesized from denatured RNA (70 ◦C for 10 min) using a Reverse Transcription System
kit with random primers (Promega, Madison, WI, USA), following the manufacturer’s
instructions. Broadly reactive degenerate primers were used to amplify a 440 base pair
(bp) fragment in the highly conserved RdRp region by nested PCR [28]. Amplification
conditions were slightly adapted, as previously described [29]. cDNA was amplified with
the GoTaq Hot Start Master Mix PCR kit (Promega, Madison, WI, USA) to obtain a 620 bp
fragment in the first round with 40 cycles of 92 ◦C for 30 s, 48 ◦C for 30 s and 72 ◦C for
50 s. Cycling conditions for the second round used a touch-down technique to reduce
non-specific amplifications (10 cycles of 92 ◦C for 30 s, 53 ◦C for 30 s with −0.5 ◦C/cycle
and 72 ◦C for 30 s) followed by 35 cycles of 92 ◦C for 30 s, 53 ◦C for 30 s and 72 ◦C for 30 s).
The PCR products were visualized by agarose gel electrophoresis. PCR products were
directly sequenced with a BigDye Terminator version 3.1 sequencing kit (Life Technologies,
Courtaboeuf, France) on an Applied Biosystems 3500 Genetic Analyzer (Thermo Fisher
Scientific, Foster City, CA, USA). Sequences from both strands were reconstituted using the
SeqMan Pro tool from the package DNAStar v17.0.2 (Lasergene, Madison, WI, USA). The
newly obtained RdRp sequences of coronaviruses were then analyzed with the R package
MyCoV for rapid classification in subgenera [30]. The MyCoV package is available at
https://github.com/dw974/MyCoV (accessed on 19 May 2022).

2.3. Phylogenetic Analyses

The new RdRp sequences were aligned with representatives of the different subgenera
of alpha and beta coronaviruses and with sequences reported from bats in Africa from the
same regions, when possible. Multiple sequence alignment (MSA) was obtained using
MAFFT v7 (https://mafft.cbrc.jp/alignment/server/, accessed on 23 August 2022). The
alignment was manually checked and end-trimmed to match the newly obtained RdRp
sequences and to remove the PCR primer sequences. The final alignment was used for
maximum likelihood (ML) phylogenetic analysis with GTR + F + I + 4Γ as the best-fit model
of nucleotide substitution according to BIC and 1000 bootstrap resampling using the IQ-Tree
server (http://iqtree.cibiv.univie.aC.at, accessed on 23 August 2022) [31,32]. Consensus
trees were edited with FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/, accessed
on 23 August 2022).

2.4. Molecular Confirmation of Bat Species

Species identification recorded in the field was molecularly confirmed for the majority
of bats that were infected with a coronavirus using the corresponding DBS sample, as
in our previous studies on viruses in bats [27,33,34]. In addition, at least one sample per

https://github.com/dw974/MyCoV
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sampling date, per capture method and per morphologic description at each site was
confirmed. A 800 bp fragment of the mitochondrial cytochrome b (CytB) region was
amplified using previously described primers to identify mammal species, including bats,
Cytb-L14724 (forward) and Cytb-H15506 (reverse) [35]. To increase PCR specificity for
certain bat species, the forward primer was replaced by a newly designed primer Cytb-L1
5′-ATG ACC AAC ATC CGA AAA TCN CAC-3′ or Cytb-L2 5′-ATY TCY TCM TGA TGA
AAY TTY GGM T-3′ [34]. For a subset of samples, species identification recorded in the field
was confirmed by amplifying a 386-bp mitochondrial DNA fragment of the 12S rRNA gene
with primers 12S-L1091 and 12S-H1478 [36]. The PCR products were directly sequenced
and reconstructed, as described above. Sequences were pasted in the NCBI BLAST web
interface (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 12 May 2022) to identify
the most similar bat species. For samples with no or low similarity (<97%) hits with species
in Genbank, a phylogenetic tree was constructed using maximum likelihood methods
implemented in PhyML with reference sequences in order to obtain genus identification.
Species identification was extrapolated for the remaining samples by combining molecular
and field data. For certain insectivorous bats (from Molossidae, Rhinolophidae, Hipposideridae
and Nycteridae families), identification was only possible at the genus level, mostly due to
the lack of reference sequences in Genbank. For Epomophorus gambiensis and Micropteropus
pusillus, species discrimination cannot be done by CytB sequences only, and morphologic
details on the forearm and weight measurements were also used to discriminate the species,
as previously described [34,37].

2.5. Statistical Analyses

To explore the impact of age, sex and reproductive stage of the collected samples on
the detection of coronavirus RNA, we performed Kruskal–Wallis or Chi-2 tests. Significant
results were considered for a p−value of <0.05.

3. Results
3.1. Bat Samples

Swabs from a total of 4597 bats were analyzed, 897 from DRC, 2191 from Cameroon and
1509 from Guinea, including 319 bats from a previous pilot study [29]. The samples were
collected at various sites across the 3 countries: 16 for Guinea, 9 for Cameroon, and 7 for
DRC (Figure 1 and Supplementary Table S1). Bats were captured in different ecological envi-
ronments: villages (15.5%), forest sites (20.2%), urban sites (17.3%), plantations (7.3%), caves
(25.9%) and diverse other settings for the remainder. For a total of 1760 (38.2%) bats, species
identification in the field was confirmed by sequence analysis. Details on bat families,
genera and species analyzed in this study are shown in Supplementary Table S2. Overall,
we analyzed a total of 2986 (65%) frugivorous bats from at least 12 species. Among them,
the predominant species were Rousettus aegyptiacus (n = 791), Epomophorus sp. (n = 737)
and Eidolon helvum (n = 733), followed by Epomops sp. (n = 258), Micropteropus pusillus
(n = 165), Hypsignathus monstrosus (n = 103), Myonycteris torquata (n = 91) and Lissonycteris
angolensis (n = 65). Among the 1611 (35%) insectivorous bats, at least 7 different families
were represented; the highest number of bats were from the Rhinolophus genus (n = 899),
followed by species from the Mollosidae (n = 399) and Hipposideridae (n = 291) families.
Marginal numbers of samples, less than 25, were obtained for 4 frugivorous bat species
(Casinycteris arginnis (n = 24), Megaloglossus woermanni (n = 15), Nanonycteris sp. (n = 3) and
Scotonycteris sp. (n = 1)) and 5 insectivorous bat species (Coleura afra (n = 1), Miniopterus
sp. (n = 9), Nycteris sp. (n = 5), Myotis sp. (n = 4) and Scotophilus sp. (n = 3)), which were
often only captured in a single country. Among the predominant species, the majority
were captured in the three countries, as is the case for E. helvum, Hipposideros genus and
representatives of the Mollossidae family. R. aegyptiacus was only captured in Guinea and
Cameroon. Epomophorus species were only captured in DRC and Guinea. In addition,
in DRC in the East, E. labiatus was captured versus E. gambiensis in Western DRC and
Guinea. Concerning the Epomops genus, two species were captured: E. franqueti in DRC and

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Cameroon and E. buettikoferi in Guinea. Rhinolophus bats were only captured in Cameroon
and Guinea.
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Figure 1. Collection sites of bat samples. Sites where bat samples were collected are highlighted
with yellow circles. Sites are indicated with numbers as follows in the three different countries:
Guinea (1, Conakry; 2, Boffa; 3, Boke; 4, Forecariah; 5, Kindia; 6, Mamou; 7, Koundara; 8, Mali; 9,
Faranah; 10, Siguri; 11, Kankan; 12, Kissidougou; 13, Gueckedou; 14, Macenta; 15, Nzerekore; 16;
Lola), Cameroon (17, Bipindi; 18, Campo; 19, Doumou Pierre; 20, Tibati; 21, Mambele; 22, Yaounde;
23, Mbankomo; 24, Nkolbisson; 25, Obala) and DRC (26, Beni; 27, Butembo; 28, Bikoro; 29, Iboko;
30, Ingende; 31, Mbandaka; 32, Mangina). Details on the number of samples per site are shown in
Supplementary Table S1.

Overall, 2104 (45.8%) were male and 2480 (53.9%) were female bats; for 13 (0.3%) bats,
the sex was not recorded. Only 391 (8.5%) were juvenile bats, 4139 (90.0%) were adults, and
for 67 (1.5%), the age class was not available.

3.2. Detection and Genetic Diversity of Coronaviruses

Among the 4597 bats tested by RT–PCR for the presence of coronavirus RNA, a total of
903 (19.6%) tested positive: 515/2986 (17.2%) of the frugivorous bats and 388/1611 (24.1%)
of the insectivorous bats. CoVs were identified in all species, except Casinycteris argynnis,
E. buettikoferi and Scotonycteris bergmansi, for which low numbers were tested, 24, 3 and
1, respectively. Positivity rates varied per species and were highest in E. helvum (29/733
(39.9%)), Rhinolophus sp. (306/899 (34.1%) and Hipposideros sp. (61/291 (20.9%)) for which
large numbers of samples were collected. Intermediate rates were observed in R. aegyptiacus
(114/791 (14.4%), H. monstrosus (12/103 (11.7%)) and Epomophorus sp. (72/737 (9.8%)) and
lowest rates were seen in M. torquata (6/91 (6.6%)), Epomops sp. (8/258 (3.1%)), L. angolensis
(2/65 (3.1%)), M. pusillus (5/165 (3.0%)) and in bats from the insectivorous Mollossidae
family (10/399 (2.5%)). For the other species, sample numbers were low and detection
rates were most likely not representative. Figure 2 shows percentages of frugivorous and
insectivorous bats that were positive per country (Figure 2a) and per species (Figure 2b),
and details are shown in Supplementary Table S2.
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Among the 903 PCR-positive samples, 768 (85.2%) were sequenced and revealed an
overall predominance of beta-CoVs, 77.2% (593/768) (Supplementary Table S3). Frugivo-
rous bats were predominantly infected with beta-CoVs, which represented 93.8% (395/421)
of the sequences versus 57.1% (198/347) for insectivorous bats (Figure 3). Whereas alpha-
CoVs were only marginally detected in the majority of frugivorous bat species tested, 21.6%
(21/97) sequences from R. aegyptiacus were alpha-CoVs.

As shown in Table 1 and Figure 4, representatives of all subgenera, except Embe-
covirus, were observed among the beta-CoVs. The vast majority were Nobecoviruses
(69.3%), followed by Sarbecoviruses (19.2%), Hibecoviruses (9.6%) and a single sequence
from a Nycteris bat in Guinea was classified as a Merbecovirus. Sarbecoviruses were only
detected in Rhinolophus species in Cameroon and Guinea. Hibecoviruses were predomi-
nantly detected in Hipposideros bats from Cameroon and Guinea, but also in Rhinolophus
bats in Cameroon captured in the same cave. Nobecoviruses were identified in all positive
frugivorous species in a minority of Hipposideros and Rhinolophus species. All beta-CoVs ob-
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served in the Molossidae family belonged to the Nobecovirus subgenus. A wide diversity of
alpha-CoVs was also observed, with representatives of Duvinacoviruses (n = 17), Minuna-
coviruses (n = 11), Rhinacoviruses (n = 67), sequences that are close to Pedacoviruses (n = 1)
and Decacoviruses (n = 16) and 63 sequences that do not belong to currently described
subgenera. The Duvinacovirus subgenus also harbors the HCoV-229E strain, which causes
mild symptoms in humans across the world [38]. Figure 4 illustrates the higher diversity of
subgenera observed in insectivorous versus frugivorous bats, i.e., 10 versus 4, respectively.
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Table 1. Number of coronaviruses (CoVs) from the different subgenera of alpha- and beta-coronaviruses per bat genus/species. For the Nobecovirus (NobeCoV)
subgenus, the different clades observed by phylogenetic analysis (Figure 5) are also indicated.

AlphaCoronaviruses BetaCoronaviruses

Unclass.
CoV

DecaCoV DuvinaCoV MinunaCoV PedaCoV RhinaCoV NobeCoV
Eidolon

NobeCoV
Epomophorus

NobeCoV
Lissonycteris

NobeCoV
Rousettus
(HKU9)

NobeCoV
Rousettus

NobeCoV
Megaloglossus

HibeCoV MerbeCoV SarbeCoV

Eidolon helvum 2 - - - - - 233 3 - - - - - - -
Epomophorus sp. a 2 - - - - - 2 50 - 1 - - - - -
Epomops sp. b - - - - - - - 5 - - - - - - -
Hypsignathus monstrosus - - - - - - 6 2 - 1 - - 1 - -
Lissonycteris angolensis - - - - 1 - - - 1 - - - - - -
Megaloglossus woermanni - - - - - - - - - - - 2 - - -
Micropteropus pusillus - - - - - - - 5 - - - - - - -
Myonycteris torquata - - - - - - - - 6 - - - - - -
Nanonycteris sp. c - - - - - - - 1 - - - - - - -
Rousettus aegyptiacus 5 16 - - - - 3 - - 64 8 - 1 - -
Total frugivorous 9 16 - - 1 - 244 66 7 66 8 2 2 - -

Coleura afra - - 1 - - - - - - - - - - - -
Hipposideros sp. c - - 16 - - - 1 - 1 1 - - 34 - -
Miniopterus sp. c - - - 7 - - - - - - - - - - -
Mops sp. c - - - 3 - - 3 - - - - - - - -
Mops/Chaerephon sp. c - - - - - - 2 2 - - - - - - -
Nycteris sp. c - - - - - - - - - - - - - 1 -
Rhinolophus sp. c 54 - - 1 - 67 5 - - 2 1 - 31 - 114
Total insectivorous 54 - 17 11 - 67 11 2 1 3 1 - 65 1 114

TOTAL 63 16 17 11 1 67 255 68 8 69 9 2 67 1 114

a Two Epomophorus species were observed: E. gambianus in Guinea, Cameroon and Western DRC and E. labiatus in Eastern DRC. b Two Epomops species were observed: E. franqueti in
Cameroon and DRC and E. buettikoferi. c Identification at the species level was not possible for a significant proportion of samples tested and were therefore grouped at the genus level.
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Figure 5. Phylogenetic tree with all new CoV sequences in the RNA-dependent RNA-polymerase
(RdRp) partial nucleotide sequences (768 unambiguously aligned base pairs from bats obtained in this
study). Phylogenetic analysis was performed as described in the methods and edited with increasing
nodes and midpoint rooting in FigTree. Sequences in black and gray refer to reference sequences
from the different CoV genera and sub-genera. Subgenera, including new CoV sequences from this
study, are highlighted in color. The number of new sequences included in the different subgenera
corresponds to the numbers indicated in Table 1 as follows: 255 Nobecoviruses (Eidolon cluster),
68 Nobecoviruses (Epomophorus cluster), 8 Nobecoviruses (Lissonycteris cluster), 69 Nobecoviruses
(Rousettus cluster with HKU9), 9 Nobecoviruses (Rousettus cluster), 2 Nobecoviruses (Megaloglossus
cluster), 67 Hibecoviruses, 1 Merbecovirus, 114, Sarbecoviruses, 63 unclassified alpha-CoVs, 16 Deca-
coviruses, 17 Duvinacoviruses, 11 Minunacoviruses, 1 Pedacovirus, 67 Rhinacoviruses. Details on
reference sequences and new sequences are provided in Supplementary Tables S5 and S6, respectively.

Phylogenetic analysis of all newly identified sequences with references from the differ-
ent subgenera and from other studies in Africa showed a high diversity in the Nobecovirus
subgenus, with at least 6 different mostly species-specific subclades (Table 1, Figure 5).
One major clade contained almost exclusively sequences amplified in Eidolon in Guinea,
Cameroon and DRC and other previously published sequences from E. helvum bats from
other countries in East, West and Central Africa. Among the 236 beta-CoVs identified
in E. helvum bats in our study, 233 fell into this clade. A second clade contains mainly
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sequences from Epomophorus and Micropteropus bats, as well as from all regions confounded
together with previously published sequences from these species. Sequences obtained
from the two Epomophorus subspecies fell into the same clade. Sequences obtained from
Epomops franqueti from DRC and Epomops buettikoferi bats from Guinea also fell within
this clade. A third clade comprises sequences from Lissonycteris and Myonycteris bats
from Guinea and DRC, respectively. Coronaviruses from Megaloglossus bats also formed
a separate clade in the Nobecovirus subgenus. Rousettus aegyptiacus was infected with
two species-specific Nobecovirus clades, one that included the HKU9 strain obtained
from a Rousettus bat in Guangdong province in China [39] and a second clade with lower
numbers of sequences from R. aegyptiacus bats from Guinea and Cameroon. Additionally,
among the Hibecoviruses, a wide diversity was seen among the sequences obtained from
the Hipposideros species. Sarbecoviruses were identified in Rhinolophus bats in Cameroon
and Guinea.

Among the Sarbecoviruses, two major clades were identified: one with sequences
from Asia and the other with sequences from Africa and Europe. The Asian clade was
further subdivided into four different lineages (i.e. lineage 1, 2, 3 and 5). The new African
Sarbecovirus sequences fell into the previously identified “lineage 4,” containing strains
from African and European Rhinolophidae, but the sequences from Cameroon and Guinea
each fell into separate clusters within the cluster of strains from African bats (Figure 6) [40].
Moreover, the Sarbecoviruses amplified in Rhinolophus bats from Cameroon formed two
separate clusters related to the year of collection. All new Sarbecovirus sequences from
West and West Central Africa were different from those observed in bats from East Africa.

In general, each bat species/genus was infected with a predominant alpha- and/or
beta-CoV variant independent of their geographic origin, but co-circulation with variants
from other CoV subgenera or subclades from the same subgenus was also observed. For
example, Eidolon helvum bats from Guinea, Cameroon and DRC were infected with the
same Nobecovirus subclade, but a small minority (3/236 sequences) fell in the subclade
dominated by Epomophorus and Micropteropus species. On the other hand, Rhinolophus
bats were infected with a wide diversity of alpha- and beta-CoVs; i.e., at least 3 different
subgenera of alpha-CoVs and 3 subgenera of beta-CoVs, including 3 Nobecovirus subclades
(Table 1, Figure 5). R. aegyptiacus bats were also infected with a wide diversity of CoVs, at
least 3 Nobecovirus subclades, Hibecoviruses and two alpha CoV subgenera.

3.3. Factors Associated with Detection of Coronaviruses in Bats

We compared whether age or sex could play a role in coronavirus positivity using
PCR. Overall, among all bat samples tested, 18.0% (16.5–19.5%; 447/2480) of female and
20.9% (19.1–22.6%; 439/2104) of male bats were positive for coronaviral RNA (Table 2). For
frugivorous bats, there was a trend of lower positivity in female bats, 14.7% (13–16.4%)
versus 19.4% (17.3–21.5%) (Chi-2; p = 0.0007). This was not homogenous among species;
for example, equal proportions of positivity were seen for Epomophorus sp. and Rousettus
aegyptiacus bats, and a higher prevalence was seen in male bats for Epomops sp. and Eidolon
helvum (Chi-2; p = 0.0197) (Table 2). In insectivorous bats, no overall difference in positivity
was seen between female and male bats (Chi-2; p = 0.57), but the results differed according
to species and genus, as shown in Table 2.
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Table 2. Number of bats positive for coronaviruses (n+) on the total number of bats tested (N) and
percentages of samples per sex and per bat genus/species.

F F M M p−Values
n+/N % Pos n+/N % Pos χ2 Test

Frugivorous bats
Family PTEROPODIDAE
Casinycteris arginnis 0/13 0.0 0/11 0.0 na d

Eidolon helvum 122/335 36.4 170/404 42.1 0.0197 *
Epomophorus sp. a 43/447 9.6 27/286 9.4 0.96, ns e

Epomops sp. b 3/155 1.9 5/102 4.9 na
Hypsignathus monstrosus 10/65 15.4 3/38 7.9 na
Lissonycteris angolensis 1/39 2.6 0/25 0.0 na
Megaloglossus woermanni 1/5 20.0 1/10 10.0 na
Micropteropus pusillus 2/80 2.5 3/85 3.5 na
Myonycteris torquata 2/38 5.3 4/53 7.5 na
Nanonycteris sp. c 1/1 100 0/2 0.0 na
Rousettus aegyptiacus 68/472 14.4 46/319 14.4 0.99, ns
Scotonycteris bergmansi 0/1 0.0 - - na
Subtotal frugivorous bats 243/1651 14.7 259/1335 19.4 0.0007 *

Insectivorous bats
Family EMBALLONURIDAE
Coleura afra 1/1 100 - - na
Family HIPPOSIDERIDAE
Hipposideros sp. c 19/125 15.2 41/164 25.0 0.04 *
Family MINIOPTERIDAE
Miniopterus sp. c 2/2 100 6/6 100 na
Family MOLOSSIDAE
Chaerephon sp. c 0/65 0.0 0/51 0.0 na
Mops sp. 4/131 3.1 2/118 1.7 na
Mops/Chaerephon sp. c 4/13 7.7 0/14 0.0 na
Family NYCTERIDAE
Nycteris sp. c 0/2 0.0 1/3 33.3 na
Family RHINOLOPHIDAE
Rhinolophus sp. c 174/485 35.9 130/411 31.6 0.2052, ns
Family VESPERTILIONIDAE
Myotis sp. c 0/2 0.0 0/2 0.0 na
Scotophilus sp. c 0/3 0.0 - - na
Subtotal insectivorous bats 204/829 24.6 180/769 23.4 0.57, ns

TOTAL 447/2480 18.0 439/2104 20.9 0.0152 *
a Two Epomophorus species were observed: E. gambianus in Guinea, Cameroon and Western DRC and E. labiatus
in Eastern DRC. b Two Epomops species were observed: E. franqueti in Cameroon and DRC and E. buettikoferi.
c Identification at the species level was not possible for a significant proportion of samples tested and were
therefore grouped at the genus level. d na: not applicable (sample number is too low or does not exist). e ns
non-significant χ2 test (p−value < 0.05). * significant χ2 test (p−value < 0.05).

Prevalence was higher in juvenile bats; i.e., 34% (29.3–38.7%) versus 18.7% (17.5–19.9%)
in adult bats (Chi-2; p < 0.0001) (Table 3). This trend was clearly confirmed for frugivorous
bats (Chi-2; p < 0.0001) and for the majority of species for which sufficient samples from
both age categories were tested, i.e., Eidolon helvum (Chi-2; p < 0.0001), R. aegyptiacus (Chi-2;
p = 0.0001) and Rhinolophus sp. (Chi-2; p < 0.0001), except for Epomophorus bats, but the
number of juvenile bats tested for this species was low. For insectivorous bats, equal
detection rates were observed for juvenile and adult bats, but overall, a low number of
juvenile bats was tested. In Cameroon, age determination of bats differentiated between
adults and subadults. Supplementary Table S4 shows the percentage of PCR-positive bats
for the three different age categories in this country and clearly illustrates that among adults,
the prevalence was higher in subadults, i.e., 40.6% (36.0–44.2%) versus 18.9% (16.6–21.3%)
in mature adults. Positivity rates in subadults were close to those observed in juvenile
bats. This trend was observed in frugivorous and insectivorous bats and for all species
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with sufficient samples tested in the different age categories, i.e., Eidolon helvum, Rousettus
aegyptiacus and Rhinolophus sp.

Table 3. Number of bats positive for coronaviruses (n+) on total number (N) tested and percentages
of positive (% pos) samples per bat genus/species positive per age category (adults and juveniles)
and per species.

Adult Adult Juvenile Juvenile p−Values
n+/N % Pos n+/N % Pos χ2 Test

Frugivorous bats
Family PTEROPODIDAE
Casinycteris arginnis 0/24 0.0 na d na na
Eidolon helvum 211/574 36.4 81/158 84.2 <10−4 *
Epomophorus sp. a 76/693 10.9 2/37 5.4 na
Epomops sp. b 8/250 3.2 0/6 0.0 na
Hypsignathus monstrosus 14/95 14.7 2/8 25 na
Lissonycteris angolensis 2/62 3.2 0/2 0.0 na
Megaloglossus woermanni 2/15 13.3 na na na
Micropteropus pusillus 5/160 3.1 0/2 0.0 na
Myonycteris torquata 6/86 6.7 na na na
Nanonycteris sp. c 1/3 33.3 na na na
Rousettus aegyptiacus 88/700 12.6 26/91 28.6 0.0001 *
Scotonycteris bergmansi 0/1 0.0 na na na
Subtotal frugivorous bats 413/2667 15.5 111/304 36.5 <10−4 *

Insectivorous bats
Family EMBALLONURIDAE
Coleura afra 1/1 100 na na na
Family HIPPOSIDERIDAE
Hipposideros sp. c 59/286 20.6 1/3 33.3 na
Family MINIOPTERIDAE
Miniopterus sp. c 8/8 100 na na na
Family MOLOSSIDAE
Chaerephon sp. c 0/89 0.0 0/25 0.0 na
Mops sp. c 4/181 2.2 0/31 0.0 na
Mops/Chaerephon sp. c 4/27 14.8 na na na
Family NYCTERIDAE
Nycteris sp. c 1/5 20.0 na na na
Family RHINOLOPHIDAE
Rhinolophus sp. c 283/868 32.6 21/28 75.0 <10−4 *
Family VESPERTILIONIDAE
Myotis sp. c 0/4 0.0 na na na
Scotophilus sp. c 0/3 0.0 na na na
Subtotal insectivorous bats 360/1472 24.5 22/87 25.3 0.9627, ns e

Total 773/4139 18.7 133/391 34.0 <10−4

a Two Epomophorus species were observed: E. gambianus in Guinea, Cameroon and Western DRC and E. labiatus
in Eastern DRC. b Two Epomops species were observed, E. franqueti in Cameroon and DRC and E. buettikoferi.
c Identification at the species level was not possible for a significant proportion of samples tested and were
therefore grouped at the genus level. d na: not applicable (sample number is too low or does not exist). e ns
non-significant χ2 test (p−value < 0.05). * significant χ2 test (p−value < 0.05).

We also looked more in detail at whether the prevalence of coronaviruses differed in
adult females according to the reproductive cycle, i.e., gestation or lactation. We observed
no significant difference for gestating bats, 23.4% versus 21.2% (Chi-2; p = 0.09), but the
detection rate of coronaviruses was lower in lactating females (11.8% (4.9–18.6%)) than in
non-lactating bats (22.7% (18.6–26.7%)) (Chi-2; p = 0.035) (Table 4).
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Table 4. Reproductive stage of female bats and coronavirus detection in bats from Cameroon. Number
of bats positive (n+) on total number (N) tested and percentages of positive (%) for coronavirus per
reproductive status.

Status n+/N Tested % Pos p−Value

Adult females, gestation 11/47 23.4% 0.0882, ns
Adult females, no gestation 57/269 21.2%

Adult females, lactation 10/85 11.8% 0.0349 *
Adult females, no lactation 93/410 22.7%

Subadult females 150/389 38.6% 0.8833, ns
Juvenile females 58/146 39.7%

* significant χ2 test (p−value < 0.05), ns: non-significant χ2 test (p−value < 0.05).

4. Discussion

We conducted a large survey to study the prevalence and genetic diversity of coron-
aviruses in almost 4600 bats from West and West Central Africa and provide significant new
information on coronaviruses in bats from Guinea, West Africa and on species that were
under-sampled in previous surveys in Cameroon and DRC, such as Epomophorus species in
DRC or Hypsignatus monstrosus, Mops and Rhinolophus species in Cameroon [38,41]. Overall,
we report a high prevalence of coronaviruses, with 19.6% of the bats that were infected.
Prevalence can vary among species, but coronaviruses have been detected in almost all
species for which sufficient samples have been tested. A prevalence above 30% was ob-
served in the widely present frugivorous Eidolon helvum but also in Rhinolophus bats, for
which high numbers have been tested. We also identified a wide diversity of coronaviruses,
with representatives of almost all known subgenera of alpha- and beta-CoVs and identified
a subset of strains that cannot be classified in the alpha-CoV genus. We detected bat CoVs
(n = 199) that belong to 3 subgenera that also harbor HCoV strains known to be pathogenic
for humans, i.e., Sarbecoviruses, Merbecoviruses and Duvinacoviruses. This is also the
first study that shows that Sarbecoviruses are widely present in Rhinolophus bats in Africa,
representing 114 of the 275 sequences (41.4%) retrieved from the 306 positive Rhinolophus
bats that have been detected in this bat genus in our study.

As previously reported, we observed host specificity at the genus and/or species
levels [26]. Nobecoviruses are largely predominant in frugivorous bats, with six major sub-
clades that are associated with species or genus, as previously reported [26]. Nevertheless,
some of these frugivorous species are also sporadically infected with Nobecoviruses from
another subclade. We also show for the first time that Hypsignathus monstrosus are infected
with Nobecoviruses, and mainly with the Eidolon helvum-specific clade, most likely because
they roost in the same fruit trees, as is the case in Yaoundé, Cameroon, where the majority
of them have been sampled and where a large colony of Eidolon helvum bats is present.
Representatives of the Hibecovirus subgenus have been identified mainly in Hipposideros
bats but also in a significant proportion of Rhinolophus bats in Cameroon, especially in those
that share habitats in a cave located in the southwest, thus confirming host switching of
coronaviruses among bat species that share habitats, as previously reported [19].

Sarbecoviruses are widespread in Rhinolophus bats in Asia and Europe and phylogeo-
graphic clustering has been reported in Asian Rhinolophus bats, which have been largely
studied because Chinese Rhinolophidae are the natural reservoir for Sarbecoviruses [42–44].
Five subclades or lineages have been described for Sarbecoviruses by Yu et al. [43], with
lineage 1 including SARS-CoV-1. Bat Sarbecovirus strains from Europe and Africa have
been classified as lineage 4 and SARS-CoV-2 and other related viruses from Rhinolophus
bats and pangolins from Asia fall into lineage 5 [40,45–50]. The Sarbecoviruses that we
observed in Rhinolophus bats from Cameroon and Guinea fall into lineage 4 but form sepa-
rate clusters with the other Sarbecoviruses identified in Rhinolophus bats from East Africa
(Rwanda, Kenya and Uganda), thus illustrating phylogeographic clustering of African
Sarbecoviruses. Nevertheless, Sarbecoviruses from Asian lineages 1 and 5 co-circulate in



Viruses 2023, 15, 337 15 of 19

the same geographic area and are at the origin of SARS-CoV-1 and 2, respectively. This
highlights that more sampling has to be done in Rhinolophidae in Asia, but also in Africa to
examine further genetic diversity, geographic clustering and co-circulation of Sarbecovirus
lineages. More studies are also needed to confirm whether all African strains are unable to
utilize human ACE2 and are not able to infect human cells, as shown by in vitro studies [40].
However, it cannot be excluded whether the Sarbecoviruses from Africa use a different
receptor. The colony of Rhinolophus bats infected at high rates (34%) with Sarbecoviruses
has been identified in Cameroon in a cave that is frequently used by hunters as shelter
for protection during bad weather conditions (rain) and where Rousettus aegyptiacus bats
are hunted during the whole year for consumption (Ndong Bass, personal observation),
which implies thus that humans might be in contact with guano (bat feces) dropped on
the cave’s floor or with air saturated with contaminated aerosols. Our exploratory study
on knowledge, attitudes and practices in Southern Cameroon showed that surrounding
villages did not exploit bat guano as fertilizer [22], in contrast to what was reported, for
example, in Zimbabwe [51].

Additionally, for alpha-CoVs, species-specific clades are seen; for example, Rhina-
covirus and a separate clade of unclassified viruses were predominantly observed in
Rhinolophus bats and Duvinacoviruses in Hipposideros bats. Nevertheless, Rhinolophus, Hip-
posideros and Rousettus aegyptiacus bats are infected with at least 3 to 6 different subgenera of
alpha- and beta-CoVs, illustrating host switching most likely because they roost together in
the same caves. Among the frugivorous bats, only R. aegyptiacus is infected to some extent
with alphacoronaviruses, representing around 20% of the infections in this species. The
majority belong to the Decacovirus subgenus, which includes the HKU10 strain identified
in a Rousettus bat from China [52].

We also confirmed that juvenile and subadult bats are infected at higher rates than
adult bats, as previously reported [19,53]. This was observed in all species for which
sufficient juvenile and/or subadults have been included. We observed a trend in which
males are more infected than females, especially in frugivorous bats, but this was het-
erogeneous according to the different species and could be due to sample bias. In our
study, the prevalence of coronavirus infection was not different between gestating and
non-gestating adult females, but in contrast to other reports, we observed lower rates
in lactating females [54–56]. This difference could be due to different sample numbers
or the predominance of different species. Apparently, the impact of some factors such
as sex, gestation or lactation are not universal for all bat species [26]. However, in our
study, we did not have enough samples from lactating bats for each species to evaluate
species-specific differences. Overall, our study and others clearly show that high-risk
periods for coronavirus shedding are related to age of bats and are highest when juvenile
and subadults are present in large numbers in the colonies. Importantly, this period is
specific for each bat species and can differ according to geographic sites and must therefore
be evaluated for each species separately and in different areas to estimate spillover risk.

It is clear that humans are exposed to a wide diversity of bat coronaviruses in Africa,
either directly through hunting and consumption or indirectly via contact with feces, urine
or saliva on fruit or via guano. It will be important to evaluate to what extent some of these
viruses can cross the species barrier or already cross the species barrier and lead to mild or
asymptomatic infections. Serological assays with antigens from the different subgenera of
alpha- and beta-CoVs need to be developed to evaluate this. Pre-existing immunity to other
coronaviruses can also be one of the explanations for the lower morbidity of SARS-CoV-2
infections in Africa. This could be the case for coronaviruses that circulate at high rates in
Eidolon helvum, which are one of the most common bats in Africa and roost in fruit trees in
gardens of houses in cities and villages. For MERS-CoV, it is clear that multiple spill-over
events occurred, but with limited subsequent spread in humans [57]. Although difficult
to realize in practice given the mild symptoms and short viremic period, but given the
high frequency of HCoV-H229E-related strains in bats, as observed in our and previous
studies [38,58], molecular characterization of these or other mild coronaviruses in humans
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would be of interest to evaluate whether spillover events are still ongoing or whether the
mild viruses, such as HCoV-229E, are the result of a single cross-species event.

Overall, we documented the high prevalence and genetic diversity of coronaviruses
in different bat species from West and West Central Africa, especially in juveniles and
subadults. More studies are needed to identify the high-risk periods, i.e., presence of
high proportions of juvenile and subadult bats, to evaluate risk for spillover events for
the different bat species. Importantly, our study shows that certain Rhinolophus colonies
are highly infected with Sarbecoviruses and it can thus not completely be excluded that
a spillover event could occur and lead to another SARS-CoV variant in humans. More
cross-sectional and longitudinal studies are needed to document the extent of Sarbecovirus
infections in Rhinolophus colonies in Africa to identify periods and environments in which
spillover to humans is at higher risk. More studies on human behavior and diversity of
interactions with bats are also needed in addition to viral characterization, as well as the
development of specific antibody assays to evaluate past spillover events or to evaluate
risk for future events. Finally, our study used only a small fragment in the RdRp region,
which has been shown to be coherent with the classification of whole genome sequences for
the large majority of strains, as shown by Wilkinson and colleagues [30]. Nevertheless, this
classification has some limits, such as the absence of detection of recombinant lineages and
provides no information on co-receptor use or factors associated with the evolution of these
viruses in general [40,59]. Therefore, it is important to increase efforts to obtain more whole
genome sequences from coronaviruses that circulate in bats in order to better document
the diversity and evolution of these viruses in their natural hosts and their potential to
infect humans.
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