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Abstract: The quantification of tree-related microhabitats (TreMs) and multi-taxon biodiversity is
pivotal to the implementation of forest conservation policies, which are crucial under the current
climate change scenarios. We assessed the capacity of Airborne Laser Scanning (ALS) data to quantify
biodiversity indices related to both forest beetle and bird communities and TreMs, calculating the
species richness and types of saproxylic and epixylic TreMs using the Shannon index. As biodiversity
predictors, 240 ALS-derived metrics were calculated: 214 were point-cloud based, 14 were pixel-level
from the canopy height model, and 12 were RGB spectral statistics. We used the random forests
algorithm to predict species richness and the Shannon diversity index, using the field plot measures
as dependent variables and the ALS-derived metrics as predictors for each taxon and TreMs type.
The final models were used to produce wall-to-wall maps of biodiversity indices. The Shannon
index produced the best performance for each group considered, with a mean difference of −6.7%.
Likewise, the highest R2 was for the Shannon index (0.17, against 0.14 for richness). Our results
confirm the importance of ALS data in assessing forest biodiversity indicators that are relevant for
monitoring forest habitats. The proposed method supports the quantification and monitoring of the
measures needed to implement better forest stands and multi-taxon biodiversity conservation.

Keywords: airborne laser scanning; beech and fir forests; conservation strategies; ecological relation-
ships; saproxylic beetles; remote sensing

1. Introduction

Forest ecosystems host 80% of terrestrial biodiversity. Therefore, the management
and conservation of forest biodiversity are of primary importance [1]. To counteract the
decline in biodiversity, long-term monitoring programs with a multi-taxonomic approach
are needed [2,3].

In recent years, many studies have focused on the ecological relationships between
forests’ structural variables and forest biodiversity indicators (e.g., tree-related microhabi-
tats) and wildlife (e.g., beetles and birds) to identify models of biodiversity and priority

Forests 2024, 15, 660. https://doi.org/10.3390/f15040660 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f15040660
https://doi.org/10.3390/f15040660
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-1914-7331
https://orcid.org/0000-0002-2341-3268
https://orcid.org/0000-0002-9772-2258
https://orcid.org/0000-0002-0669-5726
https://orcid.org/0000-0001-6991-0289
https://orcid.org/0000-0002-0167-8863
https://orcid.org/0000-0002-4590-827X
https://orcid.org/0000-0002-5334-7548
https://orcid.org/0000-0003-0706-2653
https://doi.org/10.3390/f15040660
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f15040660?type=check_update&version=1


Forests 2024, 15, 660 2 of 17

areas for both management and conservation [4]. Thus, the structural complexity of forest
habitats can help in predicting the compositional structure of animal communities [5].

The multi-taxon approach is frequently applied in forest stands to correlate specific for-
est characteristics useful for management and conservation practices [2]. Insects—including
saproxylic (i.e., related to deadwood) and non-saproxylic beetles—and birds depend on
forest composition and structure [6–8]. Ecological relationships between biodiversity indi-
cators and forests’ structural attributes have been extensively analyzed [9–11]. The links
between animal species and forest ecosystems can be examined by grouping species into
ecological assemblages based on habitat characteristics and species ecology [12]—for exam-
ple, trophic category, ecological characteristics, level of specialization (e.g., [13–15]). The
assumption behind using ecological groups rather than individual species is related to
consistent differences in response to changes in forest variables. Indeed, species sharing
the same functional traits share similar ecological characteristics [16,17]. For example,
forest bird assemblages broadly reflect similarities in forest structure, distribution, and the
abundance of foraging resources [18]. This approach can highlight differential responses in
species assemblages and help us to understand ecological relationships that can support tar-
geted conservation strategies. Furthermore, if species of saproxylic beetles and birds show
a strong dependence on the forest structure, they can be considered forest specialists [19,20],
and as often happens can be promoted as indicators of forest biodiversity [21].

Forests’ structure components, such as tree height and diameter, canopy cover, the
presence of deadwood, and tree-related microhabitat abundance, are assumed to be relevant
for specific categories of organisms [5,21]. These ecological components strongly influence
beetles and birds. Indeed, the vertical and horizontal structure of the forest influences the
composition, abundance, density, and stability of animal communities [22,23].

Furthermore, animal communities thrive in structurally diverse forest habitats, such
as old-growth, near-natural, or unmanaged forests [24,25]. Recently, many ecologically
demanding species of beetle have experienced a steep decline [8], and despite the gener-
ally positive trend for forest birds [16], some forests still have a vulnerable conservation
status [23]. This phenomenon is particularly evident for species living in structurally
heterogeneous forests with large amounts of deadwood, where levels of specialization are
particularly intense [24].

Remote sensing (RS), and specifically Airborne Laser Scanning (ALS or airborne Light
Detection And Ranging—LiDAR) technology, has been widely used to quantify the hetero-
geneity and complexity of natural habitats in patterns of distribution or diversity of species
or groups [25]. ALS enables the effective quantification of the vertical canopy structure
over large areas. For example, ALS data provide information on canopy stratification or
vertical structural heterogeneity, which is a key proxy variable for habitat structural features
for insect and bird groups [26,27]. Furthermore, ALS predictors of vertical structure may
help to explain the differentiation of ecological niches for closely related species [28]. RS
for mapping small organisms, such as deadwood-dependent insects, presents significant
challenges due to the secretive nature of many species and the constraints imposed by the
resolution of the available data [29].

Although extensive efforts have been directed towards the detection and monitoring
of forest pests [30] and of the associated forest disturbances, the use of ALS data to study
the ecology and conservation of forest organisms remains only partially explored [31].
Similarly, studies exploiting RS data are still relatively rare [32,33]. The main advantage
of approaches based on ALS data is their capacity to provide high-resolution topography
and forest structures at large spatial scales within statistically correct data (e.g., [34–36]).
Therefore, ALS data can be exploited to derive forest structure and variability information
from which indicators of biodiversity can be extrapolated [31,37].

The aim of our study was (i) to assess the richness of specific microhabitats and the
diversity of saproxylic and non-saproxylic beetle and bird communities, and (ii) to analyze
the relationships between ALS-derived predictors and microhabitats and biodiversity
measured in the field.
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2. Materials and Methods
2.1. Study Area

We conducted our study in pure and mixed Fagus sylvatica and Abies alba stands within
the Nature Reserve of Vallombrosa (43.745 E, 11.562 N), located in the Tuscany region,
on the north-west side of the Pratomagno Massif (Italy) (Figure 1). The Reserve is part
of the Natura 2000 Network, included within the Special Area of Conservation (SAC)
“Vallombrosa e Bosco di S. Antonio” (code IT5140012), as defined by the EU Habitats
Directive (92/43/EEC).

The Nature Reserve of Vallombrosa covers 1273 ha, with the altitude varying between
470 and 1447 m a.s.l. Pure even-aged stands of silver fir (Abies alba Mill.) are the primary
forest type in the Reserve (664 ha), followed by pure beech (Fagus sylvatica L.) stands
(187 ha), which mainly originated from the coppice conversion to high forest. Silver fir has
been cultivated in pure stands in the Vallombrosa Forest for many centuries, but in recent
decades, social, economic, and environmental changes have significantly changed forest
management [38]. The last regulation plan, issued in 1970, has not been applied, and thus
the forest structure and composition are slowly evolving, especially in the fir stands, where
broadleaves are gradually coming in. A new Forest Management Plan was drawn out for
the period 2006–2025 [38], based on the silvosystemic approach [39,40]; this plan favors
the natural diversification of the forest towards mixed and structurally complex stands. In
recent years, major windstorm events have sped up these changes [38].

Other forest types included in the Reserve are Pinus nigra J.F. Arnold, Pseudotsuga
menziesii (Mirb.) Franco, introduced for experimental purposes, and deciduous mixed
forests of Castanea sativa Mill., Quercus cerris L., Q. pubescens Willd., Ostrya carpinifolia Scop.,
and Fraxinus ornus L., but these forest types were not considered in our study.

Detailed information on the Reserve was derived from forest management plans devel-
oped over the years. Specifically, for each forest stand (i.e., management unit), information
on elevation, aspect, slope, site quality, forest type, stand age, and year of the last cut was
derived from the forest management plan 2006–2025 [39].

2.2. Reference Data for Biodiversity Indices

The reference dataset consisted of 47 circular sampling plots with a 13 m radius located
within the Reserve in F. sylvatica and A. alba pure and mixed stands (Figure 1). The plots
were located at elevations between 900 and 1250 m a.s.l., with a minimum slope of 9% and
a maximum of 48%. The stand age varied from 50 to 180 years old. Twenty-seven plots
fell in mixed stands, while the remaining fell equally in pure stands. Field surveys were
conducted in 2020 to collect the data needed to quantify forest biodiversity indices related
to microhabitats, beetles, and birds. More details on these surveys are provided in the
following sections.

2.2.1. Beetle Communities

In the 47 sampling plots, saproxylic and non-saproxylic adult beetles were captured
using window flight traps [10]. At the center of each sampling plot, one window flight trap
was positioned at a height of two meters above ground on a tree branch to catch flying
beetles and was checked monthly (from May to October) for a total of four surveys. All the
monitoring systems were then removed during the winter.
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Figure 1. Nature Reserve of Vallombrosa: silver fir, beech, and mixed fir–beech stand locations and
sampling plot distribution [41].

Systematics and the nomenclature of beetle species were performed by following
Bouchard et al. [42] and Audisio et al. [43]. For further analysis, species strictly considered
saproxylic (sensu Carpaneto et al., [21]) were reported, with their IUCN Red list risk
category at the Italian level and their trophic categories (see [21]). Saproxylic beetles were
analyzed separately and also aggregated with non-saproxylic beetles.

2.2.2. Birds

The bird census was carried out using a standardized area count method [44];
47 hexagon-shaped plots were identified, each spanning 1.25 ha and including one
13 m-radius plot. All the plots were surveyed twice (in March and April, 5′ each time). The
locations of all observed birds were recorded on a detailed map (scale 1:1500 with satellite
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images + Technical Regional Maps) in order to consider only the birds inside each plot
accurately and exclude those outside of it. All birds heard or seen within the plots were
recorded. Systematics and nomenclature of bird species followed [45].

2.2.3. Tree-Related Microhabitats

Tree-related microhabitats (TreMs) were censused in each 13 m-radius sampling plot,
carefully observing both deadwood (standing dead trees, dead downed trees, snags and
stumps, e.g., saproxylic holes, presence of tunnels or fungi) and living trees (e.g., broken
crowns, presence of cavities on the trunks). The identification was based on the reference
list developed by [46], which defines 64 different microhabitat types, divided into two main
categories: saproxylic microhabitats (whose origin is due to impacts of a biotic or abiotic
nature that expose sub-cortical portions of the plant), and epixylic microhabitats (due to
elements of external origin physically connected to the tree, such as fungal fruiting bodies)
(Supplementary Material Table S1).

The types and abundance (frequency of all types) of TreMs were counted with binocu-
lars for living trees or standing dead trees and through the direct observation of deadwood
components on the ground. The microhabitat categories (saproxylic and epixylic) were
analyzed both separately and aggregately.

2.3. Biodiversity Indices

Two biodiversity indices were calculated considering fauna species and TreMs types.
The first is richness, defined as the number of species or TreMs types in each plot. Then,
considering both richness and abundance, the Shannon Index was calculated:

H′ = −∑S
i=1 pilogpi (1)

where S is the total number of species or microhabitat types, and pi is the abundance of ith
species or TreMs types.

2.4. Predictor Variables for Modeling Biodiversity Indices
2.4.1. Airborne Laser Scanning Variables

The ALS data were derived from a survey carried out in May 2015 with a LiDAR
RIEGL LMS-Q680i (Horn, Austria) sensor and a DIGICAM H39 RGB and CIR optical
instrument mounted in Eurocopter AS350 B3. The planned flight height was 1100 m above
terrain level with a speed of 70 knots and an overlap between the strip of 30%. The sensor
acquired full-waveform LiDAR data with a point density of 10 points m−2. ALS data
were georeferenced in the WGS84 UTM32N coordinate system by correcting the flight
trajectories with the Global Navigation Satellite System and the Inertial Measurement Unit
collected data based on two base stations of the Italtopos network [47]. LAStools software
(version 240220) (Gilching, Germany) was used for common ALS data preprocessing
procedures (e.g., outliers and noise cleaning, classification of ground/non-ground points,
and computation of height) [48].

A total of 240 ALS metrics were computed either directly from the point cloud
(n = 214) or at the pixel level, using a rasterized canopy height model (CHM) (n = 14)
with a spatial resolution of 1 m, together with RGB spectral statistics (n = 12) derived from
aerial images. The point cloud metrics included metrics related to the z and intensity values
and the combination of the two. Because of the two-dimensionality of the raster data, the
CHM-derived variables describe the horizontal characteristics of the forest canopy [49].
Specifically, the CHM textural variables (grey-level co-occurrence matrices—GLMC) were
computed using the R package GLCM with a 1 m × 1 m window size in all directions.
The algorithm examines image textures and calculates the frequency with which pairs
of pixels with specific values in a given spatial relationship occur in an image. For each
field plot, we calculated mean, variance, homogeneity, contrast, dissimilarity, entropy, and
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second-moment textural variables, then used them to compute the plot’s level average and
the standard deviation.

We calculated 214-point cloud metrics developed for each plot to represent the entire
vertical forest structure (Supplementary Material Table S2). These included essential
statistical variables [50], height, and density metrics typically used in forest inventory
analysis [51]. The essential statistical variables are the total number of points (tot), the sum
of the heights (sum), mean height (avg), height standard deviation (sd), skewness of height
(sk), kurtosis of height (kur), and average square height (qav) [47,50]. The height metrics are
height percentiles (p10, . . ., p100) calculated between the 100th percentile and a minimum
threshold of 1.3 m. The density metrics were calculated for equally spaced vertical layers,
defined as tenths of the distance between the 95th percentile and the lowest canopy height
(i.e., 1.3 m). The densities were computed as the proportion of points above the 1st, . . ., 9th
(d0, . . ., d9) spaced vertical layers to the total number of points.

2.4.2. Auxiliary Variables

We used the Digital Terrain Model (DTM) derived from the ALS data as an auxiliary
variable to calculate the slope and the aspect of the field plots. In addition, we used the
wall-to-wall growing stock volume (GSV) map produced by [52] for the year 2019 to extract
the GSV for each plot. This map was obtained using a spatial approach to estimate forest
inventory variables for the years not covered by a national forest inventory, considering
the GSV current increment and the forest disturbances occurring during the time elapsed
between the two updating cycles. The four auxiliary variables (DTM, slope, aspect, and
GSV), which were in grid format, were resampled with the nearest neighbor algorithm at
23 m × 23 m spatial resolution, whose size mimicked the area of the plots measured in
the field.

2.5. Random Forests Models

Random forests (RF) is an ensemble learning model based on decision trees that grows
multiple trees using the CART (classification and regression tree) methodology [53,54].
Each tree is built using different training subsets generated by bootstrapping and a random
selection of features to split each node to minimize tree correlation. RF can reduce the output
variance and the overfitting problem compared to other machine learning approaches,
improving the robustness to noise and accuracy [54]. Another advantage of RF is the
capability for estimating the generalization error during training. In each bootstrap training
set, about one-third of the instances were left out (the so-called out-of-bag [OOB] samples).
Reference [54] showed that OOB samples could be used to estimate the model’s error,
strength, correlation, and importance of variables. The latter was estimated by averaging
the difference of the mean squared error (MSE) computed on the OOB sample for each
tree before and after the permutation of each predictor. The percentage increase in MSE
(%incMSE) can be a proxy for the variables’ importance.

RF was used to predict the species richness and the Shannon diversity index of beetles,
birds, and TreMs types using the field plot measures as dependent variables and the ALS
metrics and the auxiliary variables as predictors. An independent RF model was fitted
using only the occurrence of saproxylic beetles. The same procedure was applied to the
whole TreMs dataset and divided by categories (i.e., saproxylic and epixylic TreMs). De-
spite RF being known to be insensitive to the number of variables, a variable selection
procedure was performed to reduce the burden of data collection, simplify the final model,
and improve the computation efficiency. The selection of variables was performed with the
VSURF package [55] within the R statistical software (R version 4.2.1 23 June 2022) [56]. The
package implements a stepwise selection procedure that performs a backward elimination
and a forward selection in three steps based on importance measures and an internal
error rate calculated by the RF algorithm. The package can use different RF implementa-
tions, including the ranger package [57], which is optimized for high-dimensional data
(n ≪ p, where n is the number of observations and p is the number of predictors). We chose
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the set of variables selected in the final step of the algorithm (the so-called “prediction
step”), which refines the selection by eliminating redundancy in the set of variables selected
by the previous steps for prediction purposes, constructing an ascending sequence of RF
models and invoking and testing the variables in a stepwise way. The variables of the last
model were selected. After the variable selection, a final RF model was fitted with the set
of predictors chosen with VSURF, using, in turn, the richness and the Shannon diversity
index for each dataset (i.e., beetles, saproxylic beetles, birds, TreMs, saproxylic TreMs,
and epixylic TreMs) as the dependent variable, for a total of 12 models (i.e., 6 datasets* 2
diversity indices). Other tuning parameters were kept with their default values: number
of trees in the forest (ntrees) = 500, number of variables chosen at each split (mtry) = p/3.
The importance of each predictor was calculated using the %incMSE. The final models
were implemented across the study area to produce wall-to-wall maps with a 23 m spatial
resolution of the biodiversity indices. Twenty-three meters was selected as the spatial
resolution to obtain a pixel size as similar as possible to the size of the plots where the field
analysis was conducted. Then, to present the biodiversity maps, the single-pixel values of
the indices were aggregated at stand level by computing the mean within each stand.

2.6. Accuracy Assessment

The models’ performance was evaluated using the leave-one-out (LOO) cross-validation
procedure: each training observation was dropped in sequence and predicted using the
remaining training data [58]. The mean RMSE% among the LOO iteration was used as the
final performance measure.

RMSE% =

√
∑n

i=1(yi−ŷi)
2

n
y

100 (2)

where n is the number of field plots, yi is the observed value, ŷi is the predicted one, and y
is the mean value of the observations.

3. Results
3.1. Saproxylic and Non-Saproxylic Beetles

Overall, 11,053 specimens of beetles belonging to 187 species and 38 families
(Supplementary Material Table S3) were sampled in the Nature Reserve of Vallombrosa.
The most abundant families were Staphylinidae (29.9% of the total species), Curculion-
idae (13.8%), Cerambycidae (9.8%), and Elateridae (8.0%). The most abundant species
were Xylosandrus germanus (Blandford, 1894) (2804 specimens) and Ernoporicus fagi (Fabri-
cius, 1798) (2704), followed by Orchestes fagi (Linnaeus, 1758) (874), all belonging to the
Curculionidae family.

Notably, 108 species (58% of the total) are included in the Italian Red List of Saproxylic
Beetles [21], with 41% and 9% of the species belonging to the Least Concern (LC) and Near
Threatened (NT) categories, respectively. Ten species are considered threatened, belonging
to Vulnerable (VU, seven species), Endangered (EN, two), and Critically Endangered (CR,
one) categories. Finally, two species are included in the DD (Data Deficient) category.

As for the trophic categories, 18.9% of the species strictly considered as saproxylic
are xylophagous (organisms feeding exclusively or mainly on wood), 10.9% are predators
(organisms that primarily obtain food by consuming other organisms or their parts), 8.6%
are mycophagous (organisms feeding on hyphae of saproxylic fungi or yeasts), and 6.8%
are saproxylophagous (organisms feeding exclusively or largely on fungus-infected wood).

3.2. Forest-Dwelling Birds

As for the bird community, 30 species were identified, belonging to 15 families
(Supplementary Material Table S4). The most abundant families were Paridae (24.4%
of the total species), Fringillidae (18.7%), Regulidae (10.9%), and Turdidae (8.4%), whereas
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the most frequently detected species were Peripatur ater (Paridae) (identified 171 times) and
Fringilla coelebs (Fringillidae) (164), followed by Sitta europaea (Sittidae) (82).

3.3. Tree-Related Microhabitats

A total of 2573 TreMs were surveyed in the sampling plots (1031 ha−1), divided into
1820 (729 ha−1) saproxylic TreMs and 753 (302 ha−1) epixylic TreMs.

The most abundant TreM types were insect galleries with single small-bore holes (code
CV51, 25.5%), small dead branches and limbs (DE11, 14.3%), perennial polypores (EP12,
6.9%), and root buttress cavities (GR11, 5.1%).

3.4. Random Forests Models and Maps of Biodiversity Indices

Results for the variable selection and validation of RF models are reported in Table 1
and in the Supplementary Material Table S5. After the variable selection, a maximum of
seven and a minimum of two variables were selected as the best candidates for prediction.
Overall, 26 unique variables were selected, 11 of which were selected in at least two models.
The most selected variables were the point cloud-based ones: i. differences between 50 z
percentiles of second intensity quartiles and 25 z percentiles of second intensity quartiles;
ii. intensity skewness; and iii. the tenth z percentiles of fourth intensity quartiles and the
slope (three models). Of the selected variables, eighteen were directly derived from the
point cloud, four were derived from CHM (textural metrics), three were auxiliary variables,
and one was an RGB metric derived from spectral reflectance.

Table 1. Number of selected variables, R2, and RMSE% of random forest models used for mapping
biodiversity indices in the Nature Reserve of Vallombrosa.

Shannon Index Richness
N◦ of

Selected
Variables

R2 RMSE%
N◦ of

Selected
Variables

R2 RMSE%

Beetles 4 0.12 13.7 3 0.07 21.4
Saproxylic beetles 3 0.11 13.5 3 0.11 26.4

Birds 3 0.06 8.5 4 0.17 17.0
TreMs 4 0.27 14.9 3 0.11 26.2

Saproxylic TreMs 3 0.19 24.6 7 0.07 32.7
Epixylic TreMs 3 0.24 50.2 2 0.30 41.7

The RMSE% of the final models ranged between 8.5 (birds’ Shannon index) and
50.2 (epixylic TreMs types’ Shannon index). On average, the Shannon index (20.9) was
predicted to perform better than the richness (27.6), except for the epixylic TreMs, with an
overall mean difference of −6.7%. Similarly, R2 was higher for the Shannon index (mean
R2 = 0.17, against 0.14 for the richness).

Based on these models, the wall-to-wall maps of the richness and diversity of beetles,
saproxylic beetles, birds, and microhabitats, both overall and divided into saproxylic and
epixylic categories, were developed for the silver fir, beech, and mixed fir–beech stands of
the Nature Reserve of Vallombrosa (Figures 2 and 3).

Considering beetles, the richness map shows the highest values among all species and
TreeM types assessed; values ranged between 19.2 and 25.3 (Figure 2), while for saproxylic
beetles the richness was between 9.6 and 14.6 (Figure 2). Similar values were identified for
birds, with the richness ranging between 9.7 and 13.1 (Figure 2). The Shannon index for
beetles was between 2.1 and 2.6 (Figure 2), and slightly lower values were found for both
saproxylic beetles (1.6–2.3) (Figure 2) and birds (2.1–2.3) (Figure 2).

As for the TreM maps, starting from the overall richness (TreMs), which varied between
5.8 and 9.5 (Figure 3), we found higher values for saproxylic TreMs (4.1–6.8) (Figure 3)
compared to epixylic TreMs (1.2–4.3) (Figure 3). Concerning species diversity, the minimum
value of the Shannon index for TreMs was 1.2, while the maximum was 1.9 (Figure 3).
When the TreMs were split into two categories, the values were between 0.9 and 1.7 for
saproxylic (Figure 3) and 0.3–1.1 for epixylic (Figure 3), respectively.
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4. Discussion
4.1. Relationship between ALS Data and Multi-Taxon Biodiversity

In addition to studies of beetle and bird communities and TreMs distributions, ALS
data hold great potential for analyzing the relationship between forest structure and animal
diversity [31]. ALS-based approaches are, therefore, increasingly being used to explore,
explain, and predict biodiversity given the promising results and replicability of proce-
dures [5,35,59]. However, the relationship between ALS data and multi-taxon biodiversity
has seldom been explored. In this context, we explored the relationship between taxa and
ALS in the Nature Reserve of Vallombrosa, a Mediterranean mountainous forested area
dominated by silver fir and beech.

In this study, several ALS predictors were calculated [47] which are crucial elements
for explaining the occurrence and distribution of the examined taxa. However, the variable
selection procedure for each prediction model shows that a limited number of metrics
were the best predictors, highlighting that single metrics can explain most of the informa-
tion provided by the ALS point cloud. Moreover, selecting RF model variables ensures
that information retrieved from calculated ALS metrics contributes to uncorrelated infor-
mation. The most frequent ALS predictor for multi-taxon biodiversity represented the
vegetation (e.g., the point cloud-based factors: intensity skewness; 10th z percentiles of
fourth intensity quartiles, and differences between 50 z percentiles of second intensity
quartiles and 25 z percentiles of second intensity quartiles) and the terrain structure (slope)
(Supplementary Material Table S5).

The most important ALS metrics are point-cloud-based (18 of the 26 selected metrics).
Among the ALS metrics developed from the intensity pulse and the z values, the most
promising are the different z percentiles of each intensity quartile (e.g., for the Shannon
index of saproxylic beetles, birds, TreMs, and epixylic TreMs together with the richness
of saproxylic and epixylic TreMs) and the structural indices derived from the differences
in these (e.g., richness of beetles, birds, epixylic TreMs, and Shannon index of birds and
saproxylic and epixylic TreMs). Particularly, the intensity distribution in quartiles (e.g.,
the richness of the birds), the 20th percentile of z distribution (e.g., for beetle Shannon
index), the difference between maximum and minimum intensity values (e.g., for saproxylic
TreMs), intensity skewness (e.g., saproxylic beetle richness) were selected (Table 1 and
Supplementary Material Table S5). Considering the vertical structure of the forest and ALS
metrics, the canopy layer is mainly represented by the proportion of pulse in the upper
point cloud vertical layer (10th percentile of z distribution). Additionally, multiple ALS
metrics referring to the lower forest layers were selected, such as the high intensity values
(4th quartile) of ALS pulses in the lower layers of the point cloud (10th and 20th percentiles
of z distribution) (Table S5). Although outside the study scope, these metrics appear to
benefit studies investigating forest species diversity, on the one hand, and to detect the
occurrence of shrubs or dead wood in the forest, on the other.

In addition to the point cloud predictors, four predictors derived from the CHM
were selected: the variance of GLCM (TreMs Shannon index), the standard deviation of
GLCM homogeneity (richness of saproxylic beetles), the standard deviation of GLCM mean
(richness of saproxylic TreMs), and the standard deviation of GLCM variance (Shannon
index of beetles) (Table 1 and Supplementary Material Table S5). In addition to a predictor
from spectral values (maximum value of blue for the Shannon index of saproxylic beetles),
the last three were derived from auxiliary variables. In particular, the growing stock volume
(for TreMs and saproxylic TreMs richness) and the two topographic predictors, slope
(Shannon index of TreMs and epixylic TreMs and TreMs richness) and aspect (saproxylic
TreMs Shannon index), were selected (Supplementary Material Table S5).

The selected predictors were found in similar studies in which the most frequent
explanatory ALS variables selected for the forest structural diversity identification were
the coefficient of variation, standard deviation and skewness of ALS heights, canopy cover
metrics, and percentiles of vegetation heights [60]. Similar to Herniman et al. [61], our
results show that ALS metrics describing topography (slope and aspect) can contribute
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to the modeling of the biodiversity of TreMs. Therefore, when modeling biodiversity, it is
advisable to integrate structural predictors of vegetation with terrain predictors available
from ALS data.

While promising, the results show a relatively low coefficient of determination (R2)
(maximum 0.30) across all taxa and diversity indices. This can be caused by several factors,
such as the complex non-linear relationship between predictors and diversity indices, the
presence of outliers both in dependent and independent variables, the complexity of the
model after the variable selection, and the low variability of diversity indices within the
study area. However, our results in modeling species diversity indices are consistent with
other, similar studies showing moderate results with values between 0 and 0.34 [31]. These
values can be explained considering that the study area, while sufficiently large, has low
environmental variability [62], and vegetation variations resulting in stronger correlations
between ALS predictors and taxa [33]. In this sense, increasing the number of sampling
areas could improve the results. Despite the low variance explained by the models, random
forests obtained a high prediction accuracy, resulting in low RMSE values. Moreover, the
aggregation of pixel predictions within homogeneous areas, such as the management units
identified by the Reserve management plan, resulted in a close estimate of the true value as
the aggregation area increased.

In the context of a forest management approach aimed at sustaining or increasing
forest complexity and diversity, ALS, capable of investigating forest structure, emerges
as a promising technique for extensively detecting and monitoring potential biodiversity
hotspots over large areas [31].

4.2. Multi-Taxon Biodiversity and Forest Management

Our results show that specific habitat features (e.g., the occurrence of TreMs) are
necessary in making forests suitable for beetle and bird communities. Furthermore, specific
characteristics of forest areas may represent the entire species community. For example,
saproxylic beetles are highly dependent on the microclimatic conditions of particular
TreMs [14,63]. A knowledge of biodiversity indicators allows us to design and optimize
management strategies that consider the particular ecological needs of some species of birds
and beetles [64,65]. Specifically, our analysis could be used to identify some management
options to preserve beetle and bird communities, promote tree habitats, increase total
tree volume, and reduce overall forest density [66]. These characteristics are typical of
mature forests, the achievement of which should be one of the objectives of sustainable
forest management. However, the community structure of beetles and birds was not
determined by habitat type, as the forest sectors considered were quite similar in fauna and
vegetation [45,65].

Mixed forests with heterogeneous stands provide a greater ecological niche [62]. Forest
management can have implications on the proportion of tree species, like, for example, the
abandonment of silvicultural activities in mixed stands, which has led to an increase in
beech and a decrease in silver fir [67]. On the other hand, in the Vallombrosa pure even-
aged fir forests, where silvicultural practices have long been absent, gaps are spontaneously
opening up with a gradual transformation into mixed, naturally regenerating forests. The
management plan in place simulates these natural events to increase the specific diversity
and structural and compositional complexity of the fir stands [38].

4.3. Biodiversity Conservation

The diversity of species and taxa sampled in this work is reflected in their different
ecological roles and characteristics within the community, as well as in forest management.
Notably, the relationship between the different analyzed taxa and the tree component
depends on the trees’ physical structure, which can be derived from ALS point clouds
through 3D structural metrics. Large trees with complex canopy structures are often
cavitated and rich in TreMs, hosting populations of saproxylic beetle communities and birds.
Moreover, the high number of different TreMs typically found in long-unmanaged stands
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results in differential levels of specialization of the ornithic and saproxylic components,
often at risk of extinction [8,14]. As for the Picidae, Bütler et al. [68] have suggested
conserving at least 5% of standing dead trees in forest areas larger than 100 ha. These
thresholds correspond to the amount of habitat below which fragmentation may affect
population persistence [69].

About half of the sampled beetles in the forest of Vallombrosa are saproxylic species
included in the Italian Red List. Saproxylic beetles include highly specialized species.
Consequently, they are considered valid indicators for assessing the naturalness of forest
ecosystems [21]. In our case, we found 10 endangered species, including Megathous niger-
rimus (Elateridae) and Anaspis ruficollis (Scraptiidae) for the Endangered (EN) category
and Mordellochroa milleri (Mordellidae) included in the Critically Endangered (CR) cate-
gory. Furthermore, two species were included in the DD (Data Deficient) category (i.e.,
Rhizophagus cribratus and R. perforatus (Monotomidae)). Saproxylic beetles play an essential
role in the food chain of the forest ecosystem, particularly in the recycling of nutrients, as
they depend on—or are involved in—deadwood decay processes. However, information
on the status and distribution of the population of these species is particularly scarce in
the Mediterranean area [70]. Our results indicate that vertical forest heterogeneity is an
important variable for saproxylic assemblages in these Mediterranean montane forests [14].

In the Northern Apennines (including the study area), the presence of a significant
proportion of conifers is a decisive factor for the occurrence of numerous bird species [65],
including, among the target species, Lophophanes cristatus and the Dryocopus martius [71].
Mixed forests generally have heterogeneous stands, providing a greater range of nest-
ing and foraging sites [72,73]. Indeed, cavity-nesting species, being more vulnerable to
mammalian predation, could therefore suffer from the indirect effect of an increase in tree
species [74]. Species that have specific habitat requirements (e.g., the presence of cavities,
the structure of canopy layers) usually have strict preferences in terms of tree species,
and therefore an increase in tree species in general could correspond to a decrease in the
availability of niches [72].

4.4. ALS Data, Limitations, and Opportunities

ALS data represent an effective technique for detecting multi-taxon biodiversity pat-
terns. They can be used at different spatial scales to capture highly detailed data about
forest structure and terrain characteristics, also facilitating monitoring purposes thanks
to easy comparability when a multitemporal survey is available. Despite the excellent
opportunities remote sensing offers, some limitations must also be considered. Although
ALS data provide information at the level of the canopy and its structure [75], in dense and
continuously closed canopies, ALS metrics cannot fully describe the ecosystem biodiversity
by capturing microspatial variations [62], for which accurate field campaigns remain neces-
sary. Accordingly, one potential issue of ALS is related to the point density. Specifically,
as the density of points decreases, the forest structure ALS variables become less accurate.
Particularly promising are high-point-density ALS data that allow detailed descriptions of
lower canopy structures and enable new voxel-based approaches to retrieve information
from ALS data [76]. On the other hand, our ALS metrics are derived from a survey at
10 pulses m−2, which is higher than other studies that still showed reasonable results
(<2 pulses m−2) [31].

Furthermore, ALS data can provide a snapshot of the landscape at a specific time,
while biodiversity is dynamic. Due to the acquisition cost, ALS data are often not open
access and cannot provide repeated and temporally dense observations, not capturing
seasonal variations, migration patterns, or long-term trends. Moreover, and most critical,
is the lack of national wall-to-wall ALS data in many countries, as in Italy, which limits
large-scale implementation [49,52].

On the other hand, RS data are repeatable and increasingly freely accessible and
can be used at different spatial and temporal scales to support fieldwork limitations [77].
Accordingly, combining field activities and remote sensing approaches (also considering
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integration with other RS spectral data) for forest monitoring can overcome these short-
comings, helping to design and optimize regular and cost-effective monitoring strategies
to address biodiversity loss in forest ecosystems. Therefore, further biodiversity studies
should be conducted to evaluate the effectiveness of satellite LiDAR data such as GEDI [78],
or the integration with terrestrial laser scanning data, to overcome the major limitations
of ALS in penetrating the canopy in dense forests. On the other hand, RS data do not
replace field surveys, which are essential for assessing forest biodiversity and identifying
individual species, along with their rarity and composition.

Furthermore, TreMs are not the only drivers of ecological indicators of habitats for
animal species, which are also determined by multiple interspecific and intraspecific biotic
interactions with forest variables [14]. Therefore, our integrated approach could help in
identifying hotspots in the forest with the greatest need for management interventions to
improve the conservation of red-listed saproxylic species and birds.

We believe that processing and analyzing such data, which also allows the detailed
mapping of forest variables, including biodiversity indices, will be essential tools that have
the potential to support conservation planning and decision-making in forest ecosystems.

5. Conclusions

The following conclusions can be drawn from our study:

(1) ALS data hold great potential for analyzing the relationship between forest structure
and saproxylic and non-saproxylic beetle and bird communities. Forest structure and
TreMs were the most important variables in determining the multi-taxon biodiversity
in Mediterranean mountain ecosystems. Thus, accurate data on forest structure
and microhabitat-type indicators emerged as crucial for forest management and
biodiversity conservation.

(2) Remote sensing provides powerful tools to study the diversity and abundance of
forest biodiversity indicators (i.e., insects, birds, and TreMs). The large availability
of data at different spatial and temporal resolutions allows saproxylic beetle and
bird communities to be investigated at the most appropriate scale to discover new
ecological, ethological, and conservation information.

(3) Currently, ALS data can capture information on the composition and structure of eco-
logically suitable habitats for animal species. Habitat resources (trophic
niches—TreMs) can be distinguished using the variables obtainable from point clouds.
Furthermore, the different biodiversity conditions detected with the ground surveys
were mapped at physiologically relevant scales for insects and birds.

(4) In the near future, remote sensing will be increasingly used for specific indicators
of forest biodiversity. Although limitations for fully successful implementation are
still emerging, technological progress will make it possible to obtain information on
threatened species, thus informing nature-based forest management.

(5) In future studies, we suggest including other taxonomic groups related to forest struc-
tural traits (e.g., small mammals, spiders, amphibians, lichens, fungi, and bryophytes).
This will ensure the comprehensive monitoring of forest ecosystems to identify biodi-
versity hotspots more effectively.

(6) Multi-taxon biodiversity data permit the definition and strengthening of sustainable
management indicators linked to the different functions in forest ecosystems. This
is useful for drawing implications for conservation strategies of forest environments
and for increasing the resilience of mountain forests threatened by climate change.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15040660/s1, Table S1: Groups and forms of Tree-related mi-
crohabitat types, according to Kraus et al. [46] Table S2: Summary of the ALS metrics, according to
Giannetti et al. [47]; Table S3: List of the saproxylic and non-saproxylic beetle species sampled in the
Nature Reserve of Vallombrosa; Table S4: List of the birds species identified in the Nature Reserve of
Vallombrosa; Table S5: Results of the variable selection.

https://www.mdpi.com/article/10.3390/f15040660/s1
https://www.mdpi.com/article/10.3390/f15040660/s1
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