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Abstract: Rocking piers using ultra-high-performance concrete (UHPC) have high damage-control
capacity and self-centering characteristics that can limit the post-earthquake recovery time of bridges.
To study the hysteretic behavior of UHPC rocking piers, a lumped plasticity model is proposed that
comprises two parallel rotational springs and which can accurately calculate their force-displacement
hysteretic behavior. Three states of the rocking piers, decompression, yield, and large deformation,
are considered in this study. The model is verified based on existing experimental results, and
the hysteretic characteristics of the UHPC rocking piers, such as strength, stiffness, and energy
dissipation, are further analyzed. The research results show that the lumped plasticity analysis model
proposed in this study can predict the force-displacement hysteretic behavior of the rocking piers
accurately. Moreover, the hysteretic performance of the UHPC rocking piers is better than that of
rocking piers using normal-strength concrete. An increase in the energy dissipation reinforcement
ratio, pre-stressed tendon ratio, and initial pre-stress improves the lateral stiffness and strength of
the UHPC rocking piers. However, the increase in the pre-stressed tendon ratio and initial pre-stress
reduces their energy-dissipation capacity.

Keywords: rocking pier; ultra-high-performance concrete; lumped plasticity model; hysteretic
performance; parametric analysis

1. Introduction

Numerous post-earthquake investigations have shown that the traffic interruption
caused by earthquake damage to bridges significantly affects the post-disaster rescue
and reconstruction operations in the stricken areas. This results in indirect losses that
are difficult to estimate and far exceed social expectations [1,2]. Therefore, an important
concept in the future seismic design of bridge structures is to effectively control earthquake
damage and shorten the recovery time after an earthquake. Currently, the ductile seismic
design method is primarily used in the seismic design of bridges in China; it experiences
serious plastic damage and large residual displacements during earthquakes, which is
highly unfavorable to the recovery of bridge capacity after earthquakes. Therefore, in recent
times, a rocking structure with strong earthquake recovery ability has been widely focused
on as a new seismic system for bridge structures.

Recently, the seismic concept of rocking bridges has been applied to bridge engi-
neering [3–7]. In 1963, Housner [8] proposed for the first time the seismic response of a
structure that was weakened by the rocking of available structures during earthquakes and
presented a model to analyze the rocking behavior of rigid bodies. Subsequently, the Hous-
ner rigid-body rocking model was improved, and its applicability became possible [9–13].
Mander et al. [14] conducted a quasi-static experimental study on a rocking pier with only
unbonded pre-stressed steel bars and proposed a simplified calculation formula for its
force–displacement relationship. Pampanin et al. [15] and Palermo et al. [16] proposed
the combined application of built-in energy-dissipating reinforcements and unbonded
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pre-stressed technology to improve the energy-dissipation capacity of a rocking pier. Guo
et al. [17,18] adopted fiber-reinforced materials and modified alloys to improve the durabil-
ity of pre-stressed tendons and energy-dissipating devices in corrosive environments. At
present, seismic studies on rocking piers are still in the stage of structural research and basic
theoretical development. Although the advantages of the seismic toughness of rocking
piers have been confirmed via experiments and numerical methods, the hysteretic and
post-seismic resilience of rocking piers using new materials, such as ultra-high-performance
concrete (UHPC), remain to be further studied. UHPC is a reasonable combination of an
ultra-fine admixture, ultra-high-strength steel fibers, an efficient water-reducing agent,
and small particle aggregates [19,20]. Compared with ordinary concrete, UHPC has the
characteristics of high strength, ductility, and durability. The seismic damage of a rocking
pier is mainly the compressive damage of the column toe (concrete at the edge of the
rocking interface). The application of UHPC to the plastic hinge area of a rocking pier
(as shown in Figure 1) can significantly improve the compressive bearing capacity of its
column toe, which allows for the limitation of seismic damage and failure of the bridge
pier to a greater degree. At present, the multi-axial spring model is widely used to simulate
the hysteretic behavior of rocking piers, but it is complex to determine the stiffness of the
multi-axial springs. Therefore, a simple and clear analysis model of a UHPC rocking pier
needs to be developed.
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Figure 1. Schematic diagram of UHPC rocking pier.

In this study, a UHPC rocking pier is taken as the research object, and the relationship
between the height of the compression zone on the rocking interface and the stress states
of the pre-stressed tendon and energy-dissipating steel bar are carefully considered. The
section analysis of the rocking pier is divided into the analyses of self-centering and energy-
dissipating components, and then a double-plastic hinge analysis model of the rocking pier
is established. The hysteretic properties of the UHPC rocking bridge pier are analyzed. The
influence of the energy dissipation reinforcement ratio, pre-stressed reinforcement ratio,
and initial pre-stress ratio on the strength, stiffness, and energy-dissipation characteristics
of UHPC rocking bridge piers is investigated. The obtained results are compared with
those of a normal rocking bridge analysis. Based on the above, the research findings can
provide reference for the seismic design of bridge structures and foundations.

2. Double-Plastic Hinge Analysis Model
2.1. Mechanical Mechanism

A rocking bridge pier is placed directly on the top of a bearing platform to form a
rocking interface, and the bridge pier and the bearing platform are connected as a whole
by an unbonded pre-stressed tendon and an energy-dissipating device. As shown in
Figure 2, under the action of an earthquake, the rocking pier, as the main compression
member, is lifted and closed on the cap. Therefore, the plastic deformation of the pier is
concentrated on the rocking interface, avoiding damage to the pier body. The rocking of the
pier causes the unbonded pre-stressed tendon and the energy-dissipating device to provide
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the functions of self-centering and dissipation of seismic energy, respectively. The bending
moments applied by the energy-dissipating and self-centering components and the height
of the compression zone on the rocking interface change with the change in the rotation
angle of the rocking interface during the deformation of the rocking pier. The bending
moment–rotation and height of the compression zone in a typical deformation process are
shown in Figure 2.
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Figure 2. Deformation mode of rocking pier (c is the compression depth, d is the width of the column,
θ is the rotation of the rocking interface. F and ∆ are the lateral force and displacement of the
rocking pier, respectively. Fd and Fpt are the lateral forces of the energy-dissipating component and
self-centering component, respectively. Fpt0 is the initial pre-stress force.). (a) Decompression stage,
(b) Yield stage, (c) Large deformation stage, (d,e) Re-centering stage.

The stress stage of the rocking pier can be divided into four parts. In the first stage,
named the decompression stage, as shown in Figure 2a, the stress of the concrete at the
edge of the rocking pier is zero. In the second stage, named the yield stage, as shown in
Figure 2b, openings appear at the rocking interface, and the assumption of a flat section is
not satisfied. Therefore, introducing a displacement coordination condition to conduct a
moment-angle analysis of the rocking interface is necessary [21]. In the third stage, named
the large deformation stage, as shown in Figure 2c, the displacement coordination condition
of the rocking pier is similar to that of the equivalent concept of the yield state. In the fourth
stage, named the reset stage, as shown in Figure 2d, the lateral displacement of the rocking
pier and the angle of the rocking interface decrease until the elastic displacement of the
rocking pier and the angle of the rocking interface are zero (as shown in Figure 2e).
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2.2. Analytical Model

Based on the force mechanism described in the above section, the moment-rotation
relationship of a rocking pier is decomposed into a self-centering component composed
of superstructure gravity and a pre-stress tendon and an energy-dissipating component
composed of an energy-dissipating reinforcement. Considering the pressure release, yield,
and large deformation of a rocking pier, the compressive strains at the outermost edge of
the rocking interface in the three stress states are calculated.

εc =



2(N+Fpt,0)
EcBD θ = 0(
3θ

lcant
+ ϕdec

)
· c 0 < θ ≤ 1

3
(

ϕy − ϕdec
)
lcant[

3θ
lcant

−(ϕy−ϕdec)
3lp

lcant

(
1− lp

2lcant

) + ϕy

]
· c θ > 1

3
(

ϕy − ϕdec
)
lcant

, (1)

where N is the superstructure gravity, Fpt,0 is the initial tension of the pre-stressed tendon,
Ec is the elastic modulus of concrete, B is the width of the rocking interface, D is the height
of the rocking interface, θ is the rotation angle of the rocking interface, lcant is the calculated
height of the rocking pier, ϕdec is the pressure relief limit state curvature of the rocking pier,
C is the compression depth of the rocking pier, Y is the yield state curvature of the rocking
pier, and Lp is the equivalent plastic hinge length of the rocking pier.

The strain of the ith layer pre-stressed tendon (εpt,i) can be calculated using the follow-
ing formula:

εpt,i = εpt,0 +
θ
(
dpt,i − c

)
lpt

=
Fpt,0

Ept · Apt,i
+

θ
(
dpt,i − c

)
lpt

(2)

where εpt,0 is the initial tensile strain of the pre-stressed tendon, dpt,i is the distance between
the ith layer pre-stressed tendon and the edge of the compression zone on the rocking
interface, lpt is the unbonded length of the pre-stressed tendon, Ept is the elastic modulus of
the pre-stressed tendon, and Apt,i is the section area of the ith layer pre-stressed tendon.

If the energy-dissipating reinforcement strain of the rocking pier is lower than the
yield strain, εy, the energy-dissipating reinforcement strain of the ith layer (εms,i) can be
calculated using the following formula:

εms,i =
θimp(dms,i − c)

lms +
4
3 lsp

, (3)

where dms,i is the distance between the energy-dissipating device of the ith root and the
edge of the compression zone of the rocking interface, lsp is the strain distribution length,
and lms is the unbonded length of the energy-dissipating reinforcement.

If the strain of the energy-dissipating steel bar exceeds the yield strain (εy), its strain in
the ith layer (εms,i) is calculated using the following formula:

εms,i =
θimp(dms,i − c)

lms + 2lsp
, (4)

When the strain is defined on the entire interface, the stresses of the self-centering and
energy-dissipating components can be calculated to satisfy the force equilibrium condition.
The bending moment bearing capacity of the rocking interface is typically calculated
according to the centroid of the concrete compression zone. In this process, the bending
moments generated by the self-centering and energy-dissipating components of the rocking
pier can be calculated.

A lumped plasticity model as shown in Figure 3 is built using the OpenSees finite
element analysis platform (Version 2.2.2). An elastic beam-column element is applied
to simulate the lateral elastic stiffness of the pier. Two zero-length elements are used to
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simulate the moment-rotation hysteretic behaviors of the self-centering component and
the energy-dissipating component, respectively. Then, the two zero-length elements are
connected in parallel to the elastic beam-column element. The moment-rotation hysteretic
behavior of the self-centering component is simulated using the ElasticMultiLinear material
model. The moment-rotation hysteretic behavior of the energy-dissipating component
is simulated using the RambergOsgoodSteel material model. Based on the mechanical
mechanism, the moment-rotation hysteretic behaviors of the self-centering component and
energy-dissipating component can be obtained using the deformation mode. In addition,
the compression depth of the rocking pier and the rotation can be calculated using an
iterative method proposed in the literature [21].
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2.3. Model Verification

Based on the studies by Marriot et al. [21–23], 1:3-scaled quasi-static test results of
a rocking pier are used to verify the validity of the double-plastic hinge analysis model.
The calculated height of the test pier is 1.6 m, and the width of the rectangular section is
0.35 m. The section layouts of the selected rocking pier specimens—HBD1, HBD2, HBD4,
and HBD5—are shown in Figure 4, in which the energy-consuming steel bars of HBD1 and
HBD2 are internal, whereas those of HBD4 and HBD5 are external. The quasi-static loading
regime is consistent with that used in the literature [21]. Also, the parameters used for
the modeling of the rocking pier specimens HBD1, HBD2, HBD4, and HBD5 can be seen
in the literature [21]. The force-displacement hysteretic curves of the four specimens are
calculated using the double-plastic hinge analysis model proposed in the above section and
compared with the test results. Based on the comparison shown in Figure 4, the double-
plastic hinge analysis model can better simulate the hysteretic behavior of the rocking
pier. Also, the equivalent viscous damping ratio is closer between the experimental and
simulated results, as shown in Figure 4e. However, the analysis model overestimated the
initial stiffness, due to the lack of protection of the pier rocking toe. Therefore, this analysis
model is more suitable for a rocking pier with enough protection of the rocking toe. Also,
the soil-structure interaction effects are not considered in this study; this is a worthy topic
for future research [24].
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Figure 4. Comparisons between the experimental and simulated results of the hysteretic curves.
(a) Hysteretic curves of HBD1, (b) Hysteretic curves of HBD2, (c) Hysteretic curves of HBD4, (d) Hys-
teretic curves of HBD5, (e) Equivalent viscous damping ratio of HBD1.

3. Hysteretic Performance and Parameter Analysis of UHPC Rocking Bridge Pier
3.1. Hysteretic Properties of UHPC Rocking Bridge Pier

In this section, the hysteretic properties of a UHPC rocking bridge pier are compared
with those of the pier specimen HBD2. The stress-strain model of UHPC adopts that
of concrete proposed by Scott et al. [25]. Wang et al. [26] confirmed the accuracy of the
model proposed by Scott et al. [25] applied to unconstrained and constrained UHPC. For
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constrained UHPC, the peak stress (σcon,pk), peak strain (εcon,0), limit stress (σcon,20), and
limit strain (εcon,20) can be calculated as follows:

σcon,pk = σun,pk

(
1 + 1.8ρw fyv/σun,pk

)
, (5)

εcon,0 = εun,0

(
1 + 5ρw fyv/σun,pk

)
, (6)

σcon,20 = λcon,rsσcon,pk, (7)

εcon,20 = 0.06(1 − λcon,rs) + λcon,rsεcon,0, (8)

where σun,pk is the unconstrained peak stress of UHPC, εun,0 is the peak strain of uncon-
strained UHPC, ρw is the volume reinforcement ratio of the stirrup, fyv is the yield stress of
the stirrup, and λcon,rs is the strain coefficient of constrained UHPC, which is generally set
at 0.2.

In this study, the concrete is replaced with UHPC based on the specimen HBD2, and
then a UHPC rocking bridge pier is established. Wang et al. [26] showed that the compres-
sive strength and elastic modulus of UHPC are 124.3 MPa and 48,000 MPa, respectively. A
double-plastic hinge model of this UHPC rocking pier was established, the lateral cyclic
load of the HBD2 rocking pier was applied to the double-plastic hinge model, and the
corresponding hysteretic curve was obtained.

As shown in Figure 5a, the UHPC rocking pier has larger initial stiffness and lateral
bearing capacity than HBD2. As shown in Figure 5b, with an increasing drift rate, the
secant stiffness change trends of the specimens HBD2 and UHPC are the same; however,
the secant stiffness of specimen UHPC is higher than that of specimen HBD2. For example,
under a drift rate of 1.5%, the secant stiffness of UHPC is 7.7% higher than that of HBD2
(2.6 kN/mm). At a drift rate of 3.5%, the secant stiffness of UHPC is 9.6% higher than that
of HBD2.

As shown in Figure 5c, with an increase in the drift rate, the variation trends of the
energy dissipation moments of HBD2 and UHPC are the same; however, the energy dissi-
pation moment of UHPC is larger than that of HBD2. For example, at a drift rate of 1.5%,
the energy dissipation torques of HBD2 and UHPC are 1016.6 kN·mm and 1594.8 kN·mm,
respectively. Thus, the energy dissipation torque of UHPC is 56.9% larger than that of
HBD2. At a drift rate of 2.4%, the energy dissipation moment of UHPC is 23.3% larger than
that of HBD2.
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Figure 5. Hysteretic performance comparison of UHPC and HBD2 rocking piers. (a) Hysteretic
curves, (b) Stiffness degradation curves, (c) Moment of energy-dissipating components, (d) Equivalent
viscous damping ratio, (e) Residual displacement ratio.

As shown in Figure 5d, when the drift rate is lower than 3.5%, the initial stage of
the equivalent viscous damping ratio of specimen UHPC is greater than that of specimen
HBD2. Specifically, under a drift rate of 1.5%, the equivalent viscous damping ratios of
specimens UHPC and HBD2 are 15.9% and 10.7%, respectively. At a drift rate of 3.5%, the
corresponding values are 17.4% and 16.6%. The equivalent viscous damping, an index of
energy-dissipation capacity, can be calculated using the following formula:

ξeq = ∆Wi/(2πku2
max) (9)

where ∆Wi is the dissipated energy in one hysteretic loop, k is the secant stiffness, and umax
is the maximum displacement in a cycle.

In this study, the residual displacement ratio is used to quantitatively examine the
self-centering ability of the specimens. A large residual displacement ratio implies a
poor self-centering ability. As shown in Figure 5e, under a drift rate of 2.4%, the residual
displacement ratios of HBD2 and UHPC are 2.0% and 18.4%, respectively. Therefore, UHPC
has a small residual displacement ratio and good self-centering ability.

3.2. Parameter Analysis of UHPC Rocking Pier

The strength, stiffness, and energy-dissipation characteristics of the UHPC rocking pier
were studied using the developed double-plastic hinge analysis model. The parameters
mainly included the reinforcement ratio of the energy-dissipating steel bar, initial pre-stress
force, and reinforcement ratio of the pre-stress tendon.
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3.2.1. Reinforcement Ratio of the Energy-Dissipating Steel Bar

The reinforcement diameters of the rocking bridge pier specimens UHPC-E1, UHPC-
E2, UHPC-E3, and UHPC-E4 are 12.5 mm, 16 mm, 18 mm, and 20 mm, respectively. The
corresponding steel reinforcement ratios are 0.40%, 0.66%, 0.83%, and 1.03%. As shown in
Figure 6a, with an increase in the energy consumption steel reinforcement ratio, the UHPC
rocking lateral bearing capacity of the bridge pier increases. For example, under a drift
rate of 5.44%, as the energy consumption steel reinforcement ratio increases from 0.40% to
1.03%, the lateral force increases by 43.43%. Before yielding, the pier is in the elastic stage,
the slope of the curve increases gradually, and the initial stiffness increases gradually. After
yielding, the curve slope is basically the same; therefore, the stiffness of the UHPC rocking
pier is basically the same. As shown in Figure 6b, with an increase in the steel reinforcement
ratio of the energy-dissipating steel bar, under the same drift, the energy consumption and
equivalent viscous damping ratio of the bridge pier are remarkably improved. For example,
at a drift rate of 4.31%, the equivalent viscous damping ratio increases by 5.22% when the
reinforcement ratio of the energy-dissipating bar increases from 0.40% to 0.66%.
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Figure 6. Influence of energy dissipation reinforcement ratio on UHPC rocking piers. (a) Envelop
curves, (b) Equivalent viscous damping ratio.

3.2.2. Initial Pre-Stress Force

The initial pre-stress force of the tendons of the rocking pier specimens UHPC-T1,
UHPC-T2, UHPC-T3, and UHPC-T4 are 75 kN, 112.5 kN, 150 kN, and 187.5 kN, respectively.
As shown in Figure 7a, with an increase in the initial pre-stress force, the rocking UHPC
lateral bearing capacity of the bridge pier increases. For example, under a drift rate of
5.44%, when the initial pre-stress force increases from 75 kN to 150 kN, the lateral force
increases by 27.27%. Before yielding, the pier is in the elastic stage, and the slope of the
curve increases gradually, indicating that the initial stiffness of the rocking pier can be
improved by increasing the initial pre-stress. After yielding, the curve slope is basically
the same; therefore, the stiffness of the UHPC rocking pier remains basically the same. As
shown in Figure 7b, with an increase in the initial pre-stress force, under the same drift, the
equivalent viscous damping ratio is significantly reduced due to the decrease of openings
on the rocking interface. For example, at a drift rate of 4.31%, the equivalent viscous
damping ratio decreases from 10.73% to 16.94% as the initial pre-stress force increases from
75 kN to 187.5 kN.
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Figure 7. Influence of initial pre-stress on UHPC rocking piers. (a) Envelop curves, (b) Equivalent
viscous damping ratio.

3.2.3. Reinforcement Ratio of Pre-Stressed Tendon

The pre-stressed tendon areas of the rocking pier specimens UHPC-P1, UHPC-P2,
UHPC-P3, and UHPC-P4 are 99 mm2, 198 mm2, 297 mm2, and 396 mm2, respectively. The
corresponding ratios of the pre-stressed tendons are 0.32%, 0.65%, 0.97%, and 1.29%. As
shown in Figure 8a, with an increase in the pre-stress reinforcement ratio, the lateral bearing
capacity of the UHPC rocking bridge pier increases. For example, under a drift rate of 5.44%,
when the pre-stressed tendon ratio increases from 0.32% to 1.29%, the lateral force increases
by 83.84%. Before yielding, the bridge pier is in the elastic stage, and the curve slope and
the initial stiffness are basically unchanged. The slope of the curve increases gradually after
yielding; therefore, the stiffness of the UHPC rocking pier increases gradually after yielding.
As shown in Figure 8b, with an increase in the pre-stress reinforcement ratio, under the
same drift ratio, the equivalent viscous damping ratios of the UHPC rocking bridge piers
are significantly reduced. For example, at a drift rate of 5.81%, the equivalent viscous
damping ratio decreases from 16.02% to 8.46% when the reinforcement ratio increases from
0.32% to 1.29%.
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Figure 8. Influence of pre-stressed tendon ratio on UHPC rocking piers. (a) Envelop curves, (b) Equiv-
alent viscous damping ratio.

4. Conclusions

In this study, a double-plastic hinge analysis model of a rocking pier is established
based on its three stress states: compressive, yield, and large deformation. The hysteretic
performance of a UHPC rocking pier is compared with that of an ordinary concrete rocking
pier. The main conclusions of the parameter analyses of the UHPC rocking pier are
as follows:
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(1) The hysteretic behavior of the UHPC rocking bridge pier is studied based on the
rocking bridge pier-loading mechanism. The dissipation yield pressures and large
deformations of the three types of stress states of the rocking bridge pier are fully
considered. Moreover, the bending moment–corner relations of the rocking bridge
pier are divided into those of self-centering and energy-dissipating components.
Accordingly, this paper proposes a double-plastic hinge analysis model that can finely
calculate the force–displacement hysteretic behavior of the rocking bridge pier.

(2) The effectiveness of the model is verified using existing experimental results, and the
hysteretic curves from the model simulation and experiments fit well. Moreover, the
hysteretic properties, such as strength, stiffness, and energy dissipation of the UHPC
rocking pier, are further analyzed.

(3) This study adopts the double-plastic hinge analysis model, which can accurately
simulate the force–displacement hysteretic behavior of the rocking bridge pier. The
rocking hysteretic performance of the UHPC rocking bridge piers is verified to be
better than that of ordinary concrete rocking bridge piers. Moreover, compared to an
ordinary concrete rocking bridge pier, the UHPC rocking bridge pier has higher lateral
stiffness and strength and a higher energy-dissipation capacity and reset ability.

(4) The reinforcement ratio of the energy-dissipating reinforcement and an increase
in the initial pre-stress can improve the lateral stiffness and strength of the UHPC
rocking pier. For example, the lateral bearing capacity increases by approximately 30%
when the initial pre-stress doubles. However, the equivalent viscous damping ratio
decreases and the energy-dissipation capacity of the pier decreases with an increase
in the reinforcement ratio of the pre-stress tendon and the initial pre-stress.
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