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Abstract: Since sheet metal exhibits significant anisotropy in processing and forming, which has a
significant impact on its performance during processing, forming, and use, we explore the anisotropic
behavior of materials in the forming process of sheet metal. The ability of the Yld2000-2d cri-
terion to describe anisotropic behavior is analyzed, and its accuracy for characterization of the
anisotropic behavior of metal plates is improved, based on which anisotropic behavior is predicted
in three-dimensional space. Theoretical and experimental results on the anisotropy of sheet metal
are compared, and two materials, 5754O aluminum alloy and DP980 steel plate, are tested and
analyzed, and the anisotropic behaviors, such as three-point bending and cylindrical deep-drawing,
are well predicted.

Keywords: anisotropy; yield function; three-dimensional stress state; finite element simulation;
Yld2000-2d

1. Introduction

Sheet metals that have undergone remanufacturing and multiple rolling will present
fibrous tissue or preferential orientation caused by crystallization, which will lead to
anisotropy, meaning the material exhibits different mechanical properties in different
directions. This anisotropic behavior has obvious influences on deformation during the
forming process, such as earring and fracture on straight walls in deep drawing [1–3]. In
general, the anisotropy of machined sheet metal and the resulting stresses and loose areas
have a significant effect on its performance during forming and use, as in the following
examples. (1) Mechanical property differences: anisotropy will lead to differences in the
mechanical properties of the metal plate in different directions, such as strength, hardness,
ductility, and so on. (2) Increased molding difficulty: anisotropy causes the deformation
capacity in different directions to be different, which may lead to deformation in some
directions in the molding process being difficult to achieve or requiring greater molding
force. (3) Stress concentration: anisotropy makes it possible for stress concentration to
occur when the metal plate is subjected to force, increasing the risk of local instability and
fatigue damage. If the anisotropy is ignored, it may result in poorly formed or cracked
aluminum sheets. If the anisotropic behavior during the sheet metal forming process
can be predicted accurately, the forming quality can be greatly improved by utilizing the
anisotropic characteristic effectively [4,5].

In order to accurately describe the anisotropic behavior of sheet metals, researchers
all over the world have proposed many functions, such as Hill series yield functions [6–8],
Hosford yield function [9], Barlat series yield function [10–12], and so on. Every yield
function has its advantages and disadvantages. For example, the Hill48 yield function that
is widely used in engineering applications is a simple function, the parameters of which
are easy to solve, but its prediction of the anisotropic behavior of certain metals is not
accurate enough [13]. In 1972, Hosford [14] proposed a yield function that can accurately
describe the behaviors of cubic center and face center materials, but it does not include
shear stress, which is inconvenient for engineering applications. In 2003, Barlat et al. [15]
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proposed a plane stress anisotropic yield function, which has high accuracy for anisotropic
materials, especially for aluminum alloys [16,17]. The Yld2000-2d yield function has been
widely used in the sheet metal forming field. At present, some special software already
includes this yield function [18], while general software like ABAQUS6.4 needs to develop
user subroutines to realize the application of the Yld2000-2d anisotropic yield function [19].
There are also some scholars who have developed anisotropic models for the anisotropy
of a certain type of material; for example, Li et al. [20] developed a model that captures
the tensile asymmetry of magnesium alloys, and Ji et al. [21] developed an anisotropic
model that captures the anisotropy of aluminum alloys with respect to the strain rate. A
generalized evolutionary plasticity model that takes into account thermal effects on the
evolution of flow behavior was proposed by Lian et al. [22] to describe the temperature
dependence of the anisotropic plastic flow behavior of the studied materials.

To accurately predict the plastic deformation behavior of materials in finite element
simulations, it is necessary to use more accurate and convenient models [23–25]. In many
cases, sheet metal experiences a three-dimensional stress state during the forming process,
and the stress in the thickness direction will obviously affects the metal forming properties.
Existing studies show that the stress in the thickness direction has obvious influences on
sheet metal forming processes [26,27]. Existing studies also show that when compressive
stress exists in the thickness direction, the forming limit curves will rise, and when tensile
stress exists in the thickness direction, the forming limit curves will become lower [28,29].
In the sheet metal forming cases where the thickness stress is obvious, if the plane stress
yield function is still used, the simulation accuracy might be decreased. Since some sheet
metal forming simulations needs to consider the stress in the thickness direction, solid
elements are more commonly adopted, and a 3D stress yield function should then be used.

Many three-dimensional stress anisotropic yield functions exist, among which the
Hill48 and Yld2004-18p yield functions are widely accepted for engineering applications.
Mu et al. [30] characterized the deformation behavior of DC06 steel plates more accurately
by improving Hill48, and Rong et al. [31] used yld2004 to describe the thermal anisotropic
behavior of AA7075 with high similarity. The Hill48 yield function, which has less flexi-
bility, has low accuracy sometimes. It will lead to abnormal phenomena when describing
aluminum alloy behaviors. The Yld2004-18p yield function has very high accuracy due
to its high flexibility, which can describe the anisotropy of sheet metals very well. For
example, the Yld2004 yield function can predict six and eight ears in deep drawing, while
many other yield functions cannot [32]. The Yld2004 3D stress yield function has high
accuracy, but the formula is complicated, and many experimental results are needed to
determine the parameters’ values.

In many cases, the anisotropy of the sheet metal is relatively simple (for example,
considering the anisotropic behaviors along three or four directions is enough), but 3D
stress should be considered (i.e., the normal stress of sheet metal should not be neglected).
Therefore, in order to better characterize the anisotropic behavior of sheet metal in practical
machining applications, it is necessary to establish a yield function suitable for three-
dimensional stress states so that a more convenient and accurate model can be constructed.

In this study, the anisotropic mechanical properties of two commonly used metal
sheets (5754O and DP980) were analyzed. The Yld2000-2d yield function proposed by
Barlat et al. [15] is extended into three-dimensional stress space for materials that are
hydrostatic-stress-independent; this is called the Yld2000-3d yield function, and with it,
the anisotropic properties of aluminum alloy plates under three-dimensional stress states
are described more precisely. A finite element simulation of a three-point bending model
of 5754O aluminum alloy sheet was performed by inserting the model into ABAQUS
through the UMAT (VUMAT) subroutine. The accuracy of the new model in capturing
the anisotropy of the aluminum alloy sheet is verified by comparing the simulation results
with experimental results. In addition, deep drawing tests and finite element simulations
of DP980 plates were conducted to further validate the generalizability of the method for
characterizing the anisotropy of metal plates.
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2. Sheet Anisotropy Characterization Methods
2.1. Yld2000-2d Yield Criterion Anisotropy Characterization Capability

The Yld2000-2d yield function [15] is expressed as:

ϕ = ϕ′ + ϕ′′ = 2σm (1)

where
ϕ′ =

∣∣X′
1 − X′

2
∣∣m, ϕ′′ =

∣∣2X′′
2 + X′′
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2
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In Equation (1), ϕ is the sum of the two isotropic functions. In Equation (2), X′
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The elements of X’ and X” are converted from Cauchy stress:

X’=L’σ, X”=L”σ (4)
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L′

11
L′

12
L′

21
L′

22
L′

66

 =


2/3 0 0
−1/3 0 0

0 −1/3 0
0 2/3 0
0 0 1

 ·

α1
α2
α7

 (5)


L′′

11
L′′

12
L′′

21
L′′

22
L′′

66

 =
1
9
·


−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0
−2 8 2 −2 0
0 0 0 0 9

 ·


α3
α4
α5
α6
α8

 (6)

where m is the material parameter, and α1 − α8 are the eight anisotropic parameters of the
anisotropic yield function, which can be calculated with the material properties. When the
eight parameters are equal to 1, the function will return to the isotropic function.

2.2. Prediction of Anisotropic Behavior of Materials in Three-Dimensional Stress State

As stated above, the stress components included in the Yld2000-2d yield function are
σxx, σyy, and σxy in the X-Y plane. In many cases, however, the normal stress and shear
stress in the thickness direction cannot be neglected and have a significant effect on the
sheet metal forming process. In this study, the Yld2000-2d yield function is modified, and
the normal stress along the thickness direction is included firstly. That is, the Yld2000-2d
yield function for the 2D case is extended into three-dimensional stress space.

As shown in Figure 1a, the material point is subjected to different stresses in different
directions and is in equilibrium. Convert the 3D stress state of Figure 1a by subtracting
a hydrostatic stress equal to the algebraic value of thickness direction stress σz (adding a
hydrostatic stress, the algebraic value of which is −σz). The converted stress state is shown
in Figure 1b. According to the continuity hypothesis, for the hydrostatic-stress-independent
materials, the hydrostatic stress will only cause elastic volume changes, and will not affect
the plastic deformation rules. Therefore, the plastic deformation caused by the two stress
states shown in Figure 1 will be completely the same.
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Figure 1. Stress state analysis of the one material point: (a) three-dimensional stress; (b) equivalent
two-dimensional stress.

As for the normal stress, the above conversion expression from the three-dimensional
to two-dimensional stress space is:
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Besides the three normal stresses σx, σy, and σz, the three-dimensional stress
components also include the three shear stress components σxy, σyz, and σzx. The shear
stresses σyz and σzx are handled with the method that was used for σxy in the Yld2000-2d
yield function.

Thus, the Yld2000-2d yield function is extended into three-dimensional stress space
and is named “Yld2000-3d” in this study, the expression of which is
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From Equations (13) and (14), it can be seen that in the yield function expression, the
coefficients of the three shear stress components σxy, σyz, and σzx are L′

44, L′
55, L′

66 and L′′
44,

L′′
55, L′′

66, which represent the shear anisotropic properties and can be expressed as
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where α1–α12 are anisotropic material parameters.
Because the material property data in the XZ and YZ planes are difficult to obtain in

basic sheet metal tests, the shear isotropy is assumed in this study, namely the anisotropic
coefficients for σxy, σyz, σzx are assumed to be the same. Liu and Raemy used similar
methods in their yield functions [33,34]. Therefore, in Equations (13) and (14), we have
L′

44 = L′
55 = L′

66 and L′′
44 = L′′

55 = L′′
66. In other words, we have α7 = α9 = α10 and

α8 = α11 = α12. Surely, the shear anisotropy can be represented if corresponding material
properties in the XZ and YZ planes can be obtained.

It is shown that the developed yield function still used the linear transformation
method. Yoshida et al. [35] perform the same conversions on a six-order polynomial,
and the convexity of a certain cross-section of the three-dimensional yield function is
considered. In this study, the three-dimensional stress yield function developed can ensure
strict convexity. It is easy to prove that its convexity is in consistency with the original
Yld2000-2d yield function. Besides the uniaxial and the biaxial tensile mechanical properties,
the thickness stress components σzz, σyz, σzx are also included in the Yld2000-3d yield
function. On the other hand, from Equations (13) and (14), it is easy to find that the
Yld2000-3d yield function only considers the value of the thickness stress and does not
consider the anisotropy of the thickness stress. Cazacu [36] found that in the sheet-forming
processes, the existence of the thickness stress should be considered, but the anisotropy of
the thickness direction stress does not need to be considered.

The determination of the parameters is an important step for the application of the
developed Yld2000-3d yield function. Comparing it with Yld2000-2d yield function, no
more parameters are included in the Yld2000-3d function, and the determining method in
this study is exactly the same as that of the original Yld2000-2d yield function [16] (only
some anisotropic properties under planes stress state are needed), so it will not be presented
in detail. As a result, the anisotropy in the metal sheet-forming process can be captured
more conveniently and accurately for practical engineering use.

3. Results and Discussion
3.1. Experimental and Material Data

Biaxial tensile testing of cruciform specimens was performed on an established biaxial
tensile testing system. The test system is modified and improved from the biaxial loading
test machine shown in Figure 2, which can realize the synergistic motion of four axes in
two directions and can carry out biaxial tensile tests under different proportional loading
paths. The characteristics of the test system are as follows: tensile speed 0.6–6 mm/min,
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force transducer accuracy ≤2%, chuck maximum stroke 400 mm, working environment
temperature −10–50 ◦C. It can be seen that the bi-directional tensile test system meets the
needs of the test in terms of requirements for precision, reliability, and accuracy.
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Biaxial tensile testing of cruciform specimens is usually performed using both load-
controlled and strain-controlled methods. The study of yielding behavior is generally
carried out in stress space, and the yield criterion is usually expressed in terms of stresses;
hence, the load control approach is used in this paper. For the cruciform specimen, a 5754O
(t = 1 mm) aluminum alloy plate with r < 1 was selected. The test specimens were prepared
by laser cutting, and the specific dimensions were obtained from Wang et al.’s paper [19].

Before the test, the extensometer for strain measurement and the force transducer for
load measurement were calibrated, and the calibration errors were less than 1%. During
the test, the main control direction tensile speed is 2 mm/min, the initial measurement area
of the strain in the center area is 50 mm × 50 mm, and the strain value during deformation
is measured by an extensometer installed on both surfaces of the specimen at a distance of
50 mm, respectively. The measurement range of the extensometer is 10 mm, and the pins of
the extensometer are fixed to the specimen by clamping during the measurement.

The ratios of the rolling direction to the load perpendicular to the rolling direction used
in the test were 4:0, 4:1, 4:2, 4:3, 4:4, 3:4, 2:4, 1:4, and 0:4, respectively. The test is stopped
when the load curve decreases or when rupture of the specimen is observed, and the data
collected in the test are the load on the cross arm of the specimen and the deformation in
the center area. Each set of data was repeated three times, and its average value was finally
solved to obtain the mechanical properties of 5754O, as shown in Tables 1 and 2.

Table 1. Mechanical properties of 5754O aluminum alloy sheets.

Loading Direction to the Rolling Direction Yield Stress (MPa) r Value

0◦ 108.7 0.707
45◦ 108.7 0.894
90◦ 113.4 0.956
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Table 2. Biaxial mechanical properties of 5754O aluminum alloy sheets.

Loading Ratios Yield Stress Ratios β=arctan(dεy/dεx)(o)

σx : σy = 4 : 0 σx : σ = 1 σy : σ = 0 −22.5
σx : σy = 4 : 1 σx : σ = 1.08 σy : σ = 0.28 −8.25
σx : σy = 4 : 2 σx : σ = 1.09 σy : σ = 0.55 −0.13
σx : σy = 4 : 3 σx : σ = 1.10 σy : σ = 0.88 7.93
σx : σy = 4 : 4 σx : σ = 1.01 σy : σ = 1.01 47.21
σx : σy = 1 : 4 σx : σ = 0.85 σy : σ = 1.12 98.18
σx : σy = 2 : 4 σx : σ = 0.59 σy : σ = 1.14 89.67
σx : σy = 3 : 4 σx : σ = 0.3 σy : σ = 1.13 82.69
σx : σy = 0 : 4 σx : σ = 0 σy : σ = 1.04 116.05

3.2. Three-Dimensional Stress State Material Anisotropy

The Yld2000-2d yield function can accurately predict the mechanical behaviors of 5754O
aluminum alloy [37,38] from existing research results. In this study, considering the normal
stress and shear stress in the sheet thickness direction, 5754O aluminum alloy is adopted as
an example to verify the accuracy of the developed Yld2000-3d yield function. The uniaxial
and biaxial tensile properties of 5754O aluminum alloy are shown in Tables 1 and 2, where
β represents the plastic strain direction under plane stress condition, and the r-value is the
coefficient of anisotropy in the thickness direction. They have the following definitions:

β = arctan(dεy/dεx) (17)

r = dεy/dεz (18)

By the principal of volume invariance, dεx + dεy + dεz = 0, and the r-value and β can
be transformed into each other computationally.

According to the parameter determination method of Yld2000-3d, which is the same
as that of the Yld2000-2d yield function, the material constants of 5754O aluminum alloy
sheets are obtained as:

α1 = 0.9983 α2 = 0.9323 α3 = 0.9827 α4 = 0.9675

α5 = 1.0109 α6 = 0.9827 α7 = 1.0484 α8 = 0.8638

The yield surface of 5754O aluminum sheet represented by the Yld2000-3d yield
function is shown in Figure 3. Figure 4a,b show the uniaxial tensile anisotropy of a 5754O
aluminum sheet predicted by the Yld2000-3d yield function. From the theoretical and
experimental results, it is shown that the Yld2000-3d (Yld2000-2d) yield function can
accurately characterize the uniaxial and biaxial tensile properties of a 5754O aluminum
alloy sheet. The tricomponent yield surfaces in the σx − σy, σy − σz, and σz − σx stress space
based on the Yld2000-3d yield function are shown in Figures 5a, 6a and 7a, respectively. The
results showed that the tricomponent yield surfaces of 5754O aluminum sheet in different
stress spaces are very different from each other due to anisotropy. Figure 5b is the plastic
strain direction in σx − σy stress space, where φ = arctan(σy/σx) is the loading angle. It
is shown that the plastic strain direction for different loading angle agrees very well with
the experimental results, which further verifies the anisotropic description ability of the
Yld2000-3d (Yld2000-2d) yield function. Figures 6b and 7b are the plastic strain direction in
σy − σz and σz − σx stress space predicted by the Yld2000-3d yield function, respectively.
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(b) plastic strain ratio under different loading.
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3.3. 5754O Aluminum Alloy Plate Anisotropy Prediction Verification

In this study, the complete implicit back-Euler integration mapping algorithm is
adopted to implement the developed Yld2000-3d yield function in ABAQUS commercial
software since it has been used successfully for the implementation of Yld2000-2d in
ABAQUS [39]. The specific stress transfer process in the subroutine is derived in detail in
Appendix A.

The three-point bending experiments’ equipment is shown in Figure 8. A 5754O
aluminum alloy sheet is adopted in the experiment, the properties of which are described
in Section 2.1. The specimen is 300 mm in length, 30 mm in width, and 2 mm in thickness.
The diameter of the upper die and lower die are both 20 mm, and the die gap is 150 mm.
The punch displacement is 45 mm.
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Figure 8. Three-point bending equipment.

In the FEM simulations, the two-dimensional S4R shell elements and three-dimensional
C3D8R solid elements are used based on the Yld2000-2d yield function and the Yld2000-3d
yield function, respectively. The dies are established with discrete rigid elements, limiting
the movement of the three-point-bending thin plate specimen in the x-direction (Ux) and
the rotation in both directions of the y-axis and z-axis (URy, URz). The FEM model is shown
in Figures 9 and 10.
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Figure 10. FEM model established using C3D8R solid elements with two and four layers of elements:
(a) two layers of elements; (b) four layers of elements.
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As shown in Figure 11, the spring-back result of the solid elements model (two or
four layers) with the Yld2000-3d yield function agrees better with the experimental results
than that of the shell elements (five or seven integral points) with the Yld2000-2d yield
function. This is because when using the solid elements in the simulations, the Yld2000-3d
three-dimensional stress yield function comprehensively considers the normal stress and
shear stress of the sheet thickness direction. The accuracy of the new model for capturing
the anisotropy of the 5754O aluminum alloy in the 3D stress space is further verified. There
is no obvious difference between the two simulated results based on four layers and two
layers of solid element, or the two simulated results based on five and seven integral points
shell elements.

Materials 2023, 16, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 9. FEM model established using S4R shell elements with five and seven integration points. 

 

 

Figure 10. FEM model established using C3D8R solid elements with two and four layers of elements: 

(a) two layers of elements; (b) four layers of elements. 

As shown in Figure 11, the spring-back result of the solid elements model (two or 

four layers) with the Yld2000-3d yield function agrees better with the experimental results 

than that of the shell elements (five or seven integral points) with the Yld2000-2d yield 

function. This is because when using the solid elements in the simulations, the Yld2000-

3d three-dimensional stress yield function comprehensively considers the normal stress 

and shear stress of the sheet thickness direction. The accuracy of the new model for cap-

turing the anisotropy of the 5754O aluminum alloy in the 3D stress space is further veri-

fied. There is no obvious difference between the two simulated results based on four layers 

and two layers of solid element, or the two simulated results based on five and seven 

integral points shell elements. 

 

Figure 11. The experimental and simulated three-point bending spring-back results. 
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3.4. DP980 Steel Plate Anisotropy Prediction Verification

In this section, the ability of the extended 3D model (Yld2000-3d) to capture the
anisotropy of the rest of the plates and processing is further tested by numerical simulation
of cylindrical deep drawing tests on DP980 plates, in the hope that the study of 5754O
aluminum alloy plates will provide a new idea for the description of the anisotropic
behavior of metal sheet materials. The material properties and the cylindrical deep drawing
test of DP980 steel sheets given by Cai et al. [40] were adopted. The dimensions of the tools
for the deep drawing tests are specified as follows: the punch diameter is 50.00 mm, the
punch profile radius is 5.00 mm, the opening diameter of the die is 53.64 mm, and the die
profile radius is 13.00 mm. The thickness of the DP980 steel sheet used in the test is 1.2 mm.
The blank holding forces (BHF) used in the deep drawing tests are 15 kN equally, and the
Coulomb coefficient of friction is set to be 0.2 in the simulations. The stamping processing
speed is 20 mm/min. Mechanical properties of DP980 steel alloy sheet are shown in Table 3.

Table 3. Mechanical properties of DP980 steel alloy sheets.

Materials Direction from RD (deg) σ0.2(MPa) σb(MPa) r-Value

DP980
0 706.7 1023 0.609
45 685.6 991 0.914
90 724.9 1048 0.749

As before, in the FEM simulations, the two-dimensional S4R shell elements and three-
dimensional C3D8R solid elements are used. The dies are established with discrete rigid
elements. The simulated profiles of the deep drawing test are shown in Figure 12.
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Figure 12. Cylindrical deep drawing strain of DP980 steel alloy sheets with shell and solid elements:
(a) S4R shell elements (Yld2000-2d); (b) C3D8R solid elements (Yld20000-3d).

The comparison between the experimental and numerical predicted earring profiles is
presented in Figure 13.
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Figure 13. Experimental and simulation results of DP980 cylindrical deep drawing earring profile
with different yield functions.

As shown in Figure 13, the simulated results based on theYld2000-3d yield function
and three-dimensional C3D8R solid elements are in better agreement with the experimental
results than other yield functions. Although the Hill’s quadratic and Yld2000-2d yield
function could predict the locations of the peaks and valleys, the amplitudes of the earring
profiles are underestimated. Since no anisotropy is considered, the Mises yield function
could not predict the earring phenomenon. The Yld2000-3d yield function could provide
precise predictions of the peaks’ heights, and relatively reasonable estimates of the valleys’
heights, indicating that the model generalizes for the remaining plates in characterizing the
anisotropy.

4. Conclusions

The uniaxial tensile test, biaxial tensile test, and three-point bending models of the
aluminum alloy were sequentially conducted and compared with finite element simulations
to verify the accuracy of the model extended to a three-dimensional stress state (Yld2000-3d),
which captures the anisotropic mechanical properties of the 5754O aluminum alloy with
greater precision. The model was also used to test the rest of the plates and different loading
methods, further extending the generalization of the model to different materials and
deformation processes. We will continue to test the model for more complex deformation
modes or new materials in the following work.
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(1) Considering that some actual sheet metal forming processes are under a three-
dimensional stress condition, the Yld2000-2d anisotropic yield function is extended
into three-dimensional space for hydrostatic-stress-independent materials; this ex-
tended function is named the Yld2000-3d yield function. Taking the 5754O aluminum
sheet as an example, the yield surface and the plastic strain ratio diagram are drawn
based on the Yld2000-3d three-dimensional stress yield function developed in this
study. The results show that the developed Yld2000-3d anisotropic yield function can
accurately describe the uniaxial and biaxial mechanical properties of 5754O aluminum
alloy sheets, and it can predict the mechanical behaviors in YZ and XZ planes.

(2) The Yld2000-3d function developed in this study is implemented in ABAQUS software
by using the UMAT (VUMAT) user subroutine. The three-points bending test of a
5754O aluminum alloy sheet is carried out and the corresponding FEM simulations
are performed based on the Yld2000-2d and Yld2000-3d yield functions. It is shown
that the simulated results of three-points bending based on the Yld2000-3d yield
function with a solid element agree better with the experimental results than those
based on the Yld2000-2d yield function with a shell element.

(3) Further testing of other sheet metal forming processes was carried out by simulating
deep drawing tests of DP980 steel plates using the Yld2000-3d, Yld2000-2d, Hill48,
and Mises yield functions. The comparison between the simulated and experimental
results of the deep drawing test shows that the Yld2000-3d yield function has the
highest accuracy among them in predicting the earring profile.

(4) Besides the advantages of the Yld2000-2d yield function, the stress components related
to the thickness direction are also considered, and the Yld2000-3d yield function
has high accuracy in describing the anisotropic behavior under a 3D stress state.
Compared to the Yld2000-2d yield function, there is no additional parameter in the
Yld2000-3d yield function, which makes it convenient in engineering applications.
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Appendix A

At the analysis step “n” in the FEM simulation, the strain increment within the local
material coordinate is as follows:

∆ε =
[
∆εx ∆εy ∆εz ∆εxy ∆εxz ∆εyz

]T (A1)

Then,
σ(σn+1) = σ(σn + ∆σn+1) = ρ (A2)

∆σn+1 = σn+1 −σn = C(∆ε− ∆ε
p
n+1) (A3)

ρ = ρ(ε
p
n+1) = ρ(ε

p
n + ∆ε

p
n+1) (A4)

∆ε
p
n+1 = ∆ε

p
n+1

∂σ

∂σn+1
(A5)

In Equation (A4), σ and εp represent the equivalent stress and equivalent plastic strain,
respectively; εp is the tensor of the plastic strain; C is the fourth-order tensor of elastic
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modulus; ρ is the hardening curve, and the subscript represents the analysis step; and σ

and ε are the three-dimensional stress and strain, respectively, where

σ =
[
σx σy σz σxy σxz σyz

]T (A6)

ε =
[
εx εy εz εxy εxz εyz

]T (A7)

During the stress updating process, with regard to a certain three-dimensional strain
increment ∆ε, assume the updated stress as the elastic stress firstly, and we have:

σt
n+1 = σn + C∆ε (A8)

where the superscript t represents an attempting condition, and the plastic variable is the
same as the previous value.

ε
pt
n+1 = ε

p
n (A9)

If the given elastic tolerance is satisfied with regard to the following condition, then
the step “n + 1” is the elastic condition:

σ(σt
n+1)− ρ(ε

pt
n+1) < Tole (A10)

If the above-mentioned condition is not satisfied, then this step is the elastic-plastic
stage. Set the above attempting condition as the starting value of the plastic adjusting
program. The new attempting stress should be on the new yield surface, that is:

σn+1 = σt
n+1 − C∆ε

p
n+1 = σt

n+1 − C∆
¯
ε

p

n+1
∂σ

∂σn+1
(A11)

The consistency requirements need to be satisfied on the new yield surface, that is:

σ(σn+1)− ρ(ε
p
n+1) = σ(σt

n+1 − C∆ε
p
n+1

∂σ

∂σn+1
)− ρ(ε

p
n + ∆ε

p
n+1) = 0 (A12)

Equation (A12) is the nonlinear equation to solve the equivalent plastic strain in-
crement ∆ε

p
n+1. The prediction-adjusting system based on Newton–Raphson method is

adopted to solve ∆ε
p
n+1. Each three-dimensional tensor in this system is updated with each

update of ∆ε
p
n+1.

When calculating ∆ε
p
n+1 with the Newton–Raphson method, ∂ϕ

∂σ and ∂2ϕ
∂σ∂σ need to be

calculated. The expressions of ∂ϕ
∂σ and ∂2ϕ

∂σ∂σ will be given in Appendices B and C.
In this study, the solving method of the tangent modulus that is used in the literature

is adopted, and the tangent modulus
¯
C

ep

that is suitable for the three-dimensional stress
yield function is deduced:

¯
C

ep

=
¯
C −

¯
C ∂σ

∂σn+1
⊗

¯
C ∂σ

∂σn+1

∂σ
∂σn+1

¯
C ∂σ

∂σn+1
+ H

(A13)

Appendix B

The three-dimensional “Yld2000-3d” yield function is expressed as follows:

ϕ = ϕ′ + ϕ′′ = 2σm (A14)

ϕ′ =
∣∣X′

1 − X′
2
∣∣m, ϕ′′ =

∣∣2X′′
2 + X′′

1

∣∣m +
∣∣2X′′

1 + X′′
2

∣∣m (A15)
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√
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∼
X′
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∼
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The elements in X’ and X” are converted by Cauchy stress:

X’=L’σ, X”=L”σ (A19)


L′

11
L′

12
L′

21
L′

22
L′

66

 =


2/3 0 0
−1/3 0 0

0 −1/3 0
0 2/3 0
0 0 1

 ·

β1
β2
β7

,


L′′

11
L′′

12
L′′

21
L′′

22
L′′

66

 =
1
9
·


−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0
−2 8 2 −2 0
0 0 0 0 9

 ·


β3
β4
β5
β6
β8

 (A20)

The parameters are determined by the following method:

F = ϕ − 2(σ/σ)m = 0 (A21)

G = qx
∂ϕ

∂sxx
− qy

∂ϕ

∂syy
= 0 (A22)

ϕ = |β1γ − β2δ|m + |β3γ + 2β4δ|m+
|2β5γ + β6δ|m − 2(σ/σ)m = 0

(A23)

F =

∣∣∣∣√k′22 +4β2
7

2

∣∣∣∣m +

∣∣∣∣∣ 3k′′1 −
√

k′′22 +4β2
8

4

∣∣∣∣∣
m

+∣∣∣∣∣ 3k′′1 +
√

k′′22 +4β2
8

2

∣∣∣∣∣
m

= 2(σ/σ45)
m

(A24)

G =
∂ϕ

∂σxx
+

∂ϕ

∂σyy
− 2mσm

σ45(1 + r45)
= 0 (A25)

In each of the above equations:
s =Tσ (A26)

T =

 2/3 −1/3 0
−1/3 2/3 0

0 0 1

 (A27)

k′2 =
β1 − β2

3
(A28)

k′′
1 =

2β5 + β6 + β3 + 2β4

9
(A29)

k′′
2 =

2β5 + β6 − β3 − 2β4

3
(A30)

The Newton–Raphson numerical procedure is used to solve for the eight βk coefficients
simultaneously. The two matrices L′ and L′′ are completely defined with these eight coefficients.



Materials 2024, 17, 2031 16 of 18

The first derivative of the three-dimensional “Yld2000-3d” yield function is as follows:

∂ϕ

∂σxx
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∂ϕ′

∂X′
1
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∂X′
1

∂X′
11
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2
(

∂X′
2

∂X′
11
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2
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22
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(A31)
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Appendix C

Because the ∂ϕ
∂σ expression in B complicated, the ∂2ϕ

∂σ∂σ expression is lengthier. There-
fore, the second derivate expression of each stress component is not given in detail. The

overall expression of ∂2ϕ
∂σ∂σ is given here. In order to express it conveniently, the improved

yield function is simply converted as follows:

ϕ = ϕ′ + ϕ′′ = 2σm (A37)
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∣∣Y′

1 − Y′
2
∣∣m, ϕ′′ =
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The second derivate of the “Yld2000-3d” three-dimensional stress yield function is as
follows:
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