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Abstract: Unmanned aerial vehicles (UAVs) have become increasingly popular in the civil field, and
building inspection is one of the most promising applications. In a rural area, the UAVs are assigned
to inspect the surface of buildings, and an unmanned ground vehicle (UGV) is introduced to carry the
UAVs to reach the rural area and also serve as a charging station. In this paper, the mission planning
problem for UAVs and UGV systems is focused on, and the goal is to realize an efficient inspection
of buildings in a specific rural area. Firstly, the mission planning problem (MPP) involving UGVs
and UAVs is described, and an optimization model is established with the objective of minimizing
the total UAV operation time, fully considering the impact of UAV operation time and its cruising
capability. Subsequently, the locations of parking points are determined based on the information
about task points. Finally, a hybrid ant colony optimization-genetic algorithm (ACO-GA) is designed
to solve the problem. The update mechanism of ACO is incorporated into the selection operation
of GA. At the same time, the GA is improved and the defects that make GA easy to fall into local
optimal and ACO have insufficient searching ability are solved. Simulation results demonstrate that
the ACO-GA algorithm can obtain reasonable solutions for MPP, and the search capability of the
algorithm is enhanced, presenting significant advantages over the original GA and ACO.

Keywords: building inspection; mission planning; UAVs and UGV; ACO-GA

1. Introduction

In recent years, UAV technology has garnered significant attention from scholars and
researchers. Its applications span across various domains, including the military, civilian,
and commercial sectors, demonstrating increasing versatility [1]. UAVs are not only cost-
effective, agile, and flexible in deployment, but they also offer the advantage of conducting
missions without risking human lives and are reusable. Equipped with cameras and
sensors mounted atop, they can effortlessly capture, record, and measure images and data
in remote or complex terrains, hence finding extensive applications in aerial photography
such as sports events, commercial activities, and inspections [2,3]. Inspection tasks enable
the timely detection of hazards and defects in various areas and equipment, playing a
crucial role in ensuring human safety. For instance, many aging rural buildings exhibit
cracks, tilts, tile detachment, or excessive deformation, posing threats to the residents.
Therefore, utilizing UAVs for inspection tasks emerges as a promising and vital technology.

Most inspection tasks for UAVs are focused on transmission towers [4] and ports [5],
and there is little research on the application of UAVs in building inspection. The building
inspection mission of a UAV primarily involves two key aspects: building image acquisition
and mission planning. Zhang Z et al. have proposed a co-optimal coverage path planning
(CCPP) method that jointly optimizes the image quality and the path of the UAV to
realize the image detection of complex structures [6]. Zhang et al. proposed a method for
automatically detecting structural damage and exterior wall cracks in building structures
using UAV remote sensing information extraction, successfully extracting post-earthquake
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damage information [7]. Ruiz et al. employed a field research experimental approach,
emphasizing the feasibility and effectiveness of utilizing UAV technology for inspections [8].
Additionally, mission planning comprises task allocation and path planning. Typically,
inspection mission planning employs a collaborative approach involving UGV and multiple
UAVs. While UGV boasts high payload capacity and endurance, it faces challenges in
rough terrain. Similarly, UAVs are constrained by factors such as limited payload capacity
and flight duration, and a single UAV may even have defects such as a high risk of failure
and long task time. In the face of a wide range of inspections and complex tasks, reliability
is reduced, and it is often unable to ensure the smooth completion of the task. Hence,
the collaborative technique of UGVs and UAVs offers distinct advantages. Radmanesh
et al. successfully planned rational paths for medical or emergency supply delivery using
UAV-UGV cooperation in disaster scenarios [9], while Wu et al. effectively employed
UAV-UGV synergy for continuous urban surveillance [10].

The MPP of UGV-UAVs is a challenging and pivotal problem. MPP is a general term for
task assignment issues and path planning problems in UAVs [11]. By assigning one or more
ordered tasks to a group of UAVs, redundancy and conflicts between UAVs are avoided,
optimizing overall task efficiency. Typically, the optimization objective aims to minimize
the flight cost of multiple UAVs, such as by minimizing flight path length or overall cost. To
obtain rational task allocation solutions, it is imperative to establish mathematical models
for collaborative UAV planning and employ algorithms for solving. Common algorithms of
MPP include market-based algorithms [12], clustering algorithms [13], and metaheuristic
algorithms [14]. Currently, research on the algorithms of MPP primarily focuses on meta-
heuristic algorithms due to their ability to strike a balance between solution quality and
computational time, producing satisfactory solutions within acceptable time frames. These
algorithms have low computational complexity, fast execution, and robustness, making
them more adaptable to complex task and resource variations compared to market-based
and clustering algorithms.

Metaheuristic algorithms draw inspiration from natural phenomena or biological
behaviors [15]. Typical algorithms include Genetic Algorithm (GA) [16], Ant Colony
Optimization (ACO) [17], Simulated Annealing (SA) [18], Particle Swarm Optimization
(PSO) [19], and Tabu Search (TS) [20]. Local search algorithms such as TS and SA search
for a single solution and prevent local optima using strategies like maintaining a Tabu list
or probabilistic acceptance of inferior solutions. These algorithms are simple and easy to
operate, but they are often inefficient for solving complex problems. GA, inspired by biolog-
ical evolution processes of chromosome selection, crossover, and mutation, exhibits good
optimization capabilities and population diversity. Zhang et al. improved GA convergence
by incorporating a gravity search mechanism into the update process, solving collaborative
reconnaissance task planning problems for multiple UAVs [21]. Zhu et al. addressed
the task pre-allocation problem for multiple UAVs with different types of targets using
a genetic algorithm with dual-chromosome encoding, achieving satisfactory results [22].
PSO, originating from the study of bird flock foraging, demonstrates good global search
capabilities, fast convergence speed, and robustness [23]. Gou et al. proposed an inertia
weight adaptive strategy to overcome PSO’s susceptibility to local optima [24], though
efficiency concerns remained unaddressed. ACO simulates the optimization of foraging
routes by ants, exhibiting good convergence speed and optimal pathfinding. Ebadinezhad
introduced a dynamic evaporation strategy to adapt ACO, improving its convergence
speed and alleviating the tendency to fall into local optima [25]. While much research
has focused on improving traditional algorithms and enhancing optimization outcomes,
inherent flaws in singular algorithms persist. Consequently, scholars have attempted to
integrate two algorithms to complement each other’s strengths and weaknesses. Shang et al.
proposed a genetic-ant colony algorithm for reconnaissance task planning [26]; meanwhile,
Jia et al. combined genetic concepts to propose an improved particle swarm optimization
algorithm for solving multi-UAV task planning problems [27]. And Jiang et al. proposed an
ant colony-single parent genetic algorithm to solve large-scale multiple traveling salesman
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problems, improving algorithm convergence speed, yet optimization outcomes warrant
further improvement [28].

From the aforementioned studies, several issues in current research emerge: firstly,
most studies of MPP focus solely on multiple UAVs without considering UGV and ne-
glecting the issues caused by the low endurance of the UAVs. Secondly, in optimization
processes, most research prioritizes the shortest paths or flight times, overlooking UAV
operation processes or treating them homogeneously. However, the complexity of tasks at
various points in real environments varies, leading to differences in operation times. Lastly,
many studies reveal flaws in algorithms during the solving process, indicating room for
improvement in overall optimization. Thus, addressing these issues, this paper calculates
parking point positions before task planning, fully considering the positions of various
task points and their impact on operation times. Subsequently, an ACO-GA is proposed,
integrating the search process of ACO into GA’s selection operation to enhance the initial
solution quality. Furthermore, a series of improvements are made to the crossover and
mutation operations to increase search capabilities and prevent falling into local optima.
During optimization, considerations are given to the impact of UAV battery levels and
operation time, aiming to solve the multi-UAV task problem effectively.

2. Establishment of Mathematical Model

During the inspection task in a specific area, UGV will park at a designated parking
point, and the locations of task points are determined. Each task point is assigned to only
one UAV, as illustrated in Figure 1 for the collaborative inspection of UAVs. Each rotary-
wing UAV only needs to fly to a few task points for operation, with UAVs jointly completing
all tasks in the area. Due to the scattered distribution of task points and the limitations of
UAV positioning accuracy and safe return requirements, UGV needs to remain stationary
and wait for UAVs to complete inspection tasks before departure. UAVs are influenced by
their own battery levels; when the battery is low, they need to return to parking points to
change batteries before continuing tasks. Simultaneously, considering the synchronicity of
multiple UAVs completing tasks, the inspection task at the parking point is only considered
to have been completed when the last UAV completes its task and lands on the UGV.
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To facilitate the quantitative study of this MPP, the following assumptions are made
for the MPP model of UAVs from a single parking point:

1. Each UAV on the UGV possesses uniform characteristics, with identical cruising
speeds during flight and equal battery capacities.
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2. UAVs take off with full battery capacity, and when battery levels are low, they return
to the UGV for battery replacement, disregarding the time for takeoff, landing, ascent,
descent, and battery replacement.

3. Constrained by the distribution of task points and the precision requirements of UAV
positioning, the UGV needs to remain stationary at the parking point until all UAVs
complete their inspection tasks.

4. During the flight between the start and the destination, the time variations caused by
altitude changes have been incorporated into the operational time of each task.

These assumptions and settings allow for the establishment of a mathematical model
for task planning. For a region with n task points and m UAVs taking off from parking point
Q0 to execute inspection tasks at task points in accordance with their respective planned
sequences, where the inspection time at task point Qi is denoted as ti, from the above
parameters, the optimization model for this task planning can be formulated. The objective
is to minimize the total time spent by all UAVs to complete their respective inspection
tasks. Constraints are on UAV battery capacity and the requirement that each task point be
inspected by only one UAV, and all task points must be inspected. The decision variables
represent the sequence of UAV flights to each task point. They can be expressed using the
following formulas.

Decision Variables:

xk,i,j =

{
1
0

, while k = {1, 2, · · · , m}, i = {0, 1, · · · , n}, j = {0, 1, · · · , n} and i ̸= j (1)

Constraints:

xk,i,0 =

 1, electrical value w < 15% or
n
∑

i=0,i ̸=j

n
∑

j=1,j ̸=i
xk,i,j = mk − 1

0, others
, whilew =

tmax − tuse

tmax
(2)

m

∑
k=1

nk

∑
i=1,j ̸=i

xk,i,j = 1, j = 0, 1, 2 · · · , nk (3)

m

∑
k=1

nk

∑
j=1,j ̸=i

xk,i,j = 1, i = 0, 1, 2 · · · , nk (4)

m

∑
k=1

n

∑
i=0

n

∑
j=1,j ̸=i

xk,i,j = m (5)

Objective Function:

minF = max{F1, F2, · · · Fm}

while Fk = min

{
mk
∑

i=0

mk
∑

j=0
xk,i,jSi,j/v +

nk
∑

i=1
tk,i

}
, k = {1, 2, · · · , m} (6)

where xk,i,j represents the decision variable. When xk,i,j = 1, it means that the kth UAV flies
from the task point i to the task point j; otherwise, it does not fly from the task point i to
the task point j; tk, i represents the time spent by the kth UAV inspecting the task point i;
tmax is the maximum flight time that the UAV can operate under full charge. tuse is the time
that has been flown, nk is the number of task points assigned to the kth UAV, mk is the total
number of flight sections required by the kth UAV during the execution of the task, F is
the value of the objective function, indicating the maximum time consumed by each UAV
to complete the task, Fk is the time consumed by the kth UAV to complete the task. Si,j
represents the distance from mission point i to mission point j, and v represents the flying
speed of the drone. Equation (2) indicates the constraint that the UAV needs to return to
the parking point after completing the task or at low power. The reference battery level is
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set at 15% based on the fact that the power consumption for a single task point will not
exceed 10%. This threshold ensures both the maximization of task efficiency and the safe
return of the UAV. Equations (3) and (4) ensure that only one UAV is required to perform
the inspection task for each task point i or j. Equation (5) ensures that all task points have
been inspected. Equation (6) shows how the value of the objective function is calculated.

3. Design of Planning Algorithm for Cooperative Inspection

The mathematical optimization model for MPP requires the design of corresponding
algorithms for resolution. This section will present the method for determining the coor-
dinates of the parking point, followed by the design of the ACO-GA to solve the mission
planning problem.

3.1. Determination of the Parking Point Location

Based on the mathematical optimization model established in Section 2, it is known
that the objective function is the maximum value of operating time for each UAV, compris-
ing two components: task operating time and round-trip time for task points. Therefore, to
minimize the total task operating time, the selection method for parking points needs to
consider these two aspects. As a classical location selection method, the barycentric method
is often used to calculate the centroid coordinates of multiple homogeneous discrete points.
Since this study needs to consider UAV operating time at task points, weights are assigned
to each point during calculation, with task points having longer operating times assigned
greater weights. The calculation method is as follows:

X =

m
∑

i=1
tiXi

m
∑

i=1
ti

, Y =

m
∑

i=1
tiYi

m
∑

i=1
ti

(7)

In Equation (7), X and Y are the horizontal and vertical coordinates of the calculated
parking point, respectively, Xi and Yi are the coordinates of task point i, and ti is the
operating time of the UAV at task point i.

3.2. Mission Planning Algorithm Based on ACO-GA

The mission planning problem addressed in this study is a large-scale NP-Hard op-
timization problem involving multiple vehicles and objectives, making it challenging to
solve using traditional mathematical methods. In recent years, swarm intelligence algo-
rithms based on natural laws or biological behaviors have received considerable attention
and research. These algorithms have shown excellent performance in solving large-scale
combinatorial optimization problems, offering advantages such as fast computation, high
precision, and strong applicability.

Both ACO and GA have demonstrated good performance in solving such problems,
but they also have their limitations. ACO can easily fall into local optima and stagnate
during the solution process due to the influence of transition probabilities and pheromones.
GA, on the other hand, may suffer from slow convergence and low efficiency as individuals
with high fitness values are heavily replicated during the selection process. Therefore,
this study utilizes the method by which each ant in ACO obtains its path to replace the
selection operation in GA. The obtained results are then subjected to crossover and mutation
operations. Additionally, appropriate improvements are made to GA to enhance its global
search capabilities. The specific process is outlined as follows:

3.2.1. Encoding and Decoding of Individual Solutions

The solution to the MPP studied involves assigning m UAVs to execute tasks at n task
points. Therefore, the final result of the solution is the sequence in which different UAVs
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inspect each task point. Consequently, the encoding method for the solution is illustrated
in Figure 2.
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The task points are evenly distributed among the UAVs as much as possible, and there
are no duplicate task points within the encoding of the solution, ensuring that each task
point is assigned to only one UAV for operation. During decoding, each UAV departs from
the parking point and sequentially flies from left to right towards the corresponding task
points for operation. For example, UAV1 in Figure 2 needs to sequentially visit task nodes
16, 6, 14, 17, and 12 to complete the tasks before returning to the parking point. At each
task point, its battery level needs to be calculated according to Equation (2). If the battery
level is low, the UAV needs to fly back to the parking point to replace the battery before
continuing to the next task point; otherwise, it can fly directly to the next task point until
all tasks assigned to the UAV are completed and then return to the parking point.

3.2.2. Selection Method Based on ACO

Traditional genetic algorithm selection operations effectively implement the survival of
the fittest in the population, preserving individuals with higher fitness values for crossover
and mutation operations in the next generation. Common selection methods include
roulette wheel selection, probability selection, and tournament selection, all of which
involve transmitting some individuals unchanged to the next generation. However, indi-
viduals with high fitness values may be heavily replicated, reducing solution efficiency
and potentially causing the algorithm to converge to local optima. In the ACO, each ant
determines its next task point based on the transfer probability of its task points. This
transfer probability is calculated based on the residual pheromones and heuristic informa-
tion along the path, which accelerates convergence. Each ant operates independently and
communicates through pheromones, providing certain advantages for increasing solution
diversity.

For the ant k, the probability of its transfer from task point i to j at time t is calculated
using:

pk
i,j(t) =


[τi,j(t)]

α ·[ηi,j(t)]
β

∑
s∈Jk(i)

[τi,s(t)]
α ·[ηi,s(t)]

β , j ∈ Jk(i)

0, others
(8)

where τi,j(t) is the size of the pheromone from task point i to j, its initial value is usually a
small constant, and its value is updated after all ants have obtained the path. ηi,j(t) is a
heuristic factor that represents the desired degree from task points i to j, the value of which
is usually the reciprocal of the distance between the two task points. The size of α and β
determines the importance of the above two parameters.

Therefore, two strategies were adopted in the selection operation: half of the solutions
were generated using ACO, and then the tournament selection method was used until the
number of solutions reached NP.

3.2.3. Crossover Method

The crossover operation of the genetic algorithm can lead to a qualitative leap in solu-
tion quality. Typically, a pair of chromosomes are selected, and with a certain probability,
some of their genetic information is exchanged to create new individuals. However, due
to the randomness of crossover, it is not conducive to algorithm convergence. Inspired
by the convergence factor in whale optimization algorithms, a convergence factor A was
introduced into the algorithm. Its calculation formula is:
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A = 2a · r − a (9)

In Equation (9), r is a random number between [0, 1], and a is the weight factor, which
will gradually decrease with the progress of iteration. Its specific value is as follows:

a = 2 − 2titer/titer,max (10)

In Equation (10), titer is the current number of iterations and titer,max is the maximum
number of iterations.

Firstly, the solution with the maximum fitness value in the previous iteration is set as
the parent chromosome R0. Next, the value of A calculated by Equation (9) is judged. If
|A| ≤ 1, the chromosome R1 is crossed with the parent chromosome R0 to obtain a new
chromosome R1* and reserve it; if |A| > 1, another chromosome R2 is randomly selected
to cross with R1 and reserve R1*. With this setting, as the iteration proceeds, the value
of |A| approaches 0, which greatly improves the probability of crossing with the parent
chromosome, thus accelerating the convergence of the algorithm.

During the crossover operation, two random positions are selected along the length of
the chromosomes, as illustrated in Figure 3. The genes at these positions on chromosome
R2 are found and cleared on chromosome R1. Then, the genes at these two positions on
chromosome R2 are exchanged with those on chromosome R1. Finally, the genes originally
located at these positions on chromosome R1 are inserted into the blank positions. The
specific process of chromosome R1 during this crossover operation is depicted in Figure 4.
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3.2.4. Mutation Method

Mutation is a crucial technique in GA to prevent falling into local optima, thereby
enhancing the diversity of the population. Typically, this operation is to modify local genes.
However, in this study, the solutions are encoded as integers, and no repetition of numbers
is allowed. Hence, a form of gene exchange is chosen. For the chromosome to be mutated,
two positions of data are randomly selected for exchange, as shown in Figure 5, thereby
generating a new chromosome.

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 16 
 

6 14 17 12 1 13 5 9 15 11 10 3 7 2 8 4

UAV1 UAV2 UAV3 UAV4
16

6 14 17 12 7 13 5 9 15 11 10 3 1 2 8 416  
Figure 5. Chromosomal changes before and after mutation. 

In traditional GA, the probabilities of crossover and mutation are usually constant. 
At the beginning of iterations, the changes in chromosomes caused by crossover are evi-
dently more significant than mutation, which is more conducive to solving large-scale 
problems. However, as iterations progress, the solutions in the population tend to con-
verge. The more similar the chromosomes subjected to crossover are, the less beneficial it 
is for the diversity of the population. Therefore, it is advisable to decrease the probability 
of crossover and increase the likelihood of mutation. Hence, the probabilities of both dur-
ing iterations can be adjusted as follows: 

1
2
1 (2 )
2

iter
m m

iter
e e

P P a

P P a

 = ⋅

 = −


 (11)

In Equation (11), Pm and Pe are the probability of crossover and mutation, respectively. 
In this setting, the probability of crossover and mutation will decrease and increase with 
the progress of iteration, respectively, which will have a more favorable impact on the 
search ability of chromosomes and the diversity of solutions. 

3.2.5. Computing Fitness Values and Updating Pheromones 
During each iteration, the aforementioned operations are performed. Subsequently, 

the fitness values of the newly generated population are computed. The best individual of 
each round is recorded, and its fitness value is output. Finally, the pheromones of the ant 
colony are updated according to the following formula: 

, , ,( 1) (1 ) ( )i j i j i jt tτ ρ τ τ+ = − ⋅ + Δ  (12)

In Equation (12), ρ is the evaporation coefficient of the pheromone, and Δτ represents 
the pheromone increment from task points i to j in this iteration, which is calculated as 
follows: 

,
1

,

, while ant  passes ,  in this iteration

0,others

NPn
k
i j

k

k
ki j

Q k i j
S

τ τ

τ

=

Δ = Δ


Δ = 



 (13)

In Equation (13), ,
k
i jτΔ  refers to the amount of pheromone left by the ant k from task 

points i to j in this round of iteration, nNP represents the population size, Q is the phero-
mone enhancement coefficient, and Sk is the fitness value of the ant k in this iteration. 

The detailed procedure of the complete ACO-GA algorithm for solving the mission 
planning problem is shown in Figure 6. 

Figure 5. Chromosomal changes before and after mutation.

In traditional GA, the probabilities of crossover and mutation are usually constant. At
the beginning of iterations, the changes in chromosomes caused by crossover are evidently



Algorithms 2024, 17, 177 8 of 15

more significant than mutation, which is more conducive to solving large-scale problems.
However, as iterations progress, the solutions in the population tend to converge. The more
similar the chromosomes subjected to crossover are, the less beneficial it is for the diversity
of the population. Therefore, it is advisable to decrease the probability of crossover and
increase the likelihood of mutation. Hence, the probabilities of both during iterations can
be adjusted as follows: {

Piter
m = 1

2 Pm · a

Piter
e = 1

2 Pe(2 − a)
(11)

In Equation (11), Pm and Pe are the probability of crossover and mutation, respectively.
In this setting, the probability of crossover and mutation will decrease and increase with the
progress of iteration, respectively, which will have a more favorable impact on the search
ability of chromosomes and the diversity of solutions.

3.2.5. Computing Fitness Values and Updating Pheromones

During each iteration, the aforementioned operations are performed. Subsequently,
the fitness values of the newly generated population are computed. The best individual of
each round is recorded, and its fitness value is output. Finally, the pheromones of the ant
colony are updated according to the following formula:

τi,j(t + 1) = (1 − ρ) · τi,j(t) + ∆τi,j (12)

In Equation (12), ρ is the evaporation coefficient of the pheromone, and ∆τ represents
the pheromone increment from task points i to j in this iteration, which is calculated as
follows:

∆τ =
nNP
∑

k=1
∆τk

i,j

∆τk
i,j =

{
Q
Sk

, while ant k passes i, j in this iteration
0, others

(13)

In Equation (13), ∆τk
i,j refers to the amount of pheromone left by the ant k from task

points i to j in this round of iteration, nNP represents the population size, Q is the pheromone
enhancement coefficient, and Sk is the fitness value of the ant k in this iteration.

The detailed procedure of the complete ACO-GA algorithm for solving the mission
planning problem is shown in Figure 6.
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4. Simulation Studies

To validate the superiority and practicality of the proposed method, corresponding
scenarios were designed in MATLAB for analysis and computation. This section consists
of several parts. Firstly, the results of ACO-GA proposed in this paper are demonstrated.
Secondly, the results obtained in this study are compared with standard GA, ACO, and
improved GA. Finally, the time difference in task execution is compared for different
numbers of deployed UAVs to determine the optimal number of UAVs. The relevant
parameter settings used in the simulation process are shown in Tables 1 and 2.

Table 1. Parameter settings of building inspection tasks.

Parameter Parameter Values

Numbers of UAVs m 5
Maximum time of flight tmax 900 s

Flight speed v 15 m/s
Number of task points n 46

Table 2. Parameters settings for ACO-GA.

Parameter Value Parameter Value

Number of populations NP 200 Mutation probability Pe 0.5
Maximum number of iterations G 5000 Enhancement factor α,β 1.5

Crossover probability Pm 0.9 Pheromone enhancement coefficient Q 100

4.1. Optimization Results of ACO-GA

The locations of 46 task points are randomly generated as objects for building in-
spection in a certain area. The coordinates of these task points, along with the required
operation time for each point, are listed in Table 3. The centroid method was employed
to compute the location of the parking point. The initial location of the parking point for
UGV, calculated using Equation (1), is determined as: (1206.5, 1103.9).

Table 3. Coordinates and Operating Time of Task Points and the Parking Point.

Task
Point Coordinates Operating

Time
Task
Point Coordinates Operating

Time
Task
Point Coordinates Operating

Time

1 (6.3, 928.1) 75 s 17 (1155.5, 790.9) 90 s 33 (1487.8, 1049.2) 46 s
2 (72.5, 708.3) 61 s 18 (1171.9, 1166.5) 35 s 34 (1500.9, 1092.8) 39 s
3 (242.7, 92.0) 45 s 19 (1183.9, 1216.3) 57 s 35 (1493.0, 1415.2) 38 s
4 (335.6, 1380.9) 76 s 20 (1209.0, 1270.7) 36 s 36 (1526.8, 1235.1) 83 s
5 (489.2, 989.3) 87 s 21 (1218.8, 817.6) 88 s 37 (1603.3, 2174.9) 65 s
6 (533.2, 529.4) 40 s 22 (1245.3, 805.9) 30 s 38 (1688.6, 1677.0) 63 s
7 (569.1, 779.7) 62 s 23 (1233.7, 939.8) 77 s 39 (1753.9, 1035.0) 39 s
8 (606.0, 1532.8) 66 s 24 (1278.9, 902.9) 79 s 40 (1862.3, 1479.5) 82 s
9 (958.4, 1128.3) 75 s 25 (1284.2, 1665.1) 83 s 41 (1877.0, 1186.6) 68 s

10 (985.8, 1949.2) 57 s 26 (1315.5, 963.6) 35 s 42 (1941.7, 621.0) 51 s
11 (1063.1, 990.7) 35 s 27 (1343.1, 993.25) 54 s 43 (2008.3, 615.7) 61 s
12 (1067.0, 1048.7) 44 s 28 (1332.4, 1800.0) 46 s 44 (2005.1, 925.1) 54 s
13 (1063.6, 1048.7) 85 s 29 (1369.2, 996.8) 78 s 45 (2017.6, 621.4) 35 s
14 (1104.9, 977.8) 39 s 30 (1381.7, 854.5) 56 s 46 (2011.5, 891.1) 45 s
15 (1103.1, 1053.4) 80 s 31 (1425.0, 1195.1) 85 s Parking position
16 (1104.9, 1090.6) 63 s 32 (1440.1, 1024.0) 41 s (1206.5, 1103.9)

Based on the coordinates of the task points and the parking point provided above, the
mission planning scheme is solved using ACO-GA proposed in this study. The distribution
map of the UAV task planning results obtained is shown in Figure 7. In each iteration, the
UAV with the longest time consumption is selected as the fitness value for that iteration.



Algorithms 2024, 17, 177 10 of 15

The fitness change curve is depicted in Figure 8. The optimization rate has improved
from 895.61 s to 785.88 s, resulting in a 12.25% improvement. From Figure 7, it can be
observed that the route map optimized using the ACO-GA proposed in this study is
highly reasonable. Each task point is assigned to a corresponding UAV for operation,
demonstrating a clear division of labor and high efficiency. Additionally, each UAV does not
need to return to the parking point for recharging but can directly return after completing
the task. From the change curve shown in Figure 8, it can be seen that the optimization
rate does not seem to be very high. This is because the operation time of UAVs at each
task point is fixed, and this part of the time consumption cannot be optimized. Only the
flight time of UAVs in the air can be optimized, resulting in an improvement of over one
hundred seconds in flight time. Considering only the flight time, the optimization degree
is quite significant.

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 16 
 

 
Figure 7. Distribution of UAVs in inspection task. 

 
Figure 8. Fitness change curve of ACO-GA. 

The operation time, flight time, and total time consumed by each UAV are presented 
in Table 4. From the data in Table 4, it can be observed that the proportion of flight time to 
the total time consumption of UAVs is relatively small. Moreover, the total time consump-
tion of each UAV is relatively uniform. If a UAV is assigned a longer operation time at task 
points, its flight time is shorter, thereby achieving a relatively balanced workload distri-
bution among UAVs. 

Table 4. The time spent by each UAV. 

Serial Number UAV1 UAV2 UAV3 UAV4 UAV5 
Operating time (s) 708 577 504 586 545 

Flight time (s) 75.88 209.02 277.46 194.49 221.11 
Total time (s) 783.88 786.02 781.46 780.49 766.11 

4.2. Comparison with Other Algorithm Optimization Results 
The optimization results obtained using traditional GA and the improved GA are 

compared in Figure 9, with both algorithms starting from the same initial solution. In the 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iterations

780

800

820

840

860

880

900

To
ta

l t
im

e 
sp

en
t

Fitness value change curve

Figure 7. Distribution of UAVs in inspection task.

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 16 
 

 
Figure 7. Distribution of UAVs in inspection task. 

 
Figure 8. Fitness change curve of ACO-GA. 

The operation time, flight time, and total time consumed by each UAV are presented 
in Table 4. From the data in Table 4, it can be observed that the proportion of flight time to 
the total time consumption of UAVs is relatively small. Moreover, the total time consump-
tion of each UAV is relatively uniform. If a UAV is assigned a longer operation time at task 
points, its flight time is shorter, thereby achieving a relatively balanced workload distri-
bution among UAVs. 

Table 4. The time spent by each UAV. 

Serial Number UAV1 UAV2 UAV3 UAV4 UAV5 
Operating time (s) 708 577 504 586 545 

Flight time (s) 75.88 209.02 277.46 194.49 221.11 
Total time (s) 783.88 786.02 781.46 780.49 766.11 

4.2. Comparison with Other Algorithm Optimization Results 
The optimization results obtained using traditional GA and the improved GA are 

compared in Figure 9, with both algorithms starting from the same initial solution. In the 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iterations

780

800

820

840

860

880

900

To
ta

l t
im

e 
sp

en
t

Fitness value change curve

Figure 8. Fitness change curve of ACO-GA.

The operation time, flight time, and total time consumed by each UAV are presented in
Table 4. From the data in Table 4, it can be observed that the proportion of flight time to the
total time consumption of UAVs is relatively small. Moreover, the total time consumption of
each UAV is relatively uniform. If a UAV is assigned a longer operation time at task points,
its flight time is shorter, thereby achieving a relatively balanced workload distribution
among UAVs.
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Table 4. The time spent by each UAV.

Serial Number UAV1 UAV2 UAV3 UAV4 UAV5

Operating time (s) 708 577 504 586 545
Flight time (s) 75.88 209.02 277.46 194.49 221.11
Total time (s) 783.88 786.02 781.46 780.49 766.11

4.2. Comparison with Other Algorithm Optimization Results

The optimization results obtained using traditional GA and the improved GA are
compared in Figure 9, with both algorithms starting from the same initial solution. In the
optimization process, the traditional GA utilizes a roulette wheel selection operation, while
the improved GA employs tournament selection. Additionally, improved GA incorporates
a weighting factor “a” in the crossover and mutation operations as well.
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From Figure 9a, it can be observed that the paths generated by the traditional GA for
UAVs are highly disorganized. The UAVs need to return to the parking point for battery
replacement to continue performing the task. In contrast, the results obtained from the
improved GA exhibit significant improvement, as shown in Figure 9b. It is not necessary
for UAVs to return to the parking point for recharging. However, it can be noted from
Figure 9b that some paths are still suboptimal, such as the partially intersected paths of
UAV3.

The optimization results obtained by ACO are shown in Figure 10. Overall, the
paths observed are reasonable, and the results are superior, with fewer instances of UAVs
deviating from the optimal paths. Analyzing the distribution of the formed paths, it can
be observed that the quality of solutions obtained from ACO is higher compared to the
aforementioned GA. This is attributed to the influence of heuristic factors and pheromones
in ACO. The initial value of the heuristic factor is inversely proportional to the distance
between task points, and the pheromone gradually stabilizes with iterations. Both factors
jointly affect the probability of selecting a task point, making the search for solutions more
informed. Consequently, the algorithm considers the impact of distance to a certain extent,
making the search for solutions more efficient.

To validate the superiority and generality of the proposed algorithm, ten independent
runs were conducted for each algorithm. The statistical results of the relevant data are sum-
marized in Table 5. Representative fitness curves for each algorithm are selected to illustrate
their variation, as shown in Figure 11. From Table 5 and Figure 11, it can be observed that
the ACO-GA proposed in this paper initially exhibits significantly higher quality of initial
solutions compared to GA. As the iterations progress, its search capability surpasses that
of ACO, resulting in smaller average optimization values compared to other algorithms.
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Moreover, the proposed algorithm demonstrates a certain level of stability, as indicated by
the relatively small standard deviation. While ACO requires longer computation time due
to the calculation of the selection probability for each task point based on its pheromone and
heuristic factor during the iterative process, the ACO-GA algorithm still outperforms the
ACO algorithm in terms of computation time since only half of the solutions are generated
using the ant colony algorithm during the selection operation. Based on these observations,
the algorithm designed in this paper significantly improves the quality of initial solutions
and overcomes the shortcomings of both ACO and GA in terms of search capability and
premature convergence, thus demonstrating reliable superiority and stability.
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Table 5. Comparison of optimization results after ten independent runs.

Algorithm ACO-GA GA Improved GA ACO

Average (s) 787.69 1110.42 825.40 825.51
Maximum (s) 790.04 1141.97 843.05 829.17
Minimum (s) 785.88 1048.86 805.13 819.98

Standard deviation (s) 2.07 32.39 13.20 4.47
Mean computation time (s) 316.39 253.11 290.61 456.99
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4.3. Influence of the Number of UAVs on the Task Allocation Scheme

During inspection tasks, the more UAVs there are, the less time is required to complete
the tasks. However, in practical inspection tasks, not only time but also costs need to be
considered. Based on market prices, the rental cost of a UAV is ¥150 yuan, the cost of
replacing a battery for a UAV is ¥70 yuan, and the cost per second of each UAV flight
is ¥0.1 yuan. By varying the number of UAVs, ten independent optimization runs were
conducted, and the average operation time and costs are summarized in Table 6.

Table 6. Time consumption and costs under different numbers of UAVs.

Number of UAVs 3 4 5 6 7

Average time consuming (s) 1686.17 1060.20 787.69 698.63 614.55
Average cost (¥) 1165.85 1304.08 1143.85 1319.18 1480.19

Based on the data in Table 6, it can be observed that when the number of UAVs is 5,
the inspection cost is the minimum. On this basis, increasing the number of UAVs will lead
to higher rental costs, which have a greater impact on the total cost, resulting in an increase
in overall costs. When the number of UAVs decreases, the cost does not decrease because
each UAV requires battery replacement, incurring additional expenses. Therefore, the cost
of completing the inspection task can be minimized when the number of UAVs is kept as
low as possible, just enough to complete the inspection with the original battery.

5. Conclusions

This paper addresses MPP for building inspection by establishing a task planning
model for coordinated inspection using UGV and UAVs. Firstly, the MPP problem is
described, which involves dispatching UGV to designated location and utilizing multiple
UAVs to inspect all buildings within a certain area. Secondly, a mathematical optimization
model for the MPP is established, aiming to minimize the mission time. The constraints
include ensuring coverage of all buildings and maintaining sufficient battery power for the
UAVs. Additionally, the model takes into full account the impact of varying operational
time requirements for different mission points. Subsequently, the location of parking
spots is determined based on the positions of the mission points and the operational time
required. Finally, to address the issues of weak search capabilities in ACO and the tendency
of GA to get trapped in local optima, the paper proposes an ACO-GA hybrid approach.

The simulation results and comparisons with other algorithms demonstrate the supe-
riority and effectiveness of the proposed ACO-GA, effectively addressing the task planning
problem for building inspections. While this study focuses only on the task planning
problem with a single parking point, the process of using UAVs for building inspections
at individual task points has not been thoroughly studied, and real-world applications
often involve inspection over large areas, requiring task planning with multiple parking
points. In addition, the research findings of this paper primarily remain in the stages of
algorithm design and simulation verification. Its applicability in the real world remains to
be validated. Therefore, future research will focus on how UAVs can conduct inspections
within individual buildings. And it is necessary to continue to explore solutions to task
planning issues in larger areas and utilize actual data for verification and experimental
validation of the effectiveness of the methods presented in this paper.

Author Contributions: Conceptualization, X.C. and Y.W.; methodology, X.C.; software, X.C.; vali-
dation, X.C., Y.W. and S.X.; formal analysis, Y.W.; investigation, S.X.; resources, X.C.; data curation,
X.C.; writing—original draft preparation, X.C.; writing—review and editing, Y.W.; visualization, S.X.;
supervision, Y.W.; project administration, Y.W.; funding acquisition, S.X. All authors have read and
agreed to the published version of the manuscript.



Algorithms 2024, 17, 177 14 of 15

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 52102453, and the APC was fund by State Key Laboratory of Efficient Production of Forest Re-
sources, Key Laboratory of National Forestry and Grassland Administration on Forestry Equipment
and Automation, and Fundamental Research Funds for the Central Universities, grant number
BLX202224.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ye, F.; Chen, J.; Sun, Q.; Tian, Y.; Jiang, T. Decentralized task allocation for heterogeneous multi-UAV system with task coupling

constraints. J. Supercomput. 2021, 77, 111–132. [CrossRef]
2. Beloev, I.H. A review on current and emerging application possibilities for unmanned aerial vehicles. Acta Technol. Agric. 2016, 19,

70–76. [CrossRef]
3. Yan, J.; Zhang, X.; Shen, S.; He, X.; Xia, X.; Li, N.; Wang, S.; Yang, Y.; Ding, N. A Real-Time Strand Breakage Detection Method for

Power Line Inspection with UAVs. Drones 2023, 7, 574. [CrossRef]
4. Wu, M.; Chen, W.; Tian, X. Optimal Energy Consumption Path Planning for Quadrotor UAV Transmission Tower Inspection

Based on Simulated Annealing Algorithm. Energies 2022, 15, 8036. [CrossRef]
5. Tang, G.; Wang, C.; Zhang, Z.; Men, S. UAV Path Planning for Container Terminal Yard Inspection in a Port Environment. J. Mar.

Sci. Eng. 2024, 12, 128. [CrossRef]
6. Shang, Z.; Bradley, J.; Shen, Z. A co-optimal coverage path planning method for aerial scanning of complex structures. Expert

Syst. Appl. 2020, 158, 113535. [CrossRef]
7. Zhang, R.; Li, H.; Duan, K.; You, S.; Liu, K.; Wang, F.; Hu, Y. Automatic Detection of Earthquake-Damaged Buildings by

Integrating UAV Oblique Photography and Infrared Thermal Imaging. Remote Sens. 2020, 12, 2621. [CrossRef]
8. Ruiz, R.D.B.; Lordsleem, A.C., Jr.; Rocha, J.H.A.; Irizarry, J. Unmanned aerial vehicles (UAV) as a tool for visual inspection of

building facades in AEC+ FM industry. Constr. Innov. 2022, 22, 1155–1170. [CrossRef]
9. Radmanesh, M.; Sharma, B.; Kumar, M.; French, D. PDE solution to UAV/UGV trajectory planning problem by spatio-temporal

estimation during wildfires. Chin. J. Aeronaut. 2021, 34, 601–616. [CrossRef]
10. Wu, Y.; Wu, S.; Hu, X. Cooperative path planning of UAVs & UGVs for a persistent surveillance task in urban environments.

IEEE Internet Things J. 2020, 8, 4906–4919.
11. Song, J.; Zhao, K.; Liu, Y. Survey on Mission Planning of Multiple Unmanned Aerial Vehicles. Aerospace 2023, 10, 208. [CrossRef]
12. Wang, Z.; Li, M.; Li, J.; Cao, J.; Wang, H. A task allocation algorithm based on market mechanism for multiple robot systems. In

Proceedings of the 2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Angkor Wat, Cambodia,
6–10 June 2016; pp. 150–155.

13. Peng, Q.; Wu, H.; Xue, R. Review of dynamic task allocation methods for UAV swarms oriented to ground targets. Complex Syst.
Model. Simul. 2021, 1, 163–175. [CrossRef]

14. Wu, Y.; Liang, T.; Gou, J.; Tao, C.; Wang, H. Heterogeneous Mission Planning for Multiple UAV Formations via Metaheuristic
Algorithms. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 3924–3940. [CrossRef]

15. Wu, Y. A survey on population-based meta-heuristic algorithms for motion planning of aircraft. Swarm Evol. Comput. 2021, 62,
100844. [CrossRef]

16. Guangtong, X.; Li, L.; Long, T.; Wang, Z.; Cai, M. Cooperative multiple task assignment considering precedence constraints using
multi-chromosome encoded genetic algorithm. In Proceedings of the 2018 AIAA Guidance, Navigation, and Control Conference,
Kissimmee, FL, USA, 8–12 January 2018; p. 1859.

17. Chen, J.; Ling, F.; Zhang, Y.; You, T.; Liu, Y.; Du, X. Coverage path planning of heterogeneous unmanned aerial vehicles based on
ant colony system. Swarm Evol. Comput. 2022, 69, 101005. [CrossRef]

18. Huo, L.; Zhu, J.; Wu, G.; Li, Z. A Novel Simulated Annealing Based Strategy for Balanced UAV Task Assignment and Path
Planning. Sensors 2020, 20, 4769. [CrossRef] [PubMed]

19. Zhang, Y.-Z.; Li, J.-W.; Hu, B.; Zhang, J.-D. An improved PSO algorithm for solving multi-UAV cooperative reconnaissance task
decision-making problem. In Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing,
China, 10–12 October 2016; pp. 434–437.

20. Lee, M.-T.; Chen, B.-Y.; Lai, Y.-C. A Hybrid Tabu Search and 2-opt Path Programming for Mission Route Planning of Multiple
Robots under Range Limitations. Electronics 2020, 9, 534. [CrossRef]

21. Zhang, Y.-Z.; Hu, B.; Li, J.-W.; Zhang, J.-D. Heterogeneous multi-UAVs cooperative task assignment based on GSA-GA. In
Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 10–12 October 2016;
pp. 423–426.

22. Zhu, W.; Li, L.; Teng, L.; Yonglu, W. Multi-UAV reconnaissance task allocation for heterogeneous targets using an opposition-based
genetic algorithm with double-chromosome encoding. Chin. J. Aeronaut. 2018, 31, 339–350.

23. Han, H.; Bai, X.; Han, H.; Hou, Y.; Qiao, J. Self-adjusting multitask particle swarm optimization. IEEE Trans. Evol. Comput. 2021,
26, 145–158. [CrossRef]

https://doi.org/10.1007/s11227-020-03264-4
https://doi.org/10.1515/ata-2016-0015
https://doi.org/10.3390/drones7090574
https://doi.org/10.3390/en15218036
https://doi.org/10.3390/jmse12010128
https://doi.org/10.1016/j.eswa.2020.113535
https://doi.org/10.3390/rs12162621
https://doi.org/10.1108/CI-07-2021-0129
https://doi.org/10.1016/j.cja.2020.11.002
https://doi.org/10.3390/aerospace10030208
https://doi.org/10.23919/CSMS.2021.0022
https://doi.org/10.1109/TAES.2023.3234455
https://doi.org/10.1016/j.swevo.2021.100844
https://doi.org/10.1016/j.swevo.2021.101005
https://doi.org/10.3390/s20174769
https://www.ncbi.nlm.nih.gov/pubmed/32846950
https://doi.org/10.3390/electronics9030534
https://doi.org/10.1109/TEVC.2021.3098523


Algorithms 2024, 17, 177 15 of 15

24. Gou, Q.; Li, Q. Task assignment based on PSO algorithm based on logistic function inertia weight adaptive adjustment. In
Proceedings of the 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 27–28 November 2020;
pp. 825–829.

25. Ebadinezhad, S. DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem.
Eng. Appl. Artif. Intell. 2020, 92, 103649. [CrossRef]

26. Shang, K.; Karungaru, S.; Feng, Z.; Ke, L.; Terada, K. A GA-ACO hybrid algorithm for the multi-UAV mission planning problem.
In Proceedings of the 2014 14th International Symposium on Communications and Information Technologies (ISCIT), Incheon,
Republic of Korea, 24–26 September 2014; pp. 243–248.

27. Jia, Z.; Xiao, B.; Qian, H. Improved Mixed Discrete Particle Swarms based Multi-task Assignment for UAVs. In Proceedings of the
2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), Xiangtan, China, 12–14 May 2023; pp. 442–448.

28. Jiang, C.; Wan, Z.; Peng, Z. A new efficient hybrid algorithm for large scale multiple traveling salesman problems. Expert Syst.
Appl. 2020, 139, 112867. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.engappai.2020.103649
https://doi.org/10.1016/j.eswa.2019.112867

	Introduction 
	Establishment of Mathematical Model 
	Design of Planning Algorithm for Cooperative Inspection 
	Determination of the Parking Point Location 
	Mission Planning Algorithm Based on ACO-GA 
	Encoding and Decoding of Individual Solutions 
	Selection Method Based on ACO 
	Crossover Method 
	Mutation Method 
	Computing Fitness Values and Updating Pheromones 


	Simulation Studies 
	Optimization Results of ACO-GA 
	Comparison with Other Algorithm Optimization Results 
	Influence of the Number of UAVs on the Task Allocation Scheme 

	Conclusions 
	References

