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Abstract: Forest aboveground biomass (AGB) plays an important role in regulating the global carbon
cycle and is thus an essential component of ecosystem functioning. In the relationships between bio-
diversity and ecosystem functioning (BEF), studies have shown that many biotic factors (e.g., species,
functional traits, and large trees) and abiotic factors have significant impacts on AGB. However,
the relative strength of these affecting factors remains unclear. In this study, we analyzed woody
plants (diameter at breast height [DBH] ≥ 1 cm) within a 1.6 ha plot in an old-growth subtropical
natural forest in southern China. We used structural equation models to test the effects of tree
diversity (species, phylogenetic, functional, and size inequality), functional composition, large trees,
and environmental factors (topography, soil nutrients, and understory light) on AGB. Our results
indicated that size inequality, the community-weighted mean of maximum DBH (CWM_MDBH), and
large trees had significant, positive effects on AGB (p < 0.001), while lower soil phosphorus content
was found to promote an increase in AGB. Furthermore, large trees, which were mostly composed
of dominant tree species, were the main driver of AGB, and the effect of functional composition
(e.g., CWM_MDBH) on AGB was substantially reduced by large trees. We argue that the selection
effect plays a key role in regulating BEF relationships in subtropical natural forests and conclude that
retaining large-diameter trees and dominant species, along with sustaining a complex stand structure,
are key measures for improving productivity.

Keywords: aboveground biomass; functional composition; large trees; selection effect hypothesis;
niche complementarity hypothesis; tree size inequality

1. Introduction

Numerous experimental or monitoring studies have shown that changes in biodiver-
sity can significantly affect ecosystem functioning and stability by increasing resistance
and resilience to stresses such as extreme weather events and invasive species [1]. Un-
precedented biodiversity losses over the past century may severely threaten key ecosystem
functions that humans both benefit from and rely on for sustainable development. There-
fore, the relationship between biodiversity and ecosystem functioning (BEF) has become
increasingly central in ecological studies [2]. For the reason that forest ecosystems cover
most of the earth’s surface and host the majority of terrestrial biodiversity [3], understand-
ing the BEF relationships of forest ecosystems is critical for mitigating climate change and
regulating the global carbon cycle. Forest aboveground biomass (AGB), which accounts for
approximately 80% of total forest biomass, is the main source of terrestrial carbon stocks
and is considered a fundamental indicator of forest ecosystem functioning [4]. However,
the BEF relationships of natural forests remain disputed, particularly in subtropical forests
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where a high diversity of tree species (e.g., seasonal, evergreen, or deciduous; tropical vs.
austral origin) often coexist in and co-dominate the same plant community [5]. The effects
of biodiversity on AGB may be more complex in subtropical forests than in temperate
forests due to the unpredictable effects of tree–tree interactions among a large number of
species as well as uncertainty about the effects of abiotic conditions on BEF relationships.

The niche complementarity and selection effects hypotheses are widely used to explain
BEF relationships. The niche complementarity hypothesis posits that niche partitioning
among species may lead to greater resource use efficiency, thus promoting increased ecosys-
tem stability and productivity (or biomass) [6]. Early studies quantified niche differentiation
based on species diversity, assuming that the higher the species diversity, the higher the
degree of ecological niche differentiation in a community [7]. Despite the convenience and
simplicity of this approach, numerous studies have concluded that niche overlap or dis-
similarity can be better captured using phylogenetic and functional traits, suggesting that
distantly related or functionally different species compete less for resources and space [8].
For example, studies have shown that phylogenetic and functional diversity influence
AGB more strongly than species diversity in forest communities with less abundant tree
species [9,10]. While the effects of species diversity on ecosystem productivity have been
widely studied in various vegetation types, a range of BEF relationships, including positive,
negative, unimodal, or irregular curves, have been observed [11]. Recent studies postulate
that tree size structure rather than inter-specific differences may underlie the positive effects
of tree diversity on forest community productivity because size diversity promotes light
use efficiency and thus may increase AGB by promoting the coexistence of large numbers
of different sized trees [12–15]. Furthermore, species and size structural diversity are highly
correlated, particularly in species-rich natural forests [16]. Studies based on the cumulative
abundance profile (CAP) of DBH have found that the size structure determines the species
richness of the stand [17]. Therefore, the relationship between species diversity and tree size
variation should not be considered in isolation when exploring the effects of diversity on
ecosystem functioning. An increase in species diversity may also promote tree size hetero-
geneity at both the local and community scales, implying that the simultaneous influences
of different aspects of tree diversity should be considered in biomass forecasting models
and that their interrelationships and relative contributions to AGB should be explicitly
explored [18]. To date, however, our understanding of how tree diversity affects ecosystem
functioning in species-rich forests via the niche complementarity effect is still restricted.

In contrast to the niche complementarity hypothesis, which stresses resource use
efficiency and positive interactions among trees, the selection (mass ratio) effect hypothesis
highlights the critical role of a few dominant, productive species (or functional traits) in
determining community biomass and postulates that an increase in species diversity will
increase the probability of the occurrence of productive or high functioning species in
the community, particularly in species-rich tropical and subtropical forests [19–21]. The
community-weighted mean (CWM) of functional traits, i.e., mean trait values weighted
by species’ abundances at the plot level, is often used to characterize the strength of
selection effects in forest communities [22]. CWM–AGB relationships may be sensitive to
the functional traits used, as different traits reflect different resource use strategies [23].
For example, high CWMs for specific leaf area (SLA) or leaf nitrogen or phosphorus
concentrations in plant communities are commonly associated with high productivity, as
these traits maximize resource acquisition rates and are often associated with acquisitive
species [22]. By contrast, high CWMs for leaf dry matter content (LDMC) or wood density
may be indicative of low-productivity communities dominated by conservative species
with a high tolerance for resource limitations and stressful conditions [24,25]. While niche
complementarity and selection effects typically operate simultaneously, the interactions
among them remain unclear [26,27].

Large trees are also important direct contributors to AGB in natural forests [28]. Com-
pared with medium-sized and small trees, large trees significantly impact tree size, struc-
tural heterogeneity, community functional composition, and the maintenance of species
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diversity at the local scale [21,29]. However, few studies have explored the indirect influ-
ence of large trees on AGB via their effects on tree diversity and functional composition.
Moreover, the BEF relationships can be confounded by abiotic conditions since factors such
as soil nutrients and light conditions directly influence the availability of resources for tree
growth in natural forests, thus influencing diversity [30,31]. As such, the abovementioned
processes may jointly determine forest productivity, and the complex relationships between
AGB, species diversity, tree size inequality, functional composition, and large trees, along
with environmental factors, remain unclear and require further study.

We used plot data from an old-growth subtropical forest to further clarify the BEF
relationships in a species-rich forest ecosystem. Such forests are characterized by a large
number of mature trees, complex stand structure, rich biodiversity, and carbon storage
capacity [32]. We used structural equation models (SEMs), in which explanatory variables
were added to the model in a stepwise approach, to explore the following three questions:

(1) How does tree diversity affect AGB? We hypothesize that size inequality is the
most crucial factor contributing to AGB and that it weakens the contribution of other
tree diversity indices to AGB. To this end, we constructed a SEM that included species,
phylogenetic and functional diversity, and environmental factors as explanatory variables
(Figure 1A). We then fitted a second model (Figure 1B), which included size inequality
based on the first model, and compared the effect sizes of tree diversity and the AGB
interpretability between the two models.

Forests 2023, 14, x FOR PEER REVIEW  3  of  19 
 

 

complementarity and selection effects typically operate simultaneously, the interactions 

among them remain unclear [26,27]. 

Large  trees  are  also  important direct  contributors  to AGB  in natural  forests  [28]. 

Compared with medium‐sized and small trees, large trees significantly impact tree size, 

structural  heterogeneity,  community  functional  composition,  and  the maintenance  of 

species diversity at the local scale [21,29]. However, few studies have explored the indirect 

influence  of  large  trees  on  AGB  via  their  effects  on  tree  diversity  and  functional 

composition. Moreover, the BEF relationships can be confounded by abiotic conditions 

since factors such as soil nutrients and light conditions directly influence the availability 

of resources for tree growth in natural forests, thus influencing diversity [30,31]. As such, 

the  abovementioned  processes  may  jointly  determine  forest  productivity,  and  the 

complex  relationships between AGB,  species diversity,  tree  size  inequality,  functional 

composition,  and  large  trees,  along with  environmental  factors,  remain  unclear  and 

require further study. 

We used plot data from an old‐growth subtropical forest to further clarify the BEF 

relationships in a species‐rich forest ecosystem. Such forests are characterized by a large 

number of mature trees, complex stand structure, rich biodiversity, and carbon storage 

capacity [32]. We used structural equation models (SEMs), in which explanatory variables 

were added to the model in a stepwise approach, to explore the following three questions: 

(1) How does tree diversity affect AGB? We hypothesize that size inequality is the 

most crucial factor contributing to AGB and that it weakens the contribution of other tree 

diversity  indices  to AGB.  To  this  end, we  constructed  a  SEM  that  included  species, 

phylogenetic and functional diversity, and environmental factors as explanatory variables 

(Figure 1A). We then fitted a second model (Figure 1B), which included size inequality 

based on  the  first model, and compared  the effect sizes of  tree diversity and  the AGB 

interpretability between the two models. 

 

Figure  1.  Conceptual  framework  illustrating  the  influence  of  “niche  complementary  effect”, 

“selection effect” and the effects of big size trees on AGB by gradually adding biotic variables. Tree Figure 1. Conceptual framework illustrating the influence of “niche complementary effect”, “selection
effect” and the effects of big size trees on AGB by gradually adding biotic variables. Tree diversity is
represented by species diversity, phylogenetic diversity, functional diversity and tree size inequality.
Functional composition includes four leaf physical properties, three leaf chemical properties and
three stem properties. Environmental variables (ENV), including topography, soil nutrients and
understory light, are assumed to have effects on each of the biotic variables. (A) The effects of species,
phylogenetic and functional diversity on AGB. (B) The effects of tree diversity on AGB. (C) The effects
of tree size inequality and functional composition on AGB. (D) The effects of tree size inequality,
functional composition and large trees on AGB. The dotted paths indicate a small influence, while the
solid paths indicate a certain influence. The thickness of the paths indicates the relative effect size.

(2) What role do niche complementarity and selection effects play in BEF relationships?
Here, we consider the effect of tree diversity on AGB as niche complementarity, while the
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effect of functional composition is a selection effect. We selected the tree diversity index
with the highest explanatory power from the second model (Figure 1B) and then added
functional composition to construct a new SEM (Figure 1C). We sought to clarify the relative
strength of the two effects (niche complementarity and selection effect) by comparing the
standardized path coefficients.

(3) How does the presence of large trees influence AGB either directly or indirectly
through tree diversity and functional composition? We added the effects of large trees to
the third model and identified the significance of tree diversity and functional composition
(Figure 1D). This further helped us clarify the relative strength of the complementary niche
effect and the selection effect on AGB.

2. Materials and Methods
2.1. Study Site

The study site was located in Yachang National Nature Reserve (24◦44′16”—24◦53′58” N,
106◦11′31”—106◦27′04” E) in Guangxi Zhuang Autonomous Region, southern China (Figure 2).
The reserve encompasses 22,062 ha, and historically, it belonged to the state-owned Yachang
Forest Farm. The reserve starts at the southeast edge of the Yunnan-Guizhou Plateau, a
transitional zone between plateau and hilly regions. Regionally important rivers, including
the Beipan, Nanpan, and Hongshui, flow through the area, and the reserve is geographically
unique and ecologically important. The site is characterized by a subtropical monsoon climate
with distinct dry and wet seasons. The minimum, maximum, and annual average temperatures
are 5.3 ◦C, 34 ◦C, 16 ◦C, and 23 ◦C, respectively, and the annual rainfall and annual evaporation
are 1058 mm and 1484.7 mm, respectively. Precipitation falls on 210 days per year on average,
and approximately 50%–60% of total precipitation falls in the summer. The average annual
relative humidity is 82%. Soils are dominated by brown laterites in the Hongshui River valley
below altitudes of 500 m, whereas mountain red soils occur at altitudes of 500–1000 m, and
mountain yellow soils are common above 1000 m. The vegetation is characterized by the typical
evergreen broad-leaved forests of the southern subtropical zone [33].
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Figure 2. (A) Map showing the location of the study area, situated in Yachang National Natural
Reserve, Guangxi, China. (B) The perspective map of the topography of the forest sample plot.
(C) and (D) Many large diameter trees and dead wood can be found in the old-growth forest.
(E) Hemispherical canopy images, which illustrate the complex structure in the forest.
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The sample plot was established in the Jiulong Forest Farm of Yachang National
Natural Reserve. In July 2020, we used a total station instrument (Southern Mapping
Company, Johannesburg, South China; precision: 2 mm + 2 ppm) and established a 1.6 ha
plot (80 m × 200 m, datum point: 24◦38′54” N, 106◦20′25” E, altitude, 1700 m). We divided
the plot into 40 small quadrats (20 m × 20 m), in which we georeferenced and labeled all
woody plants with a diameter at breast height (DBH) ≥1 cm. We tagged each plant and
recorded the species, DBH, and height. A total of 10,083 woody plants (including branches),
representing 33 families, 55 genera, and 84 species (APG IV), were recorded in the plot. The
dominant species were Liquidambar formosana Hance, Rhododendron cavaleriei H.Lév., Eurya
impressinervis Kobuski, Eurya nitida Korth., and Ilex ficoidea Hemsl. et al. (Table S2).

2.2. Data Sources
2.2.1. Trait Data

We collected data on 10 key functional traits: leaf thickness (LT), chlorophyll relative
content (SPAD), specific leaf area (SLA), leaf dry matter content (LDMC), leaf total nitrogen
content (LNC), leaf organic carbon content (LCC), leaf total phosphorus content (LPC),
branch wood density (WD), maximum DBH (MDBH), and maximum tree height (MH).
These traits reflect plant life history strategies and substantially influence growth [34]. In
August 2021, we collected and measured the leaf and branch traits of 76 species, following
the protocols in a handbook of standardized approaches for measuring plant functional
traits [35]. We randomly selected at least 10 mature, healthy individuals of each species, or
3–5 individuals for rare species (i.e., species represented by <10 individuals). We collected at
least 20 mature, sunward leaves and 3 branches from each plant and sought to distribute the
sampling throughout all the small quadrats to the greatest degree possible. We measured a
total of 10,860 leaves and 1629 branches from 543 plants.

In the field, we wrapped the samples in wet paper towels and placed them in sealed
plastic bags. Upon our return to the laboratory, we soaked the branches in water for at
least 2 h, and measured the basic physical properties of the leaves within 12 h. Leaves were
scanned using a scanner (Epson, Suwa, Nagano, Japan), and analyzed using ImageJ 18.0
software. LT was measured using micrometers (San Liang, JDE03, Dongguan, China). We
measured the tip, middle, and base of each leaf and used the average value to represent LT.
A SPAD-502 chlorophyll meter was used to determine SPAD. The saturated fresh weight of
leaves was measured using a thousandth electron balance. We dried the leaves in an 80 ◦C
oven for 48 h to a constant weight and recorded their dry weights. SLA and LDMC were
calculated based on Formulas (1) and (2). The dried leaves were ground to a powder prior
to measuring LNC, LCC, and LPC. We soaked branches to saturation and measured wood
volume using the drainage method. Branch dry weight was determined after samples were
oven-dried to a constant weight. WD was calculated based on Formula (3). The height of
each tree was measured using a Haglöf Vertex IV (Haglöf Sweden AB, Långsele, Sweden),
and the maximum height of each species was determined based on the Flora of Guangxi.

SLA = Leaf area/Leaf dry weight (1)

LDMC = Leaf dry weight/Leaf fresh weight (2)

WD = Branches dry weight/Wood volume (3)

where Leaf area is in cm2, Leaf dry weight, Leaf fresh weight and Branches dry weight is in
g, Wood volume is in·cm3.

2.2.2. Environmental Variables

To calculate topographic factors (i.e., elevation, slope, aspect, and convexity), we
created a digital elevation model (DEM) using ArcGIS 10.2. The DEM was based on the
three-dimensional coordinates of the geo-referenced trees and had a spatial resolution of
0.8 m [36]. We then used this model to calculate the topographic attributes of each small
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quadrat. Elevation was determined based on the average elevation values of the four
vertices in each quadrat. Convexity was calculated based on the elevation of each quadrat
minus the mean elevation of the eight neighboring quadrats. The slope was assessed based
on the mean angular deviation from the horizontal plane of each of the four triangular
planes formed by connecting three corners of the quadrat [37]. Finally, the aspect was
determined based on the mean angle between the true north and the orientation of the
same four planes [38].

Five soil samples, ranging in depth from 0–20 cm, were collected along the diagonal
and at the center of each quadrat. Soil samples were used to measure the following physical
and chemical soil properties: PH, total nitrogen, organic carbon, total phosphorus, total
potassium, alkaline hydrolysis nitrogen, available phosphorus, available potassium, and
soil moisture content. To reduce the number of soil variables in our analysis and to avoid
strong correlations among variables, we standardized each variable (mean = 0, standard
deviation = 1) and used principal component analysis (PCA) to reduce the dimensional-
ity of the data. The first PCA axis (soil PCA1, 47.85%) was driven primarily by pH and
total potassium. The second axis (soil PCA2, 28.69%) was driven primarily by total phos-
phorus and available soil nutrients (alkaline hydrolysis nitrogen, available phosphorus,
and available potassium). These two axes were used to represent soil physicochemical
properties (Table 1).

Table 1. The loading values of soil factors on the first two principal components.

Soil Factors Soil PCA1 Soil PCA2

Soil PH (PH) 0.39 0.24
Soil total nitrogen (TN) −0.44 0.17
Soil organic carbon (OC) −0.45 0.11
Soil total phosphorus (TP) 0.08 0.57
Soil total potassium (TK) 0.33 0.38
Soil alkaline hydrolysis (AHN) −0.41 0.25
Soil available phosphorus (AP) −0.14 0.27
Soil available potassium (AK) −0.07 0.54
Soil moisture content (SMC) −0.38 −0.09

Explained variance proportion 47.85% 28.69%
Cumulative proportion 47.85% 76.54%

The understory light conditions in each quadrat were measured using an EOS 80D
single lens reflex camera (Canon, Tokyo, Japan) with a Sigma 4.5 mm F2.8EXDC fish-eye lens
converter (Sigma-Aldrich, St. Louis, MO, USA). We positioned the camera 2 m above the
ground using a tripod and rotated the tripod to set the magnetic needle to the north. We took
three hemispherical canopy images at each quarter point and the midpoint on the diagonal
line of each quadrat, for a total of 600 images. Photographs were taken at sunrise or sunset
on sunny days to avoid direct sunlight [39]. We used Hemiview2.1 software to analyze the
images and calculate canopy opening (Co) and leaf area index (LAI) [40]. The understory
light of each subplot was the average LAI or Co from 15 images taken within a quadrat.

2.2.3. AGB Calculation

Following Chave et al. [41], we used the general allometric equation model to calculate
the AGB of all woody plants (DBH ≥ 1 cm) in the sample plot.

AGB = 0.0673×
(

ρD2H
)0.976

(4)

where D is in cm, H is in m, and ρ is in g·cm−3.

2.2.4. Multivariate Diversity Metrics

• Species diversity;
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Species richness (SR), the Shannon index, and the Simpson index were calculated for
measuring species diversity [42,43].

Species richness = S (5)

Shannon = −∑ PilnPi (6)

Simpson = 1−∑ P2
i (7)

where S is the number of species and Pi is the proportion of species abundance belong to
total individuals. These indices were calculated using the R package “vegan”.

• Phylogenetic diversity;

Faith’s phylogenetic diversity (PD), mean pairwise distance (MPD), and mean nearest
taxon distance (MNTD) were used as proxies for phylogenetic diversity. PD is calculated
based on the sum of phylogenetic branch lengths weighted by species abundance [44].
We generated a phylogenetic tree (APG IV) and calculated the PD of each quadrat using
the R package “V.PhyloMaker” [45]. MPD represents the average phylogenetic distance
between all individuals in a community, and MNTD is calculated based on the average
phylogenetic distance between individuals and their closest non-conspecific relative [46].
The phylogenetic indices were calculated using the R package “vegan” [47].

• Functional composition;

Functional composition was quantified based on the community-weighted means of
the ten functional traits [48].

CWM =
n

∑
i=1

AijTij (8)

where Aij is the abundance of species i in subplot j, and Tij is the mean trait value of species
i in subplot j. The number of species on the subplot was measured by n.

• Functional diversity;

Functional diversity was quantified using Functional richness (FRci), Functional even-
ness (FEve), Functional divergence (FDiv) and Functional dispersion (FDis) [8,49].

FRci =
SFci
Rc

(9)

FEve =
∑S−1

i=1 min
(

PEWi, 1
S−1

)
− 1

S−1

1− 1
S−1

(10)

FDiv =
2
π

arctan

{
5×

N

∑
i−1

[(
ln Ci − ln x

)2
× Ai

]}
(11)

FDis =
∑ ajzj

aj
(12)

where FRci is the functional richness of plant functional trait c in community i, SFci is the
niche space occupied by species in the community i, and Rc is the absolute value range
of plant functional trait c. FEve describes the evenness of abundance distribution in a
functional trait space [8], S is the species richness, and PEWi is the weighted evenness of
species i. FDiv is a functional separation index that contains multiple functional traits, Ci is
the value of the ith functional trait, Inx is the natural logarithm of traits, Ai is the abundance
proportion of the ith functional trait, and N is the number of species in the community.
FDis is the average distance from the weighted abundance of species to the centroid of all
species in the community, aj is the relative abundance of species j, zj is the distance from
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species j to the weighted centroid. Functional composition and functional diversity indices
were calculated using the R package “FD” [50].

• Size structure diversity;

Tree size inequality was quantified using the coefficient of DBH variation (CV) and
the Gini coefficient (Gini) of individual trees.

CV = 100%

√
1
N (DBHk − µ)2

µ
(13)

Gini =
∑N

i=1 ∑N
j=1
∣∣xi − xj

∣∣
2N2x

(14)

where DBHk is the DBH of the kth individual in a subplot, µ is the average DBH of all
individuals in a subplot. N is the total number of individuals in a subplot,

∣∣xi − xj
∣∣ is the

absolute value of the DBH difference between any two trees, and x is the average DBH
in each subplot. The CV index was calculated using the R package “raster”, and the Gini
index was calculated using the R package “ineq” [51,52].

2.2.5. Defining Large Trees

Criteria for defining large-diameter trees may vary by forest type and successional stage [22].
Lutz et al. [28] proposed three methods for identifying large trees. The first is to define the
largest 1% of trees in a community as large trees, based on DBH. The second is based on a
fixed threshold (DBH ≥ 60 cm), and the third defines large trees based on 50% cumulative
biomass. We applied the first method to our data using thresholds of 1%, 2%, and 3%, yielding
large tree datasets comprising 98, 196, and 294 individuals, respectively. The DBHs of these
groups were concentrated in the range of 40–50 cm, 30–40 cm, and 25–35 cm, respectively. The
most abundant species included in all three groups were Liquidambar formosana, Schima argentea,
Clethra kaipoensis and Rhododendron cavaleriei (Figure S1). We defined the largest 2% of trees,
based on DBH, as large trees, as few individuals had DBHs ≥ 60 cm. However, we also tested
the 1% and 3% thresholds in our AGB models (Figure S5).

2.3. Data Analysis

We first used a generalized least squares (GLS) model to assess spatial autocorrelation
among neighboring quadrats [53]. The spatial model with the lowest Akaike information
criterion (AIC) score was selected from among five candidate spatial autocorrelation models.
We then compared this model to a non-spatial GLS model. We found that the model
without spatial autocorrelation consistently had a lower AIC score (Table S3), indicating an
absence of spatial autocorrelation among the quadrats. We then used linear regressions to
assess the relationships between AGB and each explanatory variable. All data were log-
transformed and normalized (mean = 0, standard deviation = 1) prior to analysis. We fitted
linear models for AGB and each explanatory variable to obtain standardized coefficients.
Forest plots of the normalized coefficients for each variable were generated using the R
package “ggplot2” [54].

Due to limitations in the relationship between sample size and path coefficients in SEMs
analysis, it is necessary to screen explanatory variables. Random Forest is a machine-learning
algorithm that is relatively insensitive to multicollinearity and overfitting, allowing for the
inclusion of numerous explanatory variables [18]. We used the random forest to assess the
importance of each explanatory variable and selected the 15 most important abiotic and
biotic variables that most strongly influenced AGB (Figure S3) for correlation analysis. The
importance of the selected variables was quantified based on the percent increase in mean
square error. Random Forest models were run in the R package “randomForest” [55]. To
avoid overfitting of the SEMs due to high collinearity among variables, we performed a
correlation analysis of the 15 selected variables. If the correlation coefficient of a pair of
candidate variables was >0.70, the first variable was retained and the second variable was
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excluded (Figure S4). The remaining variables were included in the SEMs. In addition, to
evaluate the conciseness and suitability of the selected variables, we used the dredge function
in the R package “MuMIn” [56] to generate a full set of models based on maximum likelihood
estimation and then used AIC to select the best model (Table S4). Models were considered
equally supported if the difference in AIC (delta AIC) scores was <2.

Finally, we used linear SEMs that gradually added variables to assess the effects of
the biotic and abiotic variables on AGB based on a priori conceptual models (Figure 1A–D).
Standardized path coefficients can be used as a measure of the sensitivity of response variables
to explanatory variables [57]. To improve model fit, we conducted a stepwise removal of
non-significant paths [58]. The best-fit SEM was identified based on several parameters,
including the chi-square test (χ2), Akaike information criterion (AIC), mean square and square
root of asymptotic residuals (RMSEA), comparative fit index (CFI), and standardized root
mean square residuals (SRMR) [59]. The SEMs were fitted using the “lavaan” package [60].
To aid in model interpretation, we calculated the direct, indirect, and total standardized effect
sizes of each explanatory variable. All calculations were conducted in R4.1.1 [61].

3. Results
3.1. Bivariate Relationships between AGB and Biotic Variables

There was no significant correlation observed between AGB and species diversity
or phylogenetic diversity. Notably, the community-weighted mean of leaf phosphorus
concentration (CWM_P) and functional dispersion (FDis) exhibited significant negative
impacts on AGB. Conversely, community-weighted means of maximum breast-height
diameter (CWM_MDBH), Gini index, coefficient of variation (CV), and large trees were
associated with significant positive impacts on AGB. The relative effect sizes were ranked
in the following order: Large trees > Gini > CV > CWM_MDBH (Figure 3).
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line represents the 95% confidence interval. Solid brown circles represent the positive effect (p < 0.05),
solid blackish green circles represent the negative effect (p < 0.05), and solid black circles indicate no
significant effect (p > 0.05). CWM_WD: community-weighted mean of branch wood density; CWM_SPAD:
community-weighted mean of relative content of chlorophyll; CWM_SLA: community-weighted mean
of specific leaf area; CWM_P: community-weighted mean of leaf phosphorus concentration; CWM_N:
community-weighted mean of leaf nitrogen concentration; CWM_MH: community-weighted mean of
maximum tree height; CWM_MDBH: community-weighted mean of maximum breast-height diameter;
CWM_LT: community-weighted mean of leaf thickness; CWM_LDMC: community-weighted mean of
Leaf dry matter content; CWM_C: community-weighted mean of leaf carbon concentration. For the rest of
the abbreviation indices, see the materials and methods section.
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3.2. The Effects of Biotic and Abiotic Factors on AGB

The random forest analysis indicated that, among tree diversity indices, FDis impacted
AGB more than species diversity (Figure S3A). However, size structural diversity was far
more important than other diversity indices if tree size inequality was considered in the model
(Figure S3B). Among functional compositions for different traits, CWM_MDBH had the second
highest importance value following tree size inequality (Figure S3C). Large trees had the
strongest effect among the variables included in the full model (Figure S3D,F). Strong correlations
were detected between the diversity indices as well as between the functional composition
indices (Figure S4). By contrast, neither large trees nor tree size inequality were strongly
correlated with the remaining explanatory variables (correlation coefficient < 0.7).

The final SEMs showed that species, phylogenetic, and functional diversity had no
significant effect on AGB (Figure 4A). Rather, 7.9% of the AGB variation was explained
by the mean nearest taxon distance (MNTD), functional divergence (FDiv), and functional
dispersion (FDis). The inclusion of tree size inequality increased the explanatory power
of the model to 47.8% (Figure 4B). Among them, Gini had the strongest positive direct
effect on AGB (β = 0.679, p < 0.001), but Simpson’s index had a significant negative total
effect on AGB (Figure 5B). We observed a weak relationship between species diversity
and tree size inequality. Soil nutrients had direct and significant effects on tree diversity
but no significant effects on AGB (Figure 4A,B). When both the functional composition
and tree size inequality were considered, the explanatory power of the model reached
57.6% (Figure 4C). CWM_MDBH (β = 0.484, p < 0.001) and CV (β = 0.679, p < 0.001) had
strong, positive, direct effects on AGB, whereas CWM_LDMC (β = −0.454, p < 0.001) had
significant, negative effects. Soil PCA2 had a significantly positive direct effect on AGB
(β = 0.383, p < 0.01) but no total effect on AGB (Figures 4C and 5C).
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phylogenetic and functional diversity on AGB. (B) The effects of tree diversity, which considers
both species and size diversity, on AGB. (C) The effects of tree diversity and functional composition
on AGB. (D) The effects of tree diversity, functional composition and large trees (top 2%) on AGB.
The width of the arrow represents the strength of the relationship, with solid black paths indicating
significant positive effects and solid gray paths indicating significant negative effects. The values
near the solid arrows represent the normalized coefficients of different levels significance (* p < 0.05,
** p < 0.01, *** p < 0.001), while dotted arrows indicate non-significant effects. R2, the percentage
explained by dependent variable; χ2, Chi-square value; df, Degrees of freedom; p, the p-value of
chi-square test; AIC, Akaike information criterion; RMSEA, Root mean square error of approximation;
CFI, Comparative fit index; SRMR, Standardized root mean square residual. The interpretation of
variables abbreviation refers to Figure 3 notes.
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Figure 5. Comparison of direct, indirect and total effects derived from SEMs (Figure 4A–D). Data
shows standardized coefficient± standard error. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.
(A) Standardize coefficients of FDis, FDiv, Mntd, soil PCA1 and soil PCA2 from SEM (Figure 4A).
(B) Standardize coefficients of Gini, Simpson, soil PCA1 and soil PCA2 from SEM (Figure 4B).
(C) Standardize coefficients of CV, CWM_LDMC, CWM_MDBH, soil PCA1 and soil PCA2 from SEM
(Figure 4C). (D) Standardize coefficient of Large trees, CWM_MDBH, Gini and soil PCA2 form SEM
(Figure 4D). The interpretation of variable abbreviations can be found in the notes of Figure 3.

Following the addition of large trees, the model explained >60% of the variation in
AGB ((Figures 4D and S5A,B). Large trees not only had significant and positive effects on
AGB but also had a strong impact on functional composition-AGB or tree size inequality-
AGB relationships. The effects of functional composition and tree size inequality on AGB
weaken following the addition of large trees. As the threshold for large trees increased, the
direct and total effects of CWM_MDBH on AGB weakened, whereas the direct and total
effects of tree size inequality became increasingly strong (Figures 5D and S5C,D).
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4. Discussion

Assessing the main drivers of AGB in natural forests is critical for forest management,
biodiversity conservation, and forest carbon sequestration [62]. Our analysis demonstrates
that different factors, including tree diversity, functional composition, large trees, and
environmental variables, jointly influence AGB in an old-growth subtropical natural forest.
Our results confirm that CWM_MDBH, tree size inequality, and large trees significantly
impact AGB, thus providing strong evidence of the importance of both selection effects
and niche complementarity processes in BEF relationships. However, a large proportion of
the AGB variance is explained by tree size inequality and large trees jointly. Notably, large
trees completely weakened the effects of CWM_DBH on AGB, indicating that selection
effects play a stronger role in regulating AGB formation in natural subtropical forests.

4.1. The Effects of Tree Size Inequality on AGB Were Stronger Than Those of Other Tree Diversity

Our model indicates that tree size inequality positively affects AGB, which is consis-
tent with the results of numerous other studies conducted in subtropical forests [63]. Size
inequality directly reflects the horizontal variations of individual trees while also indirectly
indicating differences in habitat requirements or resource demands, particularly for light,
among species [64]. Therefore, complex size structure improves forest canopy growth
and stratification and enhances niche complementarity through efficient light capture or
spatial stratification [65]. Although numerous studies have shown that AGB in subtropical
forests increases with increasing biodiversity [65–67], our results suggest that species, phy-
logenetic, and functional diversity have negligible, or even negative, effects on AGB. One
possible explanation for this may be that the competitive effects of dominant species inhibit
resource utilization by other species, resulting in decreased species diversity as productivity
increases [68,69]. Therefore, asymmetric inter-specific competition for available resources
may result in a negligible relationship between species diversity and AGB. Furthermore,
our results were consistent with other studies based on global forest databases that indicate
that the effects of functional diversity on AGB are negligible [21]. Our focal community
was in the late stages of succession, which is frequently characterized by niche saturation
or functional redundancy, which in turn may have led to the observed weak association
between AGB and functional diversity [26,70]. In theory, size structure diversity is a key
mechanism underlying the positive relationship between species diversity and AGB [65];
however, our results show that the effects of tree size inequality on species diversity are not
significant. Ren et al. [62] came to a similar conclusion in a study conducted in a natural
subtropical forest. In summary, our results emphasize the importance of size structure in
forest monitoring and management, which is consistent with the findings of Angiolini et al.,
who supported the role of size structure in classifying European forest habitat types [71].

4.2. The Relative Importance of Selection Effect and Niche Complementary Effect

While studies have shown that niche complementarity and mass ratio effects both
drive AGB, the relative importance of the two mechanisms in natural forests remains dis-
puted [72]. We found that both stand-level DBH variations and the functional component of
maximum DBH had significant, positive effects on AGB, suggesting that dominant species
with potentially larger DBHs and greater size variation drive AGB at our study site. Thus,
our study demonstrates the presence of both niche complementarity and mass ratio ef-
fects. In models that only included size structural diversity and functional composition
(Figures 4C, 5C and S3C), CWM_MDBH contributed less to AGB than size structural diver-
sity (CV). Based on these findings, it can be preliminarily inferred that niche complementarity
is more important than mass effects in determining AGB in natural subtropical forests. Many
other studies have used the CWM of maximum tree height (CWM_MH), which reflects
competition for light, to explore the relationship between functional composition and AGB
and have demonstrated that CWM_MH is the main driver of AGB [27,73]. We opted to use
DBH instead, as measurements of tree height are prone to substantial error and DBH is a
better indicator of competitive advantages among plants [74]. In addition, we observed a
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negative relationship between AGB and the conservative trait CWM_LDMC. This may be
because slow-growing, conservative species (e.g., species located in understory strata) are
often suppressed by functionally dominant species [22].

4.3. The Role of Large Trees on AGB Reflects the Selection Effect

It is generally acknowledged that large trees contribute substantially to AGB, but
little is known about their unique role in driving AGB in forest communities relative to
other biotic and abiotic factors [22,75]. Our models demonstrate that among AGB, large
trees, size inequality, and functional composition, large trees have the greatest impact
on AGB, and as the threshold for large trees increases, so does the contribution of large
trees to AGB (Figures 4D and S5A,B). However, large trees also reduce the direct positive
effects of size-structural diversity and CWM_MDBH on AGB, which is consistent with
the results of previous studies on stand structural complexity and aboveground carbon
stocks [76]. Therefore, it is possible that the effects of biodiversity on AGB may have been
largely misattributed to stand structural diversity in previous studies [15,62]. However,
the significant effect of tree size inequality was not completely weakened by large trees.
Interestingly, as the threshold for defining large trees increased, the effect of diameter-
at-breast-height dominant species on AGB gradually weakened and eventually became
insignificant, while size structural diversity became increasingly important. This may
be due to the fact that higher thresholds of large trees capture more dominant species,
which account for most of the AGB (Figure S2). Thus, the effects of large trees on AGB
belong to the selection effect to some extent. Furthermore, the relative importance of niche
complementarity and mass ratio effects may differ among strata. Ali et al. [23] found that
AGB was driven by conservative species in the understory but by dominant species in the
canopy. Stratification may be an important direction for future research to further explore
the relationship between biodiversity and ecosystem functioning.

4.4. The Direct and Indirect Effects of Environment Conditions on AGB

Compared with the bivariate BEF relationships (Figure 3), the significance of functional
diversity on AGB changed when both biotic and abiotic factors were included in our
models (Figure 4). This suggests that environmental factors have non-negligible effects on
BEF relationships. Among the environmental factors included in our study (topography,
soil nutrient, and understory light), only soil PCA2 had a positive direct effect on AGB;
this variable also had significant positive effects on species, phylogenetic, and functional
diversity. These positive effects may be attributable to soil nutrient levels. Other studies
have shown that forest stands with nutrient-poor soils exhibit stronger species diversity
effects and lower tree size variation [77–81]. Total phosphorus, which was generally low
at our site, had the strongest contribution to soil PCA2, suggesting that phosphorus use
by plants promoted niche differentiation (Table 1 and Table S1). In addition, soil PCA2
had a positive effect on CWM_LDMC, supporting the hypothesis that nutrient-poor soils
are advantageous to species with conservative life history strategies [22,78]. By contrast,
lower pH or potassium levels may limit the availability of soil nutrients [79]. In our study,
soil PCA1 mostly reflected variations in pH and total potassium. Moreover, the soils at
our study site were acidic, and the total potassium content was lower than average for
evergreen broad-leaved forests in southern China [82]; therefore, soil PCA1 had a negative
effect on tree size inequality.

5. Conclusions

Our study demonstrated that niche complementarity and mass ratio effects jointly
maintain BEF relationships in subtropical forests, but that the relative importance of the
selection effect was greater. Furthermore, tree size inequality exerted stronger positive
effects on AGB, independent of species, phylogenetic, or functional diversity. Species with
large DBH inhibited the contribution of conservative species to AGB. More importantly,
large trees were the main drivers of AGB as well as a key driver of size diversity and
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functional composition. Concurrently, lower soil phosphorus content promoted an increase
in the AGB of conservative species. Therefore, the retention of large-diameter trees and
the maintenance of size structural complexity are conducive to improving productivity in
subtropical natural forests.
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by dominant species. Figure S3. Random forest analysis of the relative importance of biotic and abiotic
variables to aboveground biomass. Figure S4. Correlation analysis of the most important 15 explanatory
variables. Figure S5. The final optimal structural equation model results (SEMs) for other thresholds
large trees (top 1% and 3%) and the standardized coefficient derived from SEMs. Table S1. Summary
statistics of environmental factors. Table S2. The top 20 species are ranked by important value in the
forest plot. Table S3. Summary of the selected generalized least-squares (GLS) models of the relationships
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