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Abstract: The recently circulating SARS-CoV-2 Omicron BA.5 is rampaging the world with elevated
transmissibility compared to the original SARS-CoV-2 strain. Immune escape of BA.5 was observed
after treatment with many monoclonal antibodies, calling for broad-spectrum, immune-escape-
evading therapeutics. In retrospect, we previously reported Kansetin as an ACE2 mimetic and
a protein antagonist against SARS-CoV-2, which proved potent neutralization bioactivity on the
Reference, Alpha, Beta, Delta, and Omicron strains of SARS-CoV-2. Since BA.5 is expected to rely
on the interaction of the Spike complex with human ACE2 for cell entry, we reasonably assumed
the lasting efficacy of the ACE2-mimicking Kansetin for neutralizing the new SARS-CoV-2 variant.
The investigation was accordingly performed on in vitro Kansetin-Spike binding affinity by SPR
and cell infection inhibition ability with pseudovirus and live virus assays. As a result, Kansetin
showed dissociation constant KD and half inhibition concentration IC50 at the nanomolar to picomolar
level, featuring a competent inhibition effect against the BA.5 sublineage. Conclusively, Kansetin is
expected to be a promising therapeutic option against BA.5 and future SARS-CoV-2 sublineages.

Keywords: SARS-CoV-2; Omicron BA.5; protein antagonist; ACE2; neutralization escape

1. Introduction

The novel coronavirus disease 2019 (COVID-19) has resulted in over 600 million
cumulative cases and over 6 million cumulative deaths worldwide (as of September
2022) [1]. It is caused by the infection of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [2]. SARS-CoV-2 is a positive-sense single-stranded RNA virus that belongs
to the Beta-CoVs genus of the Coronaviridae family [3] and is a zoonotic pathogen that can
cause severe respiratory diseases in humans [4]. Mutations in the SARS-CoV-2 genome
occur spontaneously and randomly [5], with most having no apparent effect on the virus.
However, a few critical mutations can affect virulence, transmissibility, and severity of
clinical manifestations of the virus, leading to the emergence of variants of concern (VOCs)
and conferring the virus to potentially evade pre-existing antiviral drugs and neutralizing
antibodies [6,7]. Therefore, there is an urgent need to design antiviral drugs to curb this
deadly and variable virus.

Previously, we designed a protein antagonist Kansetin that confers neutralization
against SARS-CoV-2 and several significant VOCs, including Omicron BA.2 [8]. How-
ever, the recently emerging SARS-CoV-2 variant Omicron BA.5, a VOC first detected and
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reported in South Africa, is now spreading worldwide at a rapid pace [9,10]. While a
sublineage of the Omicron BA.2 lineage, BA.5 has replaced BA.2 as one of the highest
circulating VOCs [11]. The overwhelming transmissibility of BA.5 was speculated to be
connected to its immune escape capability against SARS-CoV-2 vaccines and monoclonal
antibodies (mAbs) [12]. The BA.5 variant has been reported to show broad resistance to
antibody-involved neutralization, possibly attributed to decisive mutations in receptor
binding domain (RBD) epitopes of the SARS-CoV-2 Spike protein (S protein) [13]. In recent
pseudovirus neutralization and live virus focus reduction neutralization tests, the mAbs
that used to be effective on earlier SARS-CoV-2 strains such as casirivimab, bamlanivimab,
etesevimab, and sotrovimab displayed a severe reduction in inhibitory efficacy against
BA.5 [12,14,15]. Hence, alternative therapeutic options, such as antivirals and human
ACE2 (hACE2) mimetics, may end up under favorable consideration to counteract the
BA.5-oriented COVID-19 pandemic. Here, we report the inspiring BA.5 neutralization
potency of Kansetin, a novelly designed hACE2-mimicking protein antagonist.

2. Materials and Methods
2.1. Cell-Free Synthesis of Kansetin

We adapted the Spike-binding domain (SBD) (19–394 a.a.) of human ACE2 (UniProt ID:
Q9BYF1), which predominates in the direct interaction with Spike protein of SARS-CoV-2,
into Kansetin as the antagonistic functional domains against SARS-CoV-2. The plasmid
of Kansetin was constructed on the pD2P vector and amplified by the Ampi system. The
amplified plasmid was added to the cell-free protein synthesis system (Kangma Healthcode,
Shanghai, China) at a volume ratio of 1:30 and incubated at 30 ◦C for 4 h for the expression
of Kansetin. The reaction mixtures were centrifuged at 4000 rpm for 10 min, and the
supernatant was collected for subsequent purification. The magnetic His Monster Beads
(Kangma Healthcode, Shanghai, China) were incubated with harvested supernatant for
1 h with rotation at 4 ◦C, washed three times with wash buffer (50 mM Tris-HCl, pH 8.0,
500 mM NaCl, 10 mM imidazole), and finally eluted target protein with elution buffer
(50 mM Tris-HCl, pH 8.0, 500 mM NaCl, 250 mM imidazole) [8]. To avoid interference of
high concentrations of imidazole with subsequent cellular experiments, the eluted target
proteins were ultrafiltered to remove excess imidazole.

2.2. Surface Plasmon Resonance (SPR) Experiment

SPR studies were performed on an OpenSPRTM device (Nicoya Lifesciences, Kitchener,
Canada). The assays were performed at 25 ◦C with running buffer (10 mM HEPES, pH 7.4,
150 mM NaCl, 3 mM EDTA, and 0.05% Tween-20). The Sensor Chip COOH (Nicoya
Lifesciences, Kitchener, Canada) was equilibrated in running buffer before the covalent
coupling of purified Kansetin. The His-tagged RBD of the SARS-CoV-2 Omicron BA.5
strain (Sino Biological Inc, Beijing, China) was diluted to a two-fold dilution series (0, 10,
20, 40, 80, and 160 nM), and the Spike S1+S2 trimer of the BA.5 strain (Sino Biological Inc,
Beijing, China) was diluted to a two-fold dilution series (0, 2.5, 5, 10, and 20 nM). Each
sample was run across the chip with running buffer for association for 240 s and with
HEPES-ET + running buffer for dissociation for 360 s at a flow rate of 20 µL/min, another
blank channel set as a negative control. The dissociation constant KD was calculated using
the TraceDrawer software (Ridgeview Instruments ab, Uppsala, Sweden).

2.3. Pseudovirus Neutralization Assay

The 293T-ACE2 cells, pseudoviruses, and luciferase assay system were purchased
from Genomeditech. This pseudovirus was generated based on the backbone of the VSVG
pseudotype virus, and the lentivirus envelope protein VSVG was replaced by SARS-CoV-2
BA.5 Spike protein. Co-transfection of the backbone with lentivirus packaging plasmid
and CMV-GFP-T2A-Luciferase plasmid into 293T-ACE2 cells allowed the assembly of
pseudovirus with infectious cell activity and without autonomous replication ability.
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The 293T-ACE2 cells (1.5 × 104 cells/well) were seeded into 48-well plates. After
incubation at room temperature for 1 h, the mixture containing 100 µL of Kansetin and
100 µL of pseudovirus was added to the 48-well 293T-ACE2 cells to detect pseudoviral
infectivity. The culture medium was refreshed at 6 h after infection, and the expression of
eGFP in infected cells was determined by fluorescence microscopy at 48 h post-infection.
Six replicate wells were made for each concentration of Kansetin. The buffer was used as a
blank control for the experiment and showed no inhibitory effect on pseudovirus-infected
cells. The data were processed using Prism software (GraphPad Prism 9.0).

2.4. Live Virus Neutralization Assay

The SARS-CoV-2 Omicron BA.5 variant (YJ20220701-01) was provided by Hubei
Provincial Centre for Disease Control and Prevention. The SARS-CoV-2 live virus exper-
iments were performed in the Biosafety level 3 (BSL-3) facility at the Institute of Health
Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention. The
Vero E6 cells were provided by Hubei Provincial Centre for Disease Control and Prevention.

SARS-CoV-2 BA.5 live viruses at 100 TCID50 were prediluted in DMEM with 2% fetal
bovine serum (FBS). Eleven two-fold dilutions (starting from a 1:80 sample dilution) of
Kansetin were mixed with live viruses at 100 TCID50 in equal volume and incubated for 1 h
at 37 ◦C. Antagonist-virus complexes were added to Vero E6 monolayers in 96-well plates
and cultured for 72 h at 37 ◦C, and observed the cytopathic effect (CPE) via a microscope.
Four replicate wells were set up for each sample, and the buffer was used as a blank
control in each experiment. The percentage of wells without cytopathic effect was observed
and calculated as the percentage of inhibition. Live virus neutralization assay data were
processed using Prism software (GraphPad Prism 9.0).

3. Results and Discussion

Kansetin is a protein homooligomer, with each monomeric unit containing two S
protein binding domains (SBD) extracted from the hACE2 binding interface of S protein
RBD [8]. This tightly packed complex was observed to cluster multiple SARS-CoV-2 viral
particles into bulky aggregates. Kansetin was tested against SARS-CoV-2 Wuhan-hu-1
strain (reference strain) and several VOCs, including Delta and Omicron BA.1 strain.
In vitro surface plasmon resonance (SPR) assay recorded Kansetin-RBD binding affinity at
a nanomolar level, and pseudovirus test and live virus test likewise returned picomolar
IC50 values at best. Kansetin’s broad-spectrum VOC neutralization capability was expected
to result from the evolutionarily stable hACE2 binding ability of S protein, given the
significance of hACE2 in SARS-CoV-2′s cell entry [16]. Thus, we assume Kansetin to be,
at least to a certain extent, effective in neutralizing BA.5 as this new subvariant exhibited
tight binding with hACE2 (KD = 25 nM) similar to BA.1 [17].

Accordingly, we first analyzed Kansetin’s binding activity to both BA.5 S1+S2 protein
trimer and standalone RBD via the SPR assay. The KD was determined to be 1.22 nM and
33.1 nM, respectively (Figure 1A,B). Comparable to the previous SPR data from Kansetin
and earlier VOCs (Table 1), the nanomolar Kansetin-BA.5 affinity suggested strong compet-
itive binding to BA.5 S protein regarding the hACE2 native to host cells.

For further validation of the SPR results, we characterized Kansetin’s cell infection
inhibition capability via SARS-CoV-2 BA.5 pseudovirus neutralization experiment. We
observed no significant evasion of Kansetin for the BA.5 variant (IC50 = 218 pM), a readout
consistent with the SPR assay (Figure 2A). Subsequently, a live virus neutralization test
was performed for validation, yielding an IC50 value of 161 pM (Figure 2B). Notably, these
results exhibited a slightly decreased but still potent BA.5 neutralization ability of Kansetin
compared to the reference and other VOCs (Table 1) [8], reaffirming Kansetin as a competent
inhibitor of SARS-CoV-2 BA.5 infection.
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Table 1. Summarization of data between different SARS-CoV-2 strains 1.

Strains Analytes KD (nM) IC50 (pM) 2

Reference RBD 1.25 108.6
Alpha RBD - 92.8
Beta RBD - 121.9
Delta RBD 0.837 61

Omicron BA.1 RBD 0.656 121.9
Omicron BA.2 RBD - 134

Omicron BA.5
RBD 33.1

161S1 + S2 trimer 1.22
1 This table summarizes the data for BA.5 in this study and other data quoted from our previous work [8]. 2 The
IC50 data refer to those determined by live virus neutralization assay.
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Figure 2. The inhibitory effect of Kansetin on Omicron BA.5 strain. (A) Kansetin neutralizes pseu-
dovirus infection of 293T-ACE2 cells. Data are mean ± SD (n = 6 per group). The buffer was used
as a blank control for the experiment and showed no inhibitory effect on pseudovirus-infected cells.
(B) Kansetin neutralizes live virus infection of Vero E6 cells. The buffer was used as a blank control in
each experiment, which has no inhibitory effect on live virus-infected cells.

Discussion of why Kansetin maintained its neutralization ability when many antibod-
ies did not may help expand the inhibitor’s potential. Notably, in the BA.5 RBD sequence,
the L452R substitution was disclosed to engender more severe immune escape compared to
the moderate mutations such as L452M in BA.2.13 or L452Q in BA.2.12.1, while the F486V
mutation reduces the hACE2 binding affinity via decreased hydrophobic interaction [18].
Several hACE2-competing antibodies possess an epitope encompassing site L452 and thus
are highly sensitive to the L452R mutation in BA.5, contributing to the immune escape [18].
Conversely, the hACE2-RBD interaction in the reference or BA.2 strain follows a different
pattern where the L452 was not in direct contact with hACE2 [19,20]. Consequently, the
L452R substitution featured in BA.5 might not be expected to influence its hACE2 binding
ability as F486V does. In retrospect, Kansetin also exhibited analogous neutralization to ear-
lier VOCs, including Alpha, Beta, Delta, and Omicron BA.1 strains, showing its sustainable
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RBD-targeting competence in the long term (Figure 3) [8]. These combined factors might
contribute to understanding the still strong BA.5 binding affinity and neutralization ability
of Kansetin, which in nature is a hACE2 mimetic with efficacy-enhancing modifications.

Viruses 2022, 14, x FOR PEER REVIEW 5 of 7 
 

 

Discussion of why Kansetin maintained its neutralization ability when many anti-
bodies did not may help expand the inhibitor’s potential. Notably, in the BA.5 RBD se-
quence, the L452R substitution was disclosed to engender more severe immune escape 
compared to the moderate mutations such as L452M in BA.2.13 or L452Q in BA.2.12.1, 
while the F486V mutation reduces the hACE2 binding affinity via decreased hydrophobic 
interaction [18]. Several hACE2-competing antibodies possess an epitope encompassing 
site L452 and thus are highly sensitive to the L452R mutation in BA.5, contributing to the 
immune escape [18]. Conversely, the hACE2-RBD interaction in the reference or BA.2 
strain follows a different pattern where the L452 was not in direct contact with hACE2 
[19,20]. Consequently, the L452R substitution featured in BA.5 might not be expected to 
influence its hACE2 binding ability as F486V does. In retrospect, Kansetin also exhibited 
analogous neutralization to earlier VOCs, including Alpha, Beta, Delta, and Omicron BA.1 
strains, showing its sustainable RBD-targeting competence in the long term (Figure 3) [8]. 
These combined factors might contribute to understanding the still strong BA.5 binding 
affinity and neutralization ability of Kansetin, which in nature is a hACE2 mimetic with 
efficacy-enhancing modifications. 

 
Figure 3. Schematic depiction of expression and strong SARS-CoV-2 neutralization of Kansetin. 

Another distinguishing aspect of Kansetin as a SARS-CoV-2 antagonist is its storage- 
and user-friendly properties. mAbs are known to suffer from loss of bioactivity due to 
frozen-state storage [21], a factor unfavorable for extensive therapeutic application. Fur-
thermore, mAbs might cause serious adverse effects such as thyroid diseases, dermatitis, 
and cardiotoxicity [22], a safety problem that needs extra attention for therapists. These 
properties of concern were one of the driving forces that helped us develop Kansetin by 
rational design. Our previous characterization of toxicity and storability identified Kan-
setin as an ultra-stable protein at room temperature with no observable toxicity [8]. Nota-
bly, Kansetin possesses specific properties that distinguish the antagonist from mAbs in a 
potentially disadvantageous way. Although accurate immunogenicity prediction is chal-
lenging due to many complex causation factors, mAbs-bearing human sequences are ex-
pected to display less immunogenicity in general[23]. For Kansetin, potential immuno-
genic problems might arise due to artificial arms other than hACE2-extracted SBDs. An-
other concern is that the α1-α2 helices of hACE2 are the component of a cavity for Angio-
tensin II binding and catalysis [24]. Therefore, the reaction of human Angiotensin II path-
ways to the intake of Kansetin and its possible consequences needs extra care taken. Nev-
ertheless, combined with the promising potency and patient-friendly properties, planned 
forthcoming clinical trials are expected to further expand the landscape of Kansetin’s prac-
tical applications. 

In summary, we reported the retained neutralization efficacy of SARS-CoV-2 inhibi-
tor Kansetin against the currently circulating Omicron BA.5 subvariant by in vitro binding 
affinity assays, pseudovirus neutralization, and live virus neutralization assays. Historical 
behaviors of the COVID-19 pandemic, such as its high mutation rate and increased trans-
mission capacity, serve as a reminder that medical solutions should be provided as effi-
ciently and practically as possible. Our results responded with a potential therapeutic op-

Figure 3. Schematic depiction of expression and strong SARS-CoV-2 neutralization of Kansetin.

Another distinguishing aspect of Kansetin as a SARS-CoV-2 antagonist is its storage-
and user-friendly properties. mAbs are known to suffer from loss of bioactivity due to
frozen-state storage [21], a factor unfavorable for extensive therapeutic application. Further-
more, mAbs might cause serious adverse effects such as thyroid diseases, dermatitis, and
cardiotoxicity [22], a safety problem that needs extra attention for therapists. These proper-
ties of concern were one of the driving forces that helped us develop Kansetin by rational
design. Our previous characterization of toxicity and storability identified Kansetin as an
ultra-stable protein at room temperature with no observable toxicity [8]. Notably, Kansetin
possesses specific properties that distinguish the antagonist from mAbs in a potentially
disadvantageous way. Although accurate immunogenicity prediction is challenging due to
many complex causation factors, mAbs-bearing human sequences are expected to display
less immunogenicity in general [23]. For Kansetin, potential immunogenic problems might
arise due to artificial arms other than hACE2-extracted SBDs. Another concern is that
the α1-α2 helices of hACE2 are the component of a cavity for Angiotensin II binding and
catalysis [24]. Therefore, the reaction of human Angiotensin II pathways to the intake of
Kansetin and its possible consequences needs extra care taken. Nevertheless, combined
with the promising potency and patient-friendly properties, planned forthcoming clinical
trials are expected to further expand the landscape of Kansetin’s practical applications.

In summary, we reported the retained neutralization efficacy of SARS-CoV-2 inhibitor
Kansetin against the currently circulating Omicron BA.5 subvariant by in vitro binding
affinity assays, pseudovirus neutralization, and live virus neutralization assays. Histor-
ical behaviors of the COVID-19 pandemic, such as its high mutation rate and increased
transmission capacity, serve as a reminder that medical solutions should be provided as
efficiently and practically as possible. Our results responded with a potential therapeutic
option for preventing and treating COVID-19 with the predominance of BA.5 and, if pos-
sible, other variants in the future as long as the ACE2 binding is still a vital evolutionary
standard for SARS-CoV-2.
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