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Abstract: As trees age, internal decay and the risk of stem failure become important management
issues for arborists. To characterize the incidence and severity of internal decay in landscape oaks,
323 pairs of sonic and electrical resistance tomograms were generated from 186 trees, representing
five species: Q. alba, Q. bicolor, Q. palustris, Q. rubra, and Q. velutina. Overall, 135 (73%) oaks had
detectable decay. When intermediate sonic velocities were included, the mean area of decay (Ap)
was 41% with a mean strength loss (Zrpsg) of 35%. Among all oaks, Q. rubra had the highest
frequency of decay symptoms and signs of a pathogen. Binomial regression showed that diameter,
symptoms, and oak species were the best predictors of decay incidence, and beta regression showed
that diameter, scanning height, and species were the best predictors of decay severity. Quercus alba
had the highest mean Ap while Q. bicolor or Q. palustris had significantly less decay, depending
on tomogram interpretation, across all modeled conditions. Despite considerable variability, the
empirical model of decay incidence and severity fit to tomography measurements can inform decay
assessments of landscape oaks, but the detailed tomograms allowed more precise strength loss
estimates, especially for offset decay columns.

Keywords: sonic tomography; electrical resistance tomography; butt rot; wood-rotting fungi; fungal
pathogens; urban forestry

1. Introduction

Across northeastern North America, oaks (Quercus spp.) are some of the most abun-
dant, valuable, and largest trees in developed (i.e., urban and suburban) landscapes. In
the Frank A. Waugh arboretum on the University of Massachusetts campus (Amherst, MA,
USA), oaks make up 9% of all trees and 22% of total tree value, based on the Council of Tree
and Landscape Appraisers (CTLA) calculations [1]. Additionally, oaks represent 28% of all
trees with a diameter at breast height (DBH) >76.2 cm. Their adaptability and tolerance of
urban stresses have made oaks a desirable choice for a variety of landscape sites [2].

However, as these trees continue to age, internal decay caused by wood-decaying
fungal pathogens is a common concern. Internal decay in the roots and trunk decreases
the structural stability of infected trees, making them more susceptible to uprooting and
stem failure [3], especially under loading from strong winds [4]. Decay in the roots and
lower trunk of oaks is often initiated through wounds [5]. In developed landscapes,
oaks are subjected to a range of mechanical injuries, such as construction damage to
roots [6] and wounding from lawn care equipment [7]. Furthermore, the majority of wood-
decaying fungi that attack oaks colonize the heartwood after establishment [3,8]. As a
result, advanced infections can develop without any visible symptoms or impairment of the
vascular tissue. While oaks have strong, durable wood, they are susceptible to infection and
decay from a wide array of fungal pathogens [8]. Previous studies on the damage caused
by decay pathogens of oak have primarily focused on timber losses in forest settings [9-11].
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These studies have helped to identify the most common and destructive wood-decaying
pathogens, many of which occur across urban and suburban landscapes [3,12].

Studies on the incidence and severity of internal decay in landscape trees are lacking.
This is a significant knowledge gap, given the importance of fungal decay in tree failure [13]
and the resulting legal ramifications [14]. Yet, some studies provide insights into decay
incidence. A review of data from the California Tree Failure Report Program (https://
ucanr.edu/sites/treefail /) (accessed on 2 November 2022) found that fungal decay was as-
sociated with failure rates ranging from 75%-86% for Q. agrifolia, Q. lobata, and “other oaks”
(Q. spp.) [15]. For Q. agrifolia, the most common type of failure was root and lower trunk rot
in a residential setting. Across four cities in New York, USA, Luley et al. [16] found decay
frequencies ranging from 53%-63% for three species of maple (A. platanoides, A. saccharum,
and A. saccharinum). While, in Tampa, Florida, USA, Koeser et al. [17] determined decay
frequency at 67% for Q. laurifolia and 29% for Q. virginiana. Across several northeastern
states, Brazee and Marra [18] found a decay frequency of 30% for Ulmus americana. While
decay frequencies can vary substantially among tree species, these studies illustrate that
many landscape trees harbor internal decay.

Depending on the severity and location, internal decay can substantially decrease
the strength of trees and increase the likelihood of failure if a tree experiences large loads.
Practitioners have historically used a variety of tools to assess the severity and location
of internal decay, from simple tools such as mallets for sounding a trunk to drills that
measure wood resistance [19]. Previous work comparing the results of sonic and electrical
resistance tomography to destructively sampled cross-sections has shown that tomography
can accurately depict the internal condition of deciduous hardwoods [18,20]. Based on
105 stem disks cut from 72 trees where tomography scans were obtained, tomography
correctly predicted the internal condition (no decay, incipient decay, active decay, and active
decay with a cavity) in 95 cross-sections. For the remainder, the error occurred when small
cavities (<10 cm in diameter) were misidentified [21].

In addition to accurately predicting a tree’s internal condition, it has been shown
that sonic tomograms can aid in understanding the loss in load-bearing capacity due
to internal decay [22,23]. For decades, researchers have examined the use of various
strength loss formulas, adapted from mechanics, to inform the management of decayed
trees [24-26]. Using destructive samples, the percent reduction to the section modulus
(Z10ss) was estimated numerically from sonic tomograms [22,23] and the estimates were
found to be more accurate than other analytical strength loss formulas. However, the results
have also shown tomography can underestimate the area of decay in smaller-diameter,
circular trees and overestimate decay in larger-diameter, irregularly shaped trees [21-23].
Furthermore, the distance between the center of the decay and the center of the trunk, an
important consideration in strength loss models, can be portrayed inaccurately. Despite
these limitations, tomograms can provide additional insight when assessing strength loss
due to decay, which is a critical component of tree risk assessments [19].

The primary goals of this study were to determine: (i) the incidence and severity
of internal decay in the lower trunk of oak species commonly occurring in developed
landscapes of the Northeast, USA; (ii) if the frequency and severity of decay are significantly
different by numerous variables, including oak species, oak group (red vs. white), presence
of decay symptoms, diameter, and sampling height, among others; and (iii) the similarity
between strength loss values computed using the detailed information in tomograms
(i.e., Zross) and others lacking such information (i.e., It oss).

2. Materials and Methods
2.1. Tree Selection and Pathogen Identification

Oaks sampled for this study were non-randomly selected based on species, size,
and access. Trees were sampled once for this study and data collection occurred over a
six-year period (2016-2021) from approximately mid-April to early November to avoid
subfreezing temperatures. This follows the manufacturer’s recommendation, as subfreezing
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temperatures can influence the accuracy of the tomograms. The sites spanned a variety of
developed landscape settings, including urban and suburban streets, residential properties,
public parks, and arboreta. No forest trees were sampled as part of this study. Roughly one-
third of all oaks sampled (63/186; 34%) came from the Frank A. Waugh Arboretum on the
University of Massachusetts, Amherst campus. With few exceptions, oaks were sampled
from sites in Massachusetts, USA, where annual mean temperature and precipitation
(1901-2000) are 8.3 °C and 113 c¢m, respectively [27]. Five oak species were sampled: Q. alba
(white oak), Q. bicolor (swamp white oak), Q. palustris (pin oak), Quercus rubra (northern
red oak), and Q. velutina (black oak).

Prior to tomography scanning, DBH was measured and symptoms and signs of
internal decay were detected by visually assessing the lower trunk and the upper canopy
of each tree. These areas were selected because tomography scanning was only conducted
in the basal 2.5 m of the trunk. Symptoms of internal decay on the lower trunk included:
excessive basal tapering (or flaring and swelling), depressions, cracks, seams, bulges,
sap flow, dead bark, open cavities, and canopy dieback. Canopy dieback can be caused
by various biotic (e.g., vascular wilt disease, insect pests, etc.) and abiotic (e.g., drought,
mechanical root injury, etc.) stresses, but root damage from decay can manifest as symptoms
in the upper portion of the canopy. Root decay is also frequently associated with decay
in the root flare and lower trunk. Signs of a fungal decay pathogen included fruiting
bodies or asexual structures. When signs were present, identification was made based on
macroscopic features in the field and, when required, microscopic characters at the UMass
Plant Diagnostic Laboratory.

2.2. Sonic and Electrical Resistance Tomography

To capture sonic and electrical resistance tomograms, the PICUS® Sonic Tomograph 3
and TreeTronic 3 (Argus Electronic GMBH, Rostock, Germany) were used in this study. For
specific details on the establishment of sampling cross-sections and the process of collecting
sonic and electrical resistance tomograms, refer to Marra et al. [21]. For most trees, the
lowest cross section was established close to the soil line, considering the geometry of the
lower trunk, symptoms of decay (e.g., open cavities or decaying areas of outer sapwood),
and location of perennial fruiting bodies of known wood-decaying fungi (if present). If the
decay was detected based on the first scan, a second cross-sectional plane was established
above the first sampling height. Often, but not always, the second plane was established
50 cm above the lower plane. If the decay was not detected during the first scan, no further
sampling took place for most, but not all trees.

For each scan, galvanized roofing nails, 5.1-6.4 cm in length and spaced at 18-25 cm
intervals, were then inserted to a depth just beneath the outer bark so the nail point contacts
the sapwood. Each nail is a measuring point (MP) from which sonic and electrical resistance
data are collected. The MPs are sequentially numbered with MP-1 placed at magnetic
north. For all cross-sections, every attempt was made to use as many MPs as possible, to a
maximum of 24, proportionally to the circumference of the cross-section. The height above
ground, H (cm), and diameter, D (cm), of each measured cross section were recorded.

For sonic tomography (SoT), sensors were magnetically attached at each SoT MP
and connected via cable to a detection module that is wirelessly connected to the PiCUS®
software. At each MP, sound waves are initiated with sequential taps from the “sonic
hammer” connected wirelessly to the detection module. The software then uses these data
along with the inter-MP distances to calculate sonic velocities. The software then produces
an image with a colorimetric scale depicting the internal condition within the cross-section.
The colorimetric scale designates healthy, intact wood as brown (higher relative velocities)
while cracked, damaged, decaying wood is designated by green, violet, and blue colors
(lower relative velocities, in decreasing order).

For electrical resistance tomography (ERT), positive and negative leads are attached to
each pair of previously established MP nails and connected via cable to a detection module
connected wirelessly to the PiCUS® software. Upon user initiation from the software,
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the detection module automates a process whereby, starting with one pair of leads and
proceeding sequentially around the tree through each subsequent pair of leads, an electrical
pulse is generated and detected by the other electrode pairs. Deviations from homogeneity
in the wood result in a map of relative electrical conductivity, correlating principally with
water content but also changes in ion concentration and/or cell structure. The ERT map
uses red to portray areas of highest electrical resistance, progressing through orange, yellow,
green, and blue with decreasing resistance.

2.3. Interpretation of Tomograms and Estimates of Ap and Zj pss

Data from SoT and ERT were interpreted jointly using the PiICUS® Q74 Expert software
to predict the internal condition at each sampled cross-section, based on the following
criteria, slightly modified from Marra et al. [21]:

(A) Maximum sonic velocities and higher relative ER in the heartwood represent sound
(non-decayed) wood. This condition appears as brown in the SoT and non-blue
(yellow, orange, and red) in the ERT;

(B) Maximum sonic velocities and lower relative ER in the heartwood represent (i) incipi-
ent decay in which there is an increase in moisture content but reductions in wood
density are not yet detectable; (ii) sound wood with an increased cation concentration
in the heartwood and possibly a lower pH; and (iii) sound wood with an increased
moisture content due to bacterial wetwood colonization. This condition appears
brown in the SoT and blue in the ERT;

(C) Reduced sonic velocities and lower relative ER in the same corresponding location of
the cross-section represent active fungal decay. This condition appears non-brown
(green, violet, and blue) in the SoT and blue in the ERT;

(D) Reduced sonic velocities and the highest relative ER in the same corresponding
location of the cross-section represent decay with a cavity. This condition appears
violet and blue in the SoT and red in the ERT.

This interpretation strategy was based on earlier studies using destructive samples
consisting of Acer saccharum (sugar maple), A. rubrum (red maple), Betula alleghaniensis
(yellow birch), B. lenta (black birch), and Fagus grandifolia (American beech) [20,21], as well
as guidelines provided by the manufacturer.

In the field, data checking following SoT allowed for the detection of abnormally high
sonic velocities from individual MPs and subsequent correction. When evaluating the sonic
tomograms, several changes to the default settings were considered. When the minimum
velocity depicted was 50% of the maximum velocity (default setting), the maximum color
space was expanded to determine the true minimum percent velocity value. When the
minimum percent velocity is <40%—45%, moderate to significant changes in the area of
decay (Ap) can develop and the color space remained expanded. Both SoT1 (default setting)
and SoT2 calculation options were used to analyze each tomogram. However, the majority
of sonic tomograms were generated using the SoT2 calculation. Line graphics were also
examined at each MP along with estimates of internal cracks to select a final configuration.
Finally, for trees with large areas of decay, and in some cases cavities, the “zero value
correction” was used when the zero data warning was indicated by the software.

Based on the finalized tomograms, Ap estimates (%) were recorded, and the reduction
to the section modulus as a result of decay (Z;oss; %) was calculated. Two estimates of
Ap were recorded, one that included the green, violet, and blue (Ap-GVB) area of the
sonic tomogram and one that included only violet and blue (Ap-VB). This distinction
was made because the PiCUS® software excludes areas of green when differentiating
solid and damaged wood. The exclusion of green can lead to significant differences in
estimates of Ap that may underestimate the true area of decay [21,22]. Based on destructive
sampling, it has also been found that for smaller-diameter, circular-shaped trees, error can
be reduced when estimates are based on Ap-GVB using the SoT1 calculation. However, for
larger diameter, irregularly shaped trees, especially those with substantial decay present,
estimates based on Ap-VB using the SoT2 calculation can reduce error [23]. Because trees
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sampled here fall in between these two classifications (mostly circular-shaped but larger
in diameter), careful interpretation was required. The numerical method zloss [28] was
used to estimate the maximum percent Z; ogg for each tomogram with decay present and
the offset length, Lo (m), between the centroid of the trunk and the centroid of the largest
damaged part in MATLAB (MathWorks, Natick, MA, USA); see Burcham et al. [22] for
more detailed information about the estimation of Ap, Zj oss, and Lo from tomograms. To
express the offset length as a percent, Lo was normalized by the radius of the measured
section, approximated as 0.5D.

2.4. Statistical Analyses

Chi-square goodness of fit, using expected values [29], was used to determine if
there were significant differences in the frequency of decay symptoms and fungal decay
pathogens by oak species and oak group. Groups were defined as “red oaks” (Q. rubra,
Q. velutina, and Q. palustris; members of section Lobatae) and “white oaks” (Q. alba and
Q. bicolor; members of section Quercus) [30]. Chi-square goodness of fit, using expected
values, was also used to determine if there were significant differences in the frequency
of internal decay by oak species, oak group, and the presence or absence of decay symp-
toms and fungal decay pathogens. One-way analysis of variance (ANOVA) was used to
determine if mean DBH values were significantly different by oak species.

The relationship between 14 explanatory variables and the incidence and severity of
decay was evaluated to select important variables for model development, which included:
trunk diameter at 1.37 m above ground, DBH (cm); decay sampling height, H (cm); diameter
at decay sampling height, D (cm); species identity (Q. alba, Q. bicolor, Q. palustris, Q. rubra,
and Q. velutina); fungal pathogen (absent, present); decay symptoms (absent, present);
taxonomic section (red oaks = Lobatae, white oaks = Quercus); basic green wood density,
p (g-cm~2); shade, flood, and drought tolerance ratings [31]; and several mechanical
properties [32], including modulus of elasticity, MOE (GPa), modulus of rupture, MOR
(MPa), and work to maximum load, WML (kJ-m~3).

The relative significance of each explanatory variable for predicting the incidence
and severity of decay was evaluated using boosted regression trees (BRT). Based on the
recommendations of Elith et al. [33], an optimal number of regression trees with three
nodes, given the relatively small sample size, was determined by selectively decreasing the
learning rate to produce greater than 1000 trees in the final model. Individual variables were
considered influential and used for further model development if their relative influence
exceeded the threshold proposed by Muller et al. [34], equal to total influence divided by
the number of predictors (100/14 = 7.14). BRT models were fit using the gbm.step function
in the R dismo package.

Subsequently, the incidence and severity of decay were modeled separately using a
two-part conditional model. Many existing studies [35-37] have used a similar approach
because the underlying observations are constrained to the unit interval between zero
and one, often with a large proportion of zeros. In the first stage, the probability of
decay occurring in each tree was modeled using binomial logistic regression, and, in the
second stage, the severity of decay in affected trees was subsequently modeled using
beta regression.

First, the probability of decay incidence was modeled as follows:

Y ~ binomial(n, p)
1= Bo+ Litq Bixi
Y\
E (ﬁ) =l
where the binomial distribution depicted the binary decay outcome Y for n observations
with probability p, the linear predictor contained model coefficients By ... 8, for x1...x,
independent variables and the logit function linearized the relationship between the linear
predictor and mean response. The assumed linear relationship between the logit and
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continuous predictors was examined by testing an additional interaction term between
each variable and its natural logarithm [38], and the possible existence of multicollinearity
among predictors was examined using variance inflation factors (VIF). The extent of
support in the data for candidate models containing unique combinations of influential
explanatory variables was examined using the AIC, and the model with the lowest AIC
was selected for its relative parsimony and goodness of fit. For the final, reduced model,
the goodness of fit was assessed using the model chi-square and area under the receiver
operating characteristic (ROC) curve [38]; and the fit was diagnosed by inspecting plots
of the change in Pearson chi-square, change in deviance, and Cook’s distance against the
estimated probability for each variable combination [38].

Second, the severity of decay was modeled, using Ap determined using violet and
blue (VB) and green, violet, and blue (GVB) separately, as follows:

Y ~ beta(p, @)
1= Bo+Lils fix1
£(r2) =

where the Beta distribution depicted the extent of decay with mean y and precision ¢ [39],
and the linear predictor and link function were the same as the logistic model. Alternative
link functions commonly associated with the binomial distribution family (e.g., Poisson,
log-log) were evaluated using log-likelihood statistics, but the logistic link best fit the
data. The existence of heteroscedasticity in Ap was detected by inspecting the significance,
as measured by partial Wald tests, of variables used to separately model the precision
parameter ¢, and multicollinearity among predictors was evaluated using VIFs. After
considering all combinations of influential explanatory variables, the candidate model with
the lowest AIC was selected as the final, reduced model. Model fit was evaluated using
mean bias (predicted — observed outcome) and root mean square error (RMSE), and the
fit was diagnosed by inspecting plots of standardized weighted residuals and generalized
leverage against predicted values [40]. The binomial logistic regression and beta regression
models were fit using the glm and betareg functions, respectively, in R (R Core Team,
Vienna, Austria, 2022).

To explore the mechanical implications of the modeled decay, Zj oss estimated from
tomograms was compared with strength loss estimates computed using Ap obtained from
the hurdle model. Since the empirically modeled Ap depicted the size of decayed areas
and not the shape, strength loss was computed using a basic formula approximating the
shape of decayed trees as a hollow pipe [41]:

d 4
Loss = (D) x 100

where d and D are the diameters of the circular equivalent of the decayed area and trunk
at measurement height, respectively. The two strength loss estimates use related section
properties (second moment of area, I, and section modulus, Z) to quantify a decayed tree
part’s reduced load-bearing capacity, but some have reasoned that Z is a more appropriate
measure because it directly relates an applied bending moment to the maximum bending
stress experienced by a beam. For Ij ogg, the related equation is solved symbolically by
framing the problem in a simplified form—the shape of the decayed section is approxi-
mated as a hollow pipe. For Zj ogg, the related equation is solved numerically without
any simplifying assumptions about the decayed tree part’s geometry. Although I; osg can
be computed easily in a few steps, the additional steps needed to accommodate greater
geometric detail for Zj ogg can only be practically accomplished using a computer. Using
Zy10ss and I} oss determined from Ap-VB and Ap-GVB separately, the distance between
the two strength loss estimates was computed as the actual difference between the two
percentages. It was expected that the distance between strength loss estimates would
increase for biased empirical estimates of Ap with the predicted decay severity dissimilar
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from the corresponding tomographic measurements of the same tree and offset decayed
areas poorly approximated as concentric circles in the geometrically simplified I1 osg equa-
tion. The hypothesized relationship was tested using a linear regression model containing
residuals from the beta regression models and the product of Ap and Lo, a combined
measure of offset decay. Plots of studentized residuals against fitted values were inspected
for homoskedasticity and linearity, and Cook’s D was used to identify potential outliers,
with cases exerting influence greater than 4/n inspected more closely. The linear model
was fit using the Im function in R (R Core Team, 2022).

3. Results
3.1. Tree Characteristics

Mean DBH values ranged from 93-104 cm across the five oak species and were not
significantly different from one another (F = 1.12, p = 0.351; Table 1). Symptoms of internal
decay were present on 75 of 186 (40%) oaks sampled (Table 1). The frequency of decay
symptoms was significantly higher for Q. rubra compared to expected values, but there
were no other significant differences by species or oak group (Table 1). Fruiting bodies
and/or asexual structures of a fungal decay pathogen were present on 50 of 186 (27%)
sampled oaks (Table 1). The frequency of a decay pathogen was significantly higher for
Q. rubra and lower for Q. alba compared to expected values (Table 1). As a result, among
oak groups, the frequency of a decay pathogen was significantly higher for the red oak
group and lower for the white oak group (Table 1). Ten species of wood-decaying fungal
pathogens from seven genera were encountered in this study and are listed in Table 2.

Table 1. The number of trees sampled, mean and range of DBH values, and frequency of decay
symptoms and fungal decay pathogens for each oak species and oak group.

DBH (cm) Decay Symptoms Fungal Decay Pathogen
Oak Species n Mean Range  Present Absent X p-Value Present Absent X p-Value
Q. rubra 44 104 60-194 251 194 4.607 0.032 221 22| 11.458 <0.001
Q. palustris 35 101 49-182 9 26 2.976 0.084 9 26 0 1.000
Q. velutina 41 93 51-202 19 22 0.402 0.526 15 26 1.988 0.159
Q. alba 43 100 52-154 16 27 0.097 0.755 4] 391 7.398 0.007
Q. bicolor 23 95 52-154 6 17 1.643 0.200 0 23 n/a n/a
Oak Group
Red Oak 120 100 49-202 53 67 0.868 0.351 46 1 74 | 8.352 0.004
White Oak 66 98 52-154 22 44 1.567 0.211 4] 621 14.972 <0.001
Total 186 99 49-202 75 111 50 136

Values in bold indicate significant differences based on Chi-square analysis (using expected values) at p = 0.05.
Arrows denote if the value is significantly higher (1) or lower (]) than the expected value.

Table 2. Fungal wood-decaying pathogens identified from sampled oaks.

Wood Decay Pathogen n
Grifola frondosa 14
Ganoderma spp. 11

G. applanatum (1) -
G. curtisii (1) -
G. sessile (9) -
Laetiporus spp. 10
L. cincinnatus (2) -
L. sulphureus (5) -
L.sp. (3) -
Armillaria sp. 8
Niveoporofomes spraguei 8
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Table 2. Cont.

Wood Decay Pathogen n
Bondarzewia berkeleyi 4
Climacodon septentrionalis 1
Total 56

The number of individual species identified appears in parentheses.

3.2. Internal Condition and Ap

Overall, 323 pairs of sonic and ER tomograms were obtained from 186 oaks, with the
number of sampled trees by oak species ranging from 23-44 (Table 3). Of the 186 oaks
sampled, 135 (73%) had detectable decay within the lower trunk, while 51 (27%) did not
(Table 3). Of the 135 oaks with decay, 72 of 135 (53%) exhibited low ER (higher relative
conductivity) in the same area of the cross-section where decay was found, indicating the
decaying wood tissue was still present (Figures 1 and S1). Meanwhile, 63 of 135 (47%)
oaks had areas of high ER (lower relative conductivity) in the same area where decay
was detected, indicating that cavity formation was likely occurring (Figures 2 and S2-54).
Chi-square analysis determined that there were no significant differences in the frequency
of decay incidence by oak species (Table 3). However, the white oak group exhibited a
lower frequency of internal decay incidence compared to expected values (Table 3). The
frequency of internal decay was significantly higher for trees with visible symptoms while
it was significantly lower when symptoms were absent (Table 3). Finally, internal decay
frequency was significantly higher when fruiting bodies were present but no significant
differences were found in decay frequency when fruiting bodies were absent (Table 3).
When all sonic tomograms are evaluated together, 229 of 323 (71%) had measurable decay
present while in 94 of 323 (29%) decay was absent. Across all oak species, the mean Ap was
41% (Ap-GVB) and 31% (Ap-VB), respectively, while the mean maximum Zj osg was 35%
(ZLoss-GVB) and 22% (Z1 0ss-VB), respectively (Table S1). By oak species, mean Ap ranged
from 35%—47% (Ap-GVB) and 22%-37% (Ap-VB), while mean Z; ogg ranged from 26%—40%
(Z10ss-GVB) and 18%—26% (Z10ss-VB) (Table S1). The mean Ap and mean maximum
Z10ss by scanning height for each oak species can be found in Table S1.

Figure 1. A pin oak (Quercus palustris) in the Waugh Arboretum at the University of Massachusetts,
Ambherst. The sonic tomograms (middle) depict decay in the heartwood while the electrical resistance
tomograms (right) show low electrical resistance (high conductivity). Interpreted together, they
indicate the decaying wood is still present and a cavity has not yet formed.
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Figure 2. Overhead view showing the stump of a northern red oak (Quercus rubra) that suffered butt
rot from Armillaria. The sonic tomogram (upper right), captured at a height of 40 cm from the soil
line, depicted extensive decay within the heartwood. The electrical resistance tomogram (bottom
right) depicted high electrical resistance (low conductivity) within the decaying heartwood. When
interpreted together, they indicate a cavity had developed, which was corroborated when the tree
was removed.

Table 3. Frequency of internal decay by oak species, oak group, and presence of decay symptoms
and fungal decay pathogen.

Internal Decay

Oak Species n Present Absent x> p-Value
Q. rubra 44 37 7 2.865 0.091
Q. palustris 35 25 10 0 1.000
Q. velutina 41 34 7 1.988 0.159
Q. alba 43 26 17 2.890 0.089
Q. bicolor 23 13 10 3.608 0.058
Oak Group
Red Oak 120 96 24 3.386 0.066
White Oak 66 390 271 6.188 0.013
Decay Symptoms
Present 75 69 1 6l 14.881 <0.001
Absent 111 66 | 451 10.278 0.001
Fungal Decay
Pathogen
Present 50 44 1 6l 6.349 0.012
Absent 136 91 45 2.376 0.123
Total 186 135 51

Values in bold indicate significant differences based on Chi-square analysis (using expected values) at p = 0.05.
Arrows denote if the value is significantly higher (1) or lower ({) than the expected value.

Using the threshold criterion, boosted regression trees indicated that five variables
were highly influential for predicting the incidence of decay in measured sections, including
(ranked in terms of decreasing relative influence) D, DBH, H, symptoms, and species
(Table 4). The same set of variables, except for symptoms, was highly influential for
predicting the severity of decay determined using either tomogram color set. The ranking
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of variables differed slightly for predicting Ap-GVB and Ap-VB, but D, DBH, and H were
consistently more influential than species.

Table 4. The relative influence of variables used to predict the incidence and severity of decay.

Relative Importance

Variable Incidence Ap-GVB Ap-VB
Basic density, p (g-cm~2) 2.3 0.7 0.7
Diameter at breast height, DBH (cm) 17.1* 20.0 * 33.5*
Diameter at measurement height, D (cm) 34.9* 31.1% 26.8 *
Drought Tolerance, DT 0.4 0.9 0.6
Flood Tolerance, FT 1.9 1.6 1.3
Measurement height, H (cm) 12.8* 20.2 % 14.0*
Modulus of Elasticity, MOE (GPa) 1.1 1.6 1.5
Modulus of Rupture, MOR (kPa) 0.1 0.0 0.1
Pathogen 4.2 5.0 3.8
Shade Tolerance, ST 0.6 0.6 0.7
Species 104 * 106 * 109 *
Symptoms 12.5% 44 3.8
Taxonomic Section 04 0.2 0.1
Work to Maximum Load, WML (kJ) 1.3 2.9 2.2

* denotes variables selected as influential with relative influence greater than expected by chance (7.14).

Using the reduced set of highly influential variables, logistic and beta regression
models were fit to predict decay incidence and severity, respectively. However, DBH and D
were highly correlated (r = 0.87), and the corresponding terms in a model containing both
variables had a VIF exceeding 9. In most cases, DBH was less influential than D for predict-
ing decay incidence and severity, and it was removed from the list of candidate variables
for model selection since DBH can be considered a special case of D. Using information
criteria, the reduced binomial logistic regression model containing D, symptoms, and
species were selected for predicting the incidence of decay (Table 5; Figure 3). Diagnostic
plots suggested that the model poorly fit eight observations associated with five variable
combinations, but the change in model coefficients after excluding the observations was
similar to other cases, indicating their limited influence. Generally, the observations defied
model expectations by containing a combination of factors that should have produced
decay but did not, especially for two large trees exhibiting symptoms of decay. Despite
the poor case-wise fit, the observations were retained in the model to accurately depict the
sample of large, mature oaks.

Table 5. Model coefficients and corresponding effect sizes for the binomial logistic regression model
fit to binary decay incidence in landscape oaks.

Average Marginal Effects

Term Coefficient (SE) P Odds Ratio (95% CI) or Means (95% CI)
Intercept —2.24 (0.73) 0.002 0.11 (0.02-0.43)

D 0.26 (0.06) <0.001 1.30 (1.17-1.47) 0.05 (0.03-0.06)
Symptoms (present) 1.19 (0.29) <0.001 3.30 (1.88-5.93) 0.21 (0.12-0.30)
Species (Q. rubra) - - - 0.81 (0.73-0.90) @b
Species (Q. palustris) —0.78 (0.41) 0.056 0.46 (0.20-1.01) 0.68 (0.56-0.79) @
Species (Q. velutina) 0.37 (0.43) 0.393 1.44 (0.62-3.39) 0.86 (0.79-0.94) b
Species (Q. alba) —0.58 (0.41) 0.161 0.56 (0.25-1.25) 0.72 (0.61-0.82) b
Species (Q. bicolor) —0.79 (0.46) 0.088 0.45 (0.18-1.12) 0.67 (0.53-0.82) b

Model coefficients, presented in the link (logit) scale, depict change in log-odds over a 10 cm increase in D and, for
categorical variables, compared to the reference level (symptoms absent, Q. rubra). The average marginal effects
or means are presented in the response (probability) scale. Computed by averaging over both levels of symptoms
(absent, present) at the average D (117 cm), the average marginal means of each species followed by the same
letter are not significantly different at the o = 0.05 level. Model x2(3) = 54.33, p < 0.01; AUC = 0.75; n = 323.
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Figure 3. The probability of decay for oak species (Q. rubra, Q. palustris, Q. velutina, Q. alba, and
Q. bicolor) by diameter at sampling height (cm) and presence of symptoms predicted by a binomial
logistic regression model fit to binary decay incidence.

The area under the ROC curve (AUC = 0.75) indicated acceptable model discrimination
between solid and decayed trees, and the model coefficients generally depicted a higher
probability of decay for large trees with symptoms of decay: the odds of decay occurrence
were 1.3 and 3.3 times greater over a 10 cm increase in D and for symptomatic compared
to asymptomatic trees, respectively (Table 5). Relative to Q. rubra (the reference species),
the model coefficients depicted a lower probability of decay for all other species, except
Q. velutina. Apart from the significant difference in the probability of decay for Q. palustris
(lower) and Q. velutina (higher), the marginal means of the probability of decay for each
species were not significantly different from one another (Table 5). Although it had one
of the lowest mean values, Q. bicolor showed marked variability in the incidence of decay
compared to the other modeled species. The confidence intervals surrounding predicted
values depicted moderate uncertainty for most variable combinations, but the smaller
intervals for large, symptomatic trees depicted the increasing certainty of decay in such
cases (Figure 3).

Using information criteria, the reduced beta regression model containing D, H, and
species was selected for predicting the severity of the decay, regardless of the colors (GVB,
VB) used to determine Ap. There were no outliers or influential observations detected for
the model fit to Ap-GVB, but several Ap-VB observations exerted undue influence on model
coefficients. In six cases, the decayed areas in tomograms were mostly displayed using
green and limited violet or blue, and the related observations with Ap-VB effectively equal
to zero were removed to improve model coefficients. After removing the observations, the
fit statistics indicated a satisfactory description of the data, with a mean bias below 1% for
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models fit to Ap-GVB and Ap-VB, but the prediction bias varied considerably between
—50% and 40% for individual cases in both models (Table 6).

Table 6. Model coefficients and corresponding effect sizes for beta regression models fit to decay

severity obtained from sonic tomography of landscape oaks.

Model Coefficients Average Marginal Effects or Means

Ap-GVB Ap-VB Ap-GVB Ap-VB
Term Estimate (SE) p Estimate (SE) p Estimate (95% CI)  Estimate (95% CI)
Mean, u
Intercept —0.88 (0.27) 0.001 —1.60 (0.30) <0.001
D 0.07 (0.02) <0.001 0.09 (0.02) <0.001 1.6 (0.8,2.5) 1.8 (1.0,2.5)
H —0.06 (0.02) <0.001 —0.06 (0.02) <0.001 —-1.4(-21,-0.7) -1.2(-1.8, -0.5)
Species (Q. rubra) - - 40.7 (36.1, 45.4) 2P 29.7 (25.4, 34.0) 2P
Species (Q. palustris) —0.35 (0.17) 0.032 —0.22 (0.18) 0.221 32.5(26.8,38.2) 7 25.3(20.0, 30.7) 20
Species (Q. velutina) 0.05 (0.14) 0.749 0.03 (0.15) 0.869 41.8 (36.9, 46.8) 2 29.1 (24.6,33.7)
Species (Q. alba) 0.13 (0.15) 0.392 0.17 (0.16) 0.292 43.9 (38.3,49.6) P 33.3 (28.0, 38.6)
Species (Q. bicolor) —0.30 (0.20) 0.137 —0.52 (0.23) 0.026 33.7 (25.9,41.5) @b 20.1(13.6,26.7) 2
Precision, ¢
Intercept 2.56 (0.34) <0.001 2.44 (0.35) <0.001
D —0.07 (0.03) 0.009 —0.6 (0.03) 0.026

Diameter at scanning height, D (m x 1071), scanning height, H (mx10~1), and species (Q. rubra, Q. palustris,
Q. velutina, Q. alba, Q. bicolor), were used to estimate the mean decay severity determined using either green,
violet, and blue (Ap-GVB, n = 229) or violet and blue (Ap-VB, n = 223) in tomograms; D was also used to model
differences in the precision (inverse of variability) of decay severity observed at different cross-sectional sizes. Fit
statistics were similar for the models fit to Ap-GVB (mean bias = —0.48%; RMSE = 19.36%) and Ap-VB (mean
bias = 0.14%; RMSE = 19.46%). The model coefficients, presented in the link (mean: logit; precision: log) scale,
depict the change in log(it)-transformed Ap over a 10 cm increase in D or H and, for categorical variables,
compared to the reference level (Q. rubra). The average marginal effects or means are presented in response
(percent) scale. Computed using the average value of D (mean: 122 cm) and H (mean: 60 cm), the average
marginal means of each species followed by the same letter are not significantly different at the « = 0.05 level.

Regardless of the colors used to determine Ap, the model coefficients generally indi-
cated that decay severity increased for large sections near the ground, and the species terms
indicated that the severity of decay was intermediate for Q. rubra compared to the other
species (Table 6). The average marginal effects of D and H, indicating a 1%—2% change in
the severity of decay over a 10 cm increase in the diameter or height of the scanned section,
were similar in magnitude but oppositely signed. Due to the different color sets used to
measure decay severity, the average marginal means for each of the species varied between
the Ap-GVB and Ap-VB datasets, and the ranking of average marginal mean Ap among
species was reordered slightly between the two datasets, except for the consistently largest
mean Ap in Q. alba.

Among all tomograms, the maximum Zj ogs determined using both color sets (GVB,
VB) varied between 0% and 92% (mean: 29%), and Lo for the decayed areas similarly
depicted in all tomograms varied between 0% and 26% (mean: 4%). Among all observations,
the distance between the two strength loss estimates (Z;oss — I1.0ss) varied between —24%
and 76% (mean: 16%). The linear model fit to the distance between I} ngs and Zjoss
containing Ap prediction errors and Ap-Lo was significantly better than a null model
(F=163.5; df = 2, 449; p < 0.001) containing only an intercept, affirming the hypothesized
relationship. However, residual plots showed evidence of heteroscedasticity, confirmed
using the studentized Breusch-Pagan test (p < 0.001), and a quadratic relationship between
the independent and dependent variables. After inspection, the model was re-fit with a
quadratic term for the residuals variable and a non-constant variance estimator to obtain
robust standard errors (Table 7).
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Table 7. Model coefficients and corresponding effect sizes for linear regression model fit to the
distance between two strength loss estimates.

Model Coefficients Average Marginal Effects
Term Estimate (SE) p Values Estimate (95% CI)
Intercept —4.0 (1.0) <0.001
(ApxLo) 1456.8 (64.1) <0.001 14.57 (12.94, 16.19)
(Residuals)? 131.1 (31.1) <0.001 Residuals:

—40 —10.49 (—13.59, —7.38)
0.6 0.16 (0.11, 0.21)
41.8 10.96 (7.72,14.21)

Note: The average marginal effects of the residuals term were computed at the observed minimum, mean, and
maximum values, since it was quadratically related to the response. RZ5p; = 0.419.

The model coefficients showed that the distance between strength loss estimates
increased proportional to the offset decayed area in tomograms and varied quadratically
with the difference between the modeled and measured Ap (Table 7; Figure 4). The average
marginal effect of offset decay indicated that strength loss estimates were increasingly
dissimilar as Ap-Lo increased, but the average marginal effect of residuals, calculated over
the range of observed values, illustrated the increasing dissimilarity between strength loss
estimates for progressively large positive and negative residuals. The distance between
strength loss estimates was minimized when decayed areas occupied the center of the stem
and empirical models accurately predicted Ap in tomograms (Figure 4).

Colors
® green, violet, blue

© violet, blue

25 50 75
Percent decayed area (%)

Figure 4. Scatterplot showing the relationship between strength loss estimates and percent area
decayed for each tomogram with decay (n = 229). Z;ogs (Circles) and Coder’s I1 ogg (black line)
estimates were made using Ap-GVB (green, violet, and blue) and Ap-VB (violet and blue), respectively.
Offset areas of decay are depicted using a combined measure (Ap-Lo) with Lo representing the offset
distance of the decay from the center of the trunk.
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3.3. Sound Wood with Low Electrical Resistance

Among all sonic tomograms, 94/323 (29%) exhibited maximum sonic velocities
throughout the sampled cross sections, indicating sound wood and no decay present.
Within this dataset, low electrical resistance throughout the heartwood was present in
83/94 (88%) of all cases. In 8/11 remaining ER tomograms, a mixture of high and low
resistance was present throughout the heartwood while in three cases, high ER dominated.

4. Discussion
4.1. Decay Incidence and Severity

Overall, the incidence of internal decay in the lower trunk was high among sam-
pled oaks, with >70% having detectable decay present. The results showed important
differences in the incidence of decay among the five oak species, but the considerable
uncertainty around estimates reflected the importance of other determinants for decay
incidence, apart from species. These findings are consistent with prior studies that have
documented high levels of variability in decay incidence and severity across sites, ages,
and tree species [11,21,42]. However, these results are also aligned with the longstanding
recognition of differences in decay resistance among tree species, including oaks [10,43].

The boosted regression trees demonstrated the importance of diameter, height, symp-
toms, and oak species in predicting the incidence of decay, while the reduced binomial
logistic regression model showed that only diameter, symptoms, and species were signifi-
cant. Overall, Q. rubra and Q. velutina had the highest incidence, with >80% of sampled
trees in each species having detectable decay. Yet, the probability of decay in Q. rubra was
not significantly different from any other oak species. Further, with Q. rubra as the reference
species, only Q. velutina and Q. palustris demonstrated significant differences in decay
incidence. Ultimately, these results indicate that arborists can be reasonably confident
about the likely existence of decay on large, symptomatic trees, regardless of the species. As
shown in other studies [16-18], diameter proved to be one of the most important variables
in predicting both the incidence and severity of internal decay.

There was substantial variation in the severity of decay among sampled oaks with Ap
values ranging from 2%-88%, high standard deviations in mean Ap values, and a large
range of confidence intervals in the average marginal effects. Yet, despite the variation,
there was a significant decrease in mean Ap with increasing height from the soil line across
all oak species. The reduced beta regression model showed that height was a significant
variable in predicting decay severity, regardless of whether intermediate velocities were
used to determine Ap. These findings have important implications for studies assessing
the incidence and severity of internal decay in landscape trees. Many of the fungal decay
pathogens attacking oak, such as Armillaria, Ganoderma, Grifola, and Laetiporus (see Table 2)
often establish in the roots and progress to the lower trunk of the tree [3,8].

Among the 135 oaks with decay, nearly half exhibited no visible symptoms of internal
decay upon visual assessment. In this study, we were unable to determine the identity
of every fungal pathogen associated with a decaying tree, which if possible, could have
helped to explain the variation in severity [3]. While the results here show that height was
ultimately not significant in determining decay incidence, if sampling is performed too
high on the trunk, decay severity can be underestimated. These results also demonstrate
the need to sample trees that show no symptoms of internal decay. When decay symptoms
were absent, both Luley et al. [16] and Koeser et al. [17] performed resistance drilling to
detect internal decay at 150 cm above the soil line. Because decay severity is often highest
close to the soil line, sampling large diameter, asymptomatic trees at heights >120 cm could
reveal only minor amounts of internal decay.

When all sonic tomograms with decay are evaluated, the inclusion of intermediate
sonic velocities (green) increases mean Ap by 10% compared to estimates that exclude
intermediate velocities (Ap-GVB = 41% vs. Ap-VB = 31%). Furthermore, when sonic tomo-
grams captured only at the lowest sample heights are considered, the location where decay
incidence and severity were higher, the difference in mean Ap is the same (Ap-GVB = 45%
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vs. Ap-VB = 35%). This 10% difference is modest but could have major implications for
how sonic tomograms are interpreted by arborists and their clients. Because the trees were
not destructively sampled, the results of SoT and ERT cannot be corroborated against stem
disks, as previous studies have allowed [21-23]. However, given that tree preservation is
often a primary goal when carrying out tomography scans, arborists will often be unable
to corroborate the results to actual stem disks in the field. However, by presenting both
“liberal” (Ap-GVB) and “conservative” (Ap-VB) values, arborists can report the range of
possible conditions in the lower trunk and incorporate these results into a thorough risk
assessment report [19].

4.2. Red Oaks vs. White Ouaks

Anecdotally, many foresters and arborists consider the white oak group to be more
resistant to decay compared to the red oak group. Quercus alba produces abundant tyloses
and tannins that are known to resist fungal pathogens, helping to make the wood prized
for manufactured products [44,45]. In controlled trials using inoculated heartwood blocks
cut from seven oak species (which included Q. alba, Q. bicolor, Q. rubra, and Q. velutina) it
was found that members of the white oak group were significantly more decay-resistant
compared to members of the red oak group [43]. However, according to Hepting [10], the
reputation Q. alba has for superior decay resistance is not absolute, as several forest studies
have shown high rates of decay for this species. Further, Highley [46] determined that
untreated sapwood and heartwood of Q. rubra were equally as decay-resistant compared
to Q. alba, with both rated as “most resistant” in a comparison of 19 species of conifers
and hardwoods.

In this study, the white oak group exhibited a significantly lower frequency of internal
decay incidence and the presence of wood decay pathogens compared to the red oak group.
This difference was especially pronounced when directly comparing Q. alba to Q. rubra. Yet,
the binomial regression showed when Q. rubra is used as the reference species its incidence
of decay was not significantly different from any other species. Further, Q. alba exhibited
the highest mean Ap and mean maximum Z; ogg of any oak species. Yet, a comparison
of mean Ap values among oak species showed no clear differences among the white oak
and red oak groups. So while the overall incidence was lower for the white oak group,
decay severity for Q. alba was comparable to the members of the red oak group studied
here. Comparatively, Q. rubra had the highest overall frequency of internal decay and was
the only oak species with a significantly higher frequency of both decay symptoms and
fungal decay pathogens present.

Surprisingly, Q. palustris had a significantly lower incidence of decay compared to
Q. velutina and the lowest mean Ap and mean maximum Zjogg across all oaks sam-
pled. While mean Ap and maximum Zj ogg values were only statistically different from
Q. alba when intermediate sonic velocities are included, they at least pose the question of
whether Q. palustris may have greater decay resistance compared to oak species frequently
planted in developed landscapes in Massachusetts. Based on phylogenetic classification of
North American oaks, Q. palustris is a member of subsection Palustres, making this species
genetically divergent from Q. rubra and Q. velutina, which are both members of subsection
Coccineae [30]. Nevertheless, differences in decay severity could be explained by other
factors, as oaks have previously demonstrated varying levels of decay resistance by region
in the eastern U.S. [10].

4.3. Strength Loss Estimates

By accounting for the irregular shape of the decayed area and sampled cross-section,
along with the offset occurrence of decay in some trees, strength loss estimates made using
Z10ss were on average 16% higher than estimates made using I} pss. As both Ap and
Lo increased, Z oss estimates were dramatically higher than I} oss estimates, by as much
as 46%, and dissimilarity between the two strength loss estimates similarly increased for
inaccurate empirical predictions of tomography measurements obtained from the hurdle
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model. Although the mean bias was near zero, the maximum absolute prediction error for
Ap was nearly 40%, and more work is needed to examine suitable modeling approaches for
decay incidence and severity. Among all oaks with decay, 17 of 135 (13%) had maximum
Z10ss values >70%, with Ap-GVB values ranging from 51%-88% (see Figure 4). These
findings show that a considerable number of oaks in developed landscapes are capable of
harboring high levels of internal decay in the lower trunk. Once again, arborists are better
suited to providing both “liberal” (Z10ss-GVB) and “conservative” (Z1 oss-VB) estimates to
account for the variation.

Applying the results of strength loss formulas to trees in the field has long been a
challenge, given the range of factors that contribute to tree failure [4,19]. However, there
have been attempts at assigning threshold values from strength loss formulas to better
guide the process of assigning risk. Coder [41] argued that when I} ogg exceeds 45%, trees
should be deemed a hazard. Kane [47] simulated wind-induced failure in decaying Q. rubra
by cutting voids in the lower trunk and pulling the trees to failure. He reported that no trees
with I1 ogg < 22% failed near the related decay or void during the study while all trees with
It 0ss > 54% failed near the damage. In a post-storm analysis of various trees, including
many oaks, Smiley and Fraedrich [24] recommended a range of 20%—40% strength loss as a
threshold for removal, after various defects were considered. In practice, many arborists
use the ratio of solid wood thickness to trunk radius (/R) proposed by Mattheck et al. [48]
because it's mathematically simple, but the empirically derived safety threshold (t/R = 0.3),
a subject of considerable debate [49], lacks a rigorous theoretical justification. Moreover,
the ¢/R ratio considers failure by hollow buckling, a different failure mode than material
fracture evaluated by other formulas. Also, the shell wall thickness alone is insufficient
for anticipating buckling in anisotropic tissues, such as the wood in living trees, without
additional information about material properties and the length of the hollow section [50].

While Ciftci et al. [26] modeled various decay scenarios and calculated the correspond-
ing loss of moment capacity (MCL), they did not assign any threshold values due to the
many variables that must be considered, most importantly the location of decay in the
trunk. In accordance with Kane and Ryan [25], they cautioned against using the strength
loss formulas developed by Coder and Wagener, in part because the location of decay
is not considered. Burcham et al. [22] similarly demonstrated the limitations of strength
loss formulas relying on simplifying assumptions about the geometry in decayed trees. In
addition, both Ciftci et al. [26] and Burcham et al. [22] note that strength loss values are
only valid for the sampled cross-section.

4.4. Sound Wood with Low Electrical Resistance

From cross-sections where no decay was detected by SoT, ERT predicted low resis-
tance in the heartwood in nearly 90% of all cases. When maximum sonic velocities and
low ER in the heartwood are found, the internal condition can be challenging to predict.
Incipient decay is one explanation, where a fungal pathogen accumulates moisture in
colonized wood tissue but there is not any detectable decrease in wood density [21]. Other
research indicates that an increase in cation concentration significantly reduces ER in the
heartwood [51,52]. Naturally high levels of cations in groundwater may be present, but
it’s also been speculated that fungi can mobilize cations from the soil into wood tissues
during the decay process [52]. While moisture content significantly increases due to fungal
colonization and decay, moisture content alone is not believed to have a significant effect
on decreasing ER in the heartwood [51,52]. It was speculated that wetwood bacteria, which
are known to increase cation concentrations in colonized wood tissues, were responsible
for low ER in the heartwood of American elms that exhibited no decay [18]. While it is
well known that elms can harbor high populations of wetwood bacteria, incidence can be
locally abundant in oaks as well [8].

Temperature can also have a significant effect on ER, especially when measurements
are taken near and below freezing temperatures [53]. In this study, ERT was not performed
on trees at temperatures less than ~7 °C. However, after the decay process becomes more
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advanced, and thus detectable by SoT, mass loss due to fungal decay will also significantly
decrease ER [52]. These findings highlight that while ERT provides insights into the internal
condition of sampled trees, it must be complemented with the results of SoT to properly
determine whether or not internal decay is present.

4.5. Presence of Wood-Decay Pathogens

Opverall, there was a significantly higher frequency of internal decay in the lower trunk
when signs of a fungal pathogen were present. But, of the 50 trees where fruiting bodies or
asexual structures of a fungal pathogen were present, five (10%) had no measurable decay
in the lower trunk. These results help to reaffirm that the presence of a pathogen alone
does not automatically indicate a tree is harboring decay in the lower trunk. This has been
noted for several fungal decay pathogens of landscape trees [12], especially when decay is
restricted to the roots [3]. Additionally, for six trees where signs of a pathogen were present
at the time of sampling, two fungal genera were found co-occurring. Attack by more than
one fungal decay pathogen, especially when they differ in their pattern of decay (brown rot
vs. white rot), can have important implications for management.

5. Conclusions

Internal decay was routinely detected in the lower trunk of 186 oaks, based on 323 pairs
of sonic and electrical resistance tomograms. The diameter of the sampled cross-section,
the presence of symptoms, and oak species were the most important predictors of internal
decay incidence. Diameter, sampling height, and oak species were the best predictors of
decay severity. When intermediate sonic velocities are included, mean Ap ranged from
33%-47% among the five oak species. Quercus alba exhibited the highest mean Ap but this
was only significantly different from Q. bicolor or Q. palustris, depending on tomogram
interpretation. Strength loss estimates made using Zjosg were 16% higher compared
to estimates made using I1 oss. More than 10% of all decaying oaks had a maximum
Z1.0ss > 70% at the sampled cross sections. Arborists assessing decay incidence in landscape
oaks should focus on symptoms of internal decay and large diameter portions of the
lower trunk.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/f14050978 /s1, Table S1: Mean area of decay (Ap) and mean
maximum Zj ogg by tomography scanning height for each oak species; Figure S1: The 1909 class tree,
a pin oak (Quercus palustris), in the Waugh Arboretum at the University of Massachusetts, Amherst;
Figure S2: A black oak (Quercus velutina) with root and butt rot from Niveoporofomes spraguei; Figure S3:
Overhead view showing the stump of a white oak (Quercus alba) that suffered root and butt rot from
Laetiporus (white-colored fungal mycelia, brown rot and cavity in center) and Armillaria (white rot of
cambium and sapwood in upper left); Figure S4: Overhead view showing the stump of a pin oak
(Quercus palustris) planted in 1894 that suffered root and butt rot from Armillaria.
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