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Abstract: Acetylation of glycerol to yield monoacetin (MAT), diacetin (DAT), and triacetin (TAT) over
NiO-supported CeO2 (xNiO/CeO2) catalysts is reported. The catalysts were synthesized utilizing a
sol-gel technique, whereby different quantities of NiO (x = 9, 27, and 45 wt%) were supported onto
the CeO2 substrate, and hexadecyltrimethylammonium bromide (CTABr) served as a porogen. The
utilization of EDX elemental mapping analysis confirmed the existence of evenly distributed Ni2+

ion and octahedral NiO nanoparticles on the CeO2 surface through the DRS UV-Vis spectroscopy.
The most active catalyst is 27NiO/CeO2 based on TAT selectivity in the glycerol acetylation with
ethanoic acid, attaining 97.6% glycerol conversion with 70.5% selectivity to TAT at 170 ◦C with a 1:10
glycerol/ethanoic acid molar ratio for 30 min using a non-microwave instant heating reactor. The
27NiO/CeO2 is reusable without significant decline in catalytic performance after ten consecutive
reaction cycles, indicating high structure stability with accessible active acidity.

Keywords: glycerol acetylation; sol-gel technique; NiO-incorporated CeO2; triacetin; automotive fuels

1. Introduction

One of the most significant contributions in reducing greenhouse gas emissions is
the production of biodiesel via the transesterification of vegetable oil or animal fat [1–4].
Meanwhile, glycerol is a by-product of biodiesel production that accounts for about 10% of
the total production [5,6]. Due to the surplus of glycerol and the need to keep the chemical
industry competitive, current research is mainly focused on the catalytic methods for
converting glycerol into value-added compounds [1]. So far, various approaches to valorize
glycerol, such as acetylation [7], aromatization [8], dehydration [9], esterification [10],
hydrogenolysis [11], etherification [12], and acetalization [13,14], have been developed via
the heterogeneous catalysis route.

Acetylation of glycerol has recently piqued researchers’ interest due to the industrial
significance of the end products. Mono-, di-, and triacetins (MATs, DATs, and TATs) are the
three main products of the process. These products show broad and promising applications
in many industries. Specifically, MAT is used in manufacturing explosives (dynamite),
tanning animal skin for leather, and as a solvent for dyes [15], and DAT is used as a
plasticizer, a solvent for dyes, and a softening agent [16,17]. TAT is the most difficult
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synthesized acetin produced in the final phase. It has been used as a high-value oxygenated
fuel/diesel additive to promote clean combustion and as an anti-occlusive agent since it
raises the octane number [17,18]. Furthermore, TAT can serve as an anti-knocking agent for
gasoline. Adding TAT into biodiesel also improves cold flow properties and viscosity, and
decreases the cloud and pour points of biodiesel [15,19].

Mineral acids, such as HCl, H2SO4 and HNO3, have traditionally been utilized as
homogenous catalysts in the acetylation of glycerol [20]. However, these acids have numer-
ous drawbacks, including hazardous operating conditions, equipment corrosion problems,
tedious catalyst separation, and low catalyst reusability [15]. Numerous attempts have
been made to enhance the ecological sustainability of this procedure through the utiliza-
tion of eco-friendly heterogeneous solid catalysts free of solvents in catalytic operations.
Various catalysts have been studied, such as CeO2–Al2O3 [21], H3PW12O40/silica [22],
H3PW12O40/carbon [23], and HZSM-5 [24]. Although certain catalysts have exhibited
potential catalytic activity, attaining high reaction conversion and desired TAT selectivity
have proven to be challenging in most cases. Moreover, some catalytic systems need long
reaction durations (2 to 6 h) [25,26], as well as an excessive amount of acetylating agents [27].
Hence, it is imperative to enhance the efficiency of the catalytic acetylation reaction for
urgent industrial needs.

In addition to the utilization of mineral acids in the process of acetylation, the incorpo-
ration of metal oxide, specifically NiO, has been identified as a viable approach to enhance
the reaction activity. The cubic lattice structure of NiO renders it a crucial metal oxide
in catalysis. Recently, there has been a growing interest among researchers in exploring
Ni-based catalysts owing to their substantial availability and high catalytic activity [28].
NiO is an example of a p-type semiconductor and it is able to adsorb various oxygen species
on its surface in moderate environments. However, NiO is easily reduced to Ni0, making a
single NiO as a dependable catalyst with improved catalytic properties a difficult task [29].
Thus, composite oxide with relatively higher stability is needed to circumvent this problem.

The utilization of cerium (IV) oxide (CeO2) provides good support thanks to its distinct
chemical and physical properties. The presence of ceria in both Ce3+ and Ce4+ valence states
allows for a reversible valence state change, resulting in favorable redox properties [30].
Additionally, this leads to an abundance of structural defects, specifically oxygen vacancies,
which can enhance the lattice oxygen mobility, active oxygen levels, and oxygen storage
capacity during the reaction process [30,31]. Ceria has been demonstrated to be an oxide
support that readily interacts with active metal phases. Therefore, the incorporation of
CeO2 support in nickel-based catalysts would result in enhanced metal–support interaction,
reduced particle agglomeration, and improved metallic dispersion [32].

This study describes the development of a highly effective catalyst, xNiO/CeO2, com-
prised of NiO supported on CeO2 particles for the acetylation of glycerol in the production
of triacetin (TAT). To achieve this ultimate goal, the catalysts were first designed and
synthesized by incorporating different amounts of Ni (x = 9, 27, and 45 wt.%) via a facile
sol-gel treatment technique. The catalytic activity and selectivity for a given reaction can
be influenced by the selection of varying weight percentages of NiO and CeO2. Hence,
the objective was to determine the optimum NiO:CeO2 composition ratio that exhibits
cooperative interaction between the two components, which gives the greatest activity and
selectivity for the synthesis of TAT. The study then focused on the influence of reaction
parameters (e.g., reaction temperature and time, glycerol to ethanoic acid ratio, and catalyst
dosage) on the performance of catalytic reaction. We believe that the current study greatly
benefits the manufacture of TAT biodiesel by designing and developing an active and
selective xNiO/CeO2 catalyst.

2. Experimental
2.1. Catalyst Preparation

The synthesis of xNiO/CeO2 catalysts (x = 9, 27, and 45 wt.% of NiO) was carried
out using the sol-gel technique according to the modified method of Andas et al. [33].
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The typical synthesis process of the xNiO/CeO2 catalysts is schematically illustrated in
Scheme 1. For the preparation of the 45NiO/CeO2 catalyst, a mixture of 50.00 g of distilled
water, 1.50 g of cerium (IV) oxide (Sigma Aldrich, 99.9%, St. Louis, MO, USA), and
20.00 g of NaOH (Sigma Aldrich, 98%, St. Louis, MO, USA) was first mixed (400 rpm)
for 20 min. This solution was then added to another clear solution containing 2.85 g of
hexadecyltrimethylammonium bromide (Sigma Aldrich, 99%, St. Louis, MO, USA) and
25.00 g of distilled water. The final solution was further stirred (400 rpm) for another
17 h at 80 ◦C. Next, the pH of the mixture was adjusted to 10.0 using an HNO3 solution
(39.00 g, 3 M) that contained 1.49 g of NiCl2 (Merck, 98%, Rahway, NJ, USA). At this
pH, hexadecyltrimethylammonium bromide molecules tend to self-assemble into micelles,
creating an ideal environment for the subsequent integration of metal precursors for catalyst
production with mesoporosity [34]. The mixture was kept agitated for 2 h prior to aging
in an oven at 80 ◦C for 48 h. The resulting precipitate was separated via centrifugation
(7000 rpm, 5 min), washed until pH 7, and dried (90 ◦C, 10 h) before being calcined (580 ◦C,
5 h) to eliminate the organic porogen template. A similar protocol was used to prepare
other xNiO/CeO2 catalysts via varying the NiO amount where x = 9 (0.30 g NiCl2) and
x = 27 (0.90 g NiCl2).
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Scheme 1. Synthesis route of xNiO/CeO2 catalysts.

2.2. Catalyst Characterization

The X-ray diffractograms (XRDs) were obtained using a PANalytical X’Pert Pro diffrac-
tometer, which employed CuKα radiation with a wavelength of 1.5418 Å, a voltage of 40 kV,
and a current of 10 mA. The scanning range was from 2θ = 20◦ to 65◦, with a scanning
rate of 0.2◦ per min and a step size of 0.02◦. The surface area and pore size distribution
of catalysts were characterized using the N2 adsorption–desorption isothermal analysis
obtained at −196 ◦C through a Micromeritics ASAP 2010 analyzer. The catalyst powder
(0.0900 mg) was first degassed for 12 h at 300 ◦C and 10−4 Pa in the degassing port of
the analyzer. The surface area was computed using the Brunauer–Emmett–Teller (BET)



Materials 2023, 16, 4713 4 of 20

method, while the pore size distribution was calculated using the Barrett, Joyner, and
Halenda (BJH) method. The diffuse reflectance (DRS) UV-Vis spectra of catalysts were
obtained on a Perkin Elmer Lamda 35 spectrometer. The field emission scanning electron
microscopy (FESEM) and energy dispersive X-ray (EDS) analyses for morphological and
elemental mapping investigations were performed on FEI’s Quanta FEG 650 microscope
equipped with an Oxford XMax 50 Silicon Drift EDS detector. The transmission electron
microscopy (TEM) study was performed on a Philips CM-12 TEM microscope. The samples
in methanol solvent were first sonicated for 10 min before being deposited on copper grids
for imaging analysis. The acidity of catalysts was characterized by the ammonia temper-
ature programmed desorption (TPD-NH3) technique using a Thermo Electron TPDRO
1100. Prior to analysis, the sample (0.060 g) was degassed at 500 ◦C overnight, followed
by NH3 adsorption for 30 min. The ammonia probe molecule was then desorbed from the
sample surface from 50 to 1000 ◦C at a heating rate of 10 ◦C min−1. The thermogravimetric
analysis (TGA) was performed on Mettler Toledo 851e equipment. The temperature was
measured from 50 to 900 ◦C at a heating rate of 20 ◦C min−1 and air flow rate of 40 mL
min−1. The amounts of cerium and nickel in the samples were measured using a Perkin
Elmer Optima 4300DV ICP-OES spectrometer. Before measurement, the sample powder
was first dissolved in an aqua regia (HNO3:HCl = 1:3) and subjected to microwave digestion
at 200 ◦C for 20 min (800 W) using a CEM MARS 6 microwave digester.

2.3. Catalytic Reaction Study and Products Analysis

The process of acetylating glycerol was conducted within a temperature range of
130–170 ◦C, utilizing a non-microwave instant heating reactor (Anton Paar’s Monowave
50). Initially, 0.040 g of xNiO/CeO2 catalyst was first activated at 250 ◦C for 1 h before it was
added with 0.139 g of glycerol (QReC, 99.5%) and 0.900 g of ethanoic acid (Sigma-Aldrich,
St. Louis, MO, USA) into a glass tube (10 cm3). The mixture was sealed with a silicone
cap and rapidly heated to a desired temperature (150–170 ◦C) and kept at a plateau for
5–60 min. After the reaction, the tube together with the mixture were subjected to high-
speed centrifugation (10,000 rpm, 10 min) to separate the solid catalyst. The remaining
liquid product was then analyzed using an Agilent’s HP 6890 GC instrument with an FID
detector. The glycerol conversion and products’ selectivity were determined using the
following equations (toluene as internal standard):

Glycerol conversion(%) =

(
1−

molglycerol,t

molglycerol,0

)
× 100 (1)

Selectivity(%) =
molMAT or molDAT or molTAT

molGlycerol converted
× 100 (2)

where molglycerol,0 and molglycerol,t are the amount of glycerol in mol before and after
acetylation reaction at t min. Meanwhile, molMAT, molDAT, molTAT, and molGlycerol are
the amounts of MAT, DAT, TAT, and glycerol in mol, respectively. All the quantitative
analyses were performed using the absolute calibration method where the known amounts
of reactant (glycerol) and products (MAT, DAT, and TAT) are used for plotting of calibration
curves. The recovered catalyst was soaked and washed three times with diethyl ether
(30 mL), and air dried before being activated once more (250 ◦C, 1 h) for the next cycles
of reaction.

3. Results and Discussion
3.1. Characterizations of xNiO/CeO2 Catalysts

NiO/CeO2 catalysts were first studied with the XRD technique, and the wide-angle
XRD pattern is shown in Figure 1. As seen, all prepared solids show five major peaks at 2θ
angles of 28.5◦, 33.0◦, 47.5◦, 56.3◦, and 59.2◦ attributed to the (111), (200), (220), (311), and
(222) planes of CeO2, respectively [35]. The crystallography data also correspond to the
cubic fluorite structure (Fm3m) of CeO2 (JCPDF No. 43-1002). Additionally, several weak
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diffraction peaks due to (101), (111), (200), and (110) crystal planes of NiO are also detected
at 2θ = 37.2◦, 38.9◦, 43.3◦, and 62.9◦ by 9NiO/CeO2, 27NiO/CeO2, and 45NiO/CeO2.
These peaks become more intense with increasing the NiO content. The presence of these
peaks can be explained by the presence of NiO particles deposited on the sample surfaces
compared to that of pristine CeO2. However, the XRD peak intensity of NiO is weak despite
the high Ni content in the catalyst. This phenomenon could be explained by the very small
crystallite size of NiO, which is distributed evenly on the CeO2 support. As a result, it
causes the peaks to spread and lose intensity, lowering the diffraction intensity. Moreover,
a few impurities peaks due to NiCl2 and Ni(OH)2 are also found in the 45NiO/CeO2
catalyst (at 2θ = 29.5◦, 31.9◦), where the results are well corroborated with the JCPDF No.
002-0765 [36] and JCPDS No. 14-0117, respectively [37]. However, these peaks are not
observed in 9NiO/CeO2 and 27NiO/CeO2 catalysts with less NiO content, suggesting only
pure NiO and CeO2 crystal phases are obtained in both solids.
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Figure 1. XRD patterns of (a) CeO2, (b) 9NiO/CeO2, (c) 27NiO/CeO2, and (d) 45NiO/CeO2.

Figure 2 shows the nitrogen adsorption–desorption isotherms for the xNiO/CeO2
solids. The CeO2 initially has a specific surface area (SBET) and a total pore volume (VTotal)
of 69 m2/g and 0.15 cm3/g, respectively (Table 1). The solid material demonstrates a type
IV adsorption isotherm and H1 hysteresis loop, as per the IUPAC classification, indicating
the presence of mesoporous structure having a small pore mouth and wide body (ink-bottle
pores) with an average pore size of 9.86 nm (Figure 2a). The closure point of the hysteresis
loop at P/Po = 0.4 shows that adding CTABr to the synthesis of xNiO/CeO2 results in
the generation of an extra new mesopore system (Figure 2b). Yet, when the nickel level
increases, the fundamental mesostructure identity of the solid gradually diminishes. For
instance, the 9NiO/CeO2 retains its type IV isotherm and H3 hysteresis loop features
but has lower nitrogen uptake. As a result, the average pore size and total pore volume
are slightly decreased. On the other hand, the specific surface area remains almost intact
due to the generation of secondary mesopores by the CTABr mesoporogen. Upon further
increasing the nickel content, the porosity gradually decreases (low surface area, micropore
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surface area, and total pore volume), leading to narrower average pore sizes. In addition,
the initial ink-bottle pore shape also changes to a slit shape (for 27NiO/CeO2) and finally
the inner pores of the solid are fully covered (for 45NiO/CeO2). Such a phenomenon is
associated with partial or complete pore blockage by the NiO nanoparticles [38].
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Figure 2. Nitrogen adsorption–desorption isotherms of (a) CeO2, (b) 9NiO/CeO2, (c) 27NiO/CeO2,
and (d) 45NiO/CeO2.

Table 1. Physicochemical properties of xNiO/CeO2 samples.

Samples
NiO

Content (%)
BET Surface Area

(m2/g)

Micropore
Surface Area

(nm)

Average Pore
Diameter

(nm)

Total Pore
Volume
(cm3/g)

Particle Size
(nm)

TPD-NH3 Acidity (µmol/g)

Mild Mild-to-
Strong Strong Total

CeO2 0 69 12 9.86 0.15 125 ± 23 129 0 0 129
9NiO/CeO2 8.10 71 7 8.95 0.13 124 ± 33 271 473 217 961
27NiO/CeO2 28.10 31 4 7.51 0.07 120 ± 33 320 871 373 1564
45NiO/CeO2 44.02 1 0 5.93 0.002 149 ± 30 235 1123 * 154 * 1512 *

* The values also include the decomposition of non-reacted NiCl2 and Ni(OH)2.

SEM analysis is performed to investigate the morphological features of samples after
sol-gel treatment. As seen, the CeO2 consists of agglomerated irregular-shaped particles
with a size of 125 ± 23 nm (Figure 3a). Upon impregnating with various amounts of NiO,
the density of bright nanoparticles also increases and they are uniformly distributed all
over the surface of the samples (Figure 3b–d). The identity of bright spots was further
investigated using EDX elemental mapping analysis where Ce, Ni, and O elements were
mapped onto the SEM images (Figure 4). For the pristine CeO2 sample, only Ce and O
elements are detected due to the CeO2 support itself. For xNiO/CeO2 solids, the micro-
analysis reveals that the Ni element is enriched on the solid surface relative to the amount
of NiO introduced. In addition, the Ni element is also well-scattered on the solid surface
without segregation, further proving the successful functionalization process.
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The microscopic visualization of NiO nanoparticles was further carried out using the
TEM microscopy technique. Similar to the SEM/EDX study, uniform dispersion of NiO
nanoparticles (approx. 2–3 nm) on the surface of CeO2 solid is seen in the xNiO/CeO2
samples (as dark spots) (Figure 5). On the other hand, the morphology and size of CeO2
crystals (ca. 165 nm in grain shape) is unaffected upon sol-gel and calcination treatments.
As a result, the microscopy results are in accordance with the XRD findings, viz. no
substantial NiO particles are dispersed on the CeO2 surface.
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The electronic states of NiO and CeO2 in the xNiO/CeO2 samples were studied
using DRS UV-Vis spectroscopy. A peak at 257 nm is observed in all Ni2+-containing
samples, indicating the occurrence of charge transfer (CT) transitions involving Ni2+ ions
(Figure 6b–d). These Ni2+ ions from NiO exist in octahedral form in the crystal lattice and
are surrounded by six oxygen ions [39]. On the other hand, a peak at the nearly same
position is also observed for the pristine CeO2, which corresponds to the CT transition
from Ce4+ (4f ) to O2− (2p) (Figure 6a) [40]. CeO2 has a complicated electronic structure
because it contains both Ce3+ and Ce4+ ions, both of which can undergo CT transitions
with the oxygen ions in the crystal lattice [41,42]. Thus, this result suggests that there is a
chemical interaction occurring between the NiO and CeO2 support. A peak of maximum
absorption resulting from the charge transfer of O2− → Ce4+ is identified at 290 nm, and
a wide absorption edge of CeO2 is found at 329 nm [43,44]. Moreover, the peak intensity
increases with the quantity of NiO impregnated, and this signal can be associated with
the Ni-O charge transfer transition [45]. In addition, the 9NiO/CeO2, 27NiO/CeO2, and
45NiO/CeO2 exhibit a new and broad signal centered at 725 nm, which is attributed to
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the electronic transition of octahedrally coordinated Ni2+ ions from the 3A2g(F) → the
3T1g(F) state [46,47]. This band is stronger for 45NiO/CeO2, followed by 27NiO/CeO2
and 9NiO/CeO2. Thus, this band indicates a substantial covalent character in Ni-Osupport
metal-ligand bonds after calcination [46].
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The acidity of xNiO/CeO2 solids was studied with the NH3-TPD, and the results
are presented in Figure 7. It is shown that all the samples exhibit similar desorption
tendency except for the bare CeO2, where the results can be divided into three desorption
regions corresponding to the specific basic sites, namely mild acid sites (<300 ◦C), mild
to strong acid sites (300–500 ◦C), and strong acid sites (>500 ◦C). The data reveal that
27NiO/CeO2 displays a larger desorption peak area and stronger peak intensity than pure
CeO2, 9NiO/CeO2, and 45NiO/CeO2 catalysts, indicating the presence of larger quantity
of acidic sites on the surface. The acidity data are also tabulated as in Table 1. From the
data, it can be observed that the total acidity of the samples increases with increasing the
NiO content. For pristine CeO2, it has acid sites with mild strength (129 µmol/g), which
increases to 271 µmol/g and 320 µmol/g after the NiO content is increased to 9% and
27%, respectively, before slightly dropping to 235 µmol/g for 45NiO/CeO2. Similarly, the
acidities with mild-to-strong and strong strengths also increase with increasing the NiO
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content. It should be noted that the 45NiO/CeO2 has a trace amount of non-reacted NiCl2,
as indicated by TG/DTG and XRD (Figures 1 and 8).

Materials 2023, 16, x FOR PEER REVIEW 10 of 22 
 

 

indicates a substantial covalent character in Ni-Osupport metal-ligand bonds after calcina-
tion [46]. 

 
Figure 6. DRS UV-Vis spectra of (a) CeO2, (b) 9NiO/CeO2, (c) 27NiO/CeO2, and (d) 45NiO/CeO2 

where the broad band centered at 725 nm shows the absorption band due to 3A2g(F) → 3T1g (F) elec-
tronic transition of Ni2+ ions in octahedral coordination, viz. indicative of the covalent character in 
Ni-Osupport metal-ligand bonds. 

The acidity of xNiO/CeO2 solids was studied with the NH3-TPD, and the results are 
presented in Figure 7. It is shown that all the samples exhibit similar desorption tendency 
except for the bare CeO2, where the results can be divided into three desorption regions 
corresponding to the specific basic sites, namely mild acid sites (<300 °C), mild to strong 
acid sites (300–500 °C), and strong acid sites (>500 °C). The data reveal that 27NiO/CeO2 
displays a larger desorption peak area and stronger peak intensity than pure CeO2, 
9NiO/CeO2, and 45NiO/CeO2 catalysts, indicating the presence of larger quantity of acidic 
sites on the surface. The acidity data are also tabulated as in Table 1. From the data, it can 
be observed that the total acidity of the samples increases with increasing the NiO content. 
For pristine CeO2, it has acid sites with mild strength (129 µmol/g), which increases to 271 
µmol/g and 320 µmol/g after the NiO content is increased to 9% and 27%, respectively, 
before slightly dropping to 235 µmol/g for 45NiO/CeO2. Similarly, the acidities with mild-
to-strong and strong strengths also increase with increasing the NiO content. It should be 
noted that the 45NiO/CeO2 has a trace amount of non-reacted NiCl2, as indicated by 
TG/DTG and XRD (Figures 1 and 8). 

Figure 6. DRS UV-Vis spectra of (a) CeO2, (b) 9NiO/CeO2, (c) 27NiO/CeO2, and (d) 45NiO/CeO2

where the broad band centered at 725 nm shows the absorption band due to 3A2g(F) → 3T1g (F)
electronic transition of Ni2+ ions in octahedral coordination, viz. indicative of the covalent character
in Ni-Osupport metal-ligand bonds.
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Thermogravimetric analysis/differential thermal analysis (TGA/DTG) was performed
under air atmosphere to evaluate the thermal stability and heat resistance of the xNiO/CeO2
solids (Figure 8). The pristine CeO2 demonstrates two distinct stages of weight loss. The
initial stage (<200 ◦C) is attributed to the removal of physiosorbed water (10.4%) and the
second step of weight loss from 200 until 500 ◦C (1.7%) can be attributed to chemisorption
of water and condensation of surface Ce–OH groups into a Ce–O–Ce group [48]. Upon
functionalizing with NiO, an additional step of weight loss at 245 ◦C is observed by
9NiO/CeO2, 27NiO/CeO2, and 45NiO/CeO2, and the degree of weight loss increases with
the amount of NiO incorporated. Meanwhile, 45NiO/CeO2 shows an additional weight
loss centered at 670 ◦C (1.4%) due to the decomposition of non-reacted NiCl2 and Ni(OH)2.
The data are in line with the XRD data indicating the presence of little NiCl2 and Ni(OH)2
phases in the 45NiO/CeO2 solid.

Hence, the desorption of NH3 at around 670 ◦C by 45NiO/CeO2 is also accompanied
by the decomposition of non-reacted NiCl2 and Ni(OH)2, leading to the detection of the
quantity of mild-to-strong and strong acid sites larger than the actual values. Among the
three xNiO/CeO2 catalysts, 27NiO/CeO2 has the highest number of acidity (1564 µmol/g)
with the highest acid strength (373 µmol/g). Thus, the NH3-TPD data clearly show that the
incorporation of NiO on CeO2 (particularly 27NiO/CeO2) enhances the number of acid
sites, which would promote enhanced catalytic activity for acetylation of glycerol reaction.

3.2. Catalytic Study
3.2.1. Catalytic Comparative Study of xNiO/CeO2 Catalysts

Acetylation of glycerol was catalyzed by CeO2, 9NiO/CeO2, 27NiO/CeO2, and
45NiO/CeO2 under instant conductive heating (150 ◦C and 170 ◦C for 15 min) using
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an ethanoic acid:glycerol molar ratio of 10:1 and a catalyst loading of 0.04 g (Table 2). The
reaction products obtained are monoacetin (MAT), diacetin (DAT), and triacetin (TAT). Pure
CeO2 support is inactive in this reaction, which only converts 20.0% of glycerol into 19.3%
of MAT and 72.7% of DAT at 150 ◦C (Entry 1). Upon elevating the temperature to 170 ◦C,
the glycerol conversion exhibited an increase to 31.1%. The product selectivities were
observed to be 17.2%, 72.6%, and 0% for MAT, DAT, and TAT, respectively. However, the
reaction conversion increases upon impregnating NiO nanoparticles on the CeO2, with the
catalytic activity enhanced In the following sequence: CeO2 < 9NiO/CeO2 < 45NiO/CeO2
< 27NiO/CeO2. Among these solids, the 27NiO/CeO2 shows the best results, with the
highest glycerol conversion of 84.3% and 95.3% at 150 ◦C and 170 ◦C, respectively, and
selectivity to DAT (66.0% and 60.4%) (Entry 3). The high activity of 27NiO/CeO2 can
be explained by its large amount and good dispersal of active NiO nanoparticles (with
strong acidity) on the support that are highly accessible for the adsorption and activa-
tion of reactant molecules. In contrast, the 45NiO/CeO2 catalyst exhibits poorer catalytic
activity than the 27NiO/CeO2 solid due to its lower surface area with fewer octahedral
NiO species incorporated, as confirmed by the nitrogen adsorption isotherm and DRS
UV-Vis spectroscopy results. Additionally, pore blockage could also happen due to the
excessive amount of Ni species present on the CeO2 surface, which inhibits molecular
diffusion to the active sites, thereby causing poor catalytic performance [49]. Thus, the
27NiO/CeO2 catalyst was chosen to further study the acetylation of glycerol involving
reaction temperature, heating time, catalyst loading, glycerol to ethanoic acid ratio, and
catalyst reusability.

Table 2. Acetylation of glycerol over xNiO/CeO2 catalysts.

Entry Sample Conversion (%)
at 150 ◦C

Products Selectivity (%) at 150 ◦C Conversion
(%) at 170 ◦C

Products Selectivity (%) at 170 ◦C

MAT DAT TAT MAT DAT TAT

1 CeO2 20.0 19.3 72.7 0.0 31.1 17.2 72.6 0.0
2 9NiO/CeO2 77.5 22.0 66.3 2.2 88.0 19.6 55.3 13.6
3 27NiO/CeO2 84.3 18.2 66.0 4.3 95.3 15.8 60.4 14.9
4 45NiO/CeO2 76.0 20.3 66.7 2.9 87.2 17.6 57.0 14.8

Reaction conditions: ethanoic acid:glycerol molar ratio = 10:1; catalyst amount = 0.04 g; time = 15 min; solventless.

3.2.2. Effect of Reaction Temperature and Duration

The acetylation reaction over the 27NiO/CeO2 catalyst was investigated from 0 to
60 min at 150 to 170 ◦C. As seen in Figure 9A, the reaction temperature is the dominant factor
affecting the glycerol conversion. For instance, at 150 ◦C, the conversion is 63.8% within
5 min and the conversion increases to 95.5% after 60 min. However, when the temperature
increases from 150 ◦C to 170 ◦C, a substantial increase in the conversion from 63.8% to
87.0% is observed after 5 min. The reaction time extends to 60 min; the conversion (95.5%)
at 150 ◦C increases to 97.6% and 98.8% for 160 ◦C and 170 ◦C, respectively. The observed
phenomenon may be attributed to the increased frequency of effective collisions between
glycerol and ethanoic acid at elevated temperatures, resulting in a high reaction rate [50].
At 170 ◦C, the conversion increases to 97.6% and becomes nearly stable after 30 min. The
activation energies (Ea) of the reaction catalyzed with 27NiO/CeO2 and without a catalyst
are calculated using the Arrhenius equation to further understand the catalytic effect on
the reaction kinetics where second-order rate constants are applied (Figure 9B). The Ea
of the non-catalyzed reaction is 149.3 kJ mol−1 and the value decreases tremendously to
106.6 kJ mol−1 after catalyzing with 27NiO/CeO2. Thus, this indicates that the acetylation
reaction has been activated, where 27NiO/CeO2 provides another reaction route of lower
activation energy. Based on the study, the optimum reaction temperature and time are
170 ◦C and 30 min, respectively.
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3.2.3. Effect of the Amount of Catalyst

A catalyst is needed in a transformation reaction to ensure cost effectiveness of a
process [51]. Hence, the 27NiO/CeO2 catalyst loading ranging from 0 to 0.05 g was studied
with other variables remaining unchanged (Figure 10). Only 17.8% of glycerol is converted
into 27.4% of MAT and 63.2% of DAT after 30 min at 170 ◦C. Upon introducing 0.01 g of
catalyst, the conversion reaches 45.2%. The conversion is again enhanced to 64.8% and
87.4% when the amount of catalyst is increased to 0.02 g and 0.03 g, respectively. The
optimum catalyst loading is 0.04 g, with 97.6% conversion is achieved at the same reaction
time. However, upon increasing the catalyst loading to 0.05 g, the glycerol conversion
slightly decreases (95.1%) due to inefficient stirring and mixing resulting from excessive
catalyst loading [52].
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Figure 10. Conversion of glycerol and selectivity of MAT, DAT, and TAT catalyzed using different
27NiO/CeO2 catalyst loadings. Reaction conditions: glycerol:ethanoic acid molar ratio = 1:10,
temperature = 170 ◦C, time = 30 min, solvent-free.

An increase in conversion is anticipated with catalyst loading as a result of the avail-
ability of more accessible active sites. However, the products’ selectivity exhibits the
opposite trend as the catalyst loading is altered. For instance, the selectivity towards DAT
is predominant without a catalyst since the glycerol conversion is low, and the formation
of TAT increases with the amount of catalyst. The 27NiO/CeO2 catalyst at a dosage of
0.04 g showed the best performance (97.6% conversion, 70.5% selective to TAT). To our
knowledge, this result is the best catalytic performance thus far [22,23,53,54]. For the
subsequent catalytic reaction experiments, 0.04 g of 27NiO/CeO2 was used.

3.2.4. Effect of Glycerol:Ethanoic Acid Molar Ratio

Acetylation reaction performance can be greatly affected by the quantity of reactants
used since they govern the reaction chemical kinetics [55]. In order to obtain the highest
conversion and TAT selectivity, the amount of glycerol and ethanoic acid (in molar ratio)
was varied, with other reaction parameters remaining identical. The conversion is low
(22.0%) and no TAT is obtained (MAT: 62.3%, DAT: 27.8%) when the molar ratio of glycerol
to ethanoic acid is 10:1 (Figure 11). When the glycerol:ethanoic acid ratio is reduced to
5:1, a less viscous reaction mixture is formed. As seen, the conversion increases one-
fold (41.0%), and an increased selectivity of MAT and DAT of 51.0% and 37.4%, was
recorded, respectively. This clearly indicates that a low glycerol concentration is beneficial
for the reaction conversion as it eases reactant mixing and stirring, thereby improving
product selectivity.

The acetylation is also studied by increasing the concentration of ethanoic acid. As
equimolar reactants (5:5) were applied, the conversion was further enhanced to 52.0%, shift-
ing the product distribution towards higher substituted product (15.7% MAT, 54.0% DAT,
and 19.3% TAT). Thus, the results show that ethanoic acid activation is essential for enabling
high catalytic activity [56]. In order to further prove this statement, the glycerol:ethanoic
acid ratio was again increased to 1:10, where a significant reaction conversion enhancement
was shown (up to 97.6%) and the TAT selectivity was doubled (70.5%) thanks to the high
availability of activated ethanoic acid in the reaction medium. Beyond this ratio (1:15), the
reaction performance was almost intact. Therefore, the optimum glycerol:ethanoic acid
ratio is 1:10.
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Figure 11. Effect of glycerol:ethanoic acid molar ratio on acetylation of glycerol catalyzed by
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solvent-free.

3.2.5. Catalyst Recyclability Study

The deactivation of catalyst active sites is a crucial issue for a heterogeneous catalysis
system [5]. Therefore, a reusability test was conducted on 27NiO/CeO2 to evaluate its
stability and industrial feasibility. Figure 12 shows the glycerol conversion and products’
selectivity for ten consecutive runs. The glycerol conversion decreases from 97.6% to
86.0% after ten cycles of reuse. Hence, the reduction in the conversion could have resulted
from the deactivation of active sites and partial leaching of active metal species from the
surface of the catalyst support [57]. In addition, the product distribution shifted towards
lower substituted products after multiple reaction runs. For instance, the MAT and DAT
selectivities increased from 3.6% to 7.3% and 14.7% to 14.9%, respectively, after the 10th
run. However, a slight reduction in the TAT selectivity was recorded from 70.5% to 65.2%,
which indicates that the 27NiO/CeO2 catalyst is somewhat stable up to ten runs.
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3.3. Thermodynamics and Kinetics Properties of Reaction

The production of ethyl levulinate in the presence of the 27NiO/CeO2 catalyst affects
the kinetics and thermodynamic properties. Hence, in order to explain this phenomenon,
the thermodynamic quantities (∆Hrxn, ∆Srxn and ∆Grxn) of acetylation of glycerol at 170 ◦C
were calculated using the data provided in Refs. [58–60] and the following equations:

∆Hreaction = ∆Ho
298K +

∫ 443

298
∆CPdT (3)

∆Sreaction = ∆So
298K +

∫ 443

298

∆CP

T
dT (4)

∆Greaction = ∆Hreaction − T∆Sreaction (5)

where enthalpy and entropy of vaporization (∆Hvap) values of ethanoic acid and wa-
ter are also included. The energy profile of the reaction is summarized as in Figure 13.
The calculation reveals that the acetylation of glycerol with ethanoic acid reaction is an
exothermic reaction with ∆Hrxn = −92.7 kJ/mol. Meanwhile, the ∆Grxn is calculated to
be −137.4 kJ/mol, revealing that the acetylation reaction is very spontaneous at 170 ◦C.
Although this reaction is thermodynamically favorable, it occurs at a very slow speed in
the absence of a catalyst. This can be proven when mild conversion (50.2%) is observed
at 170 ◦C after 60 min in the absence of a catalyst (Figure 9A). Thus, the Gibbs free energy
cannot address this particular concern (how fast does the reaction achieve high conversion).
The chemical kinetics are hence the tools needed to address it.
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catalyst at 170 ◦C.

The reaction kinetics (or rate constants) are very reliable on the temperature. When
high temperature is applied, the reaction takes place at a faster rate but the activation
energy is still unchanged [59]. Hence, glycerol in mild conversion (~50%) is recorded at
170 ◦C after 60 min (Figure 9A). The presence of the 27NiO/CeO2 catalyst is important in
the acetylation of glycerol as it provides a different reaction route by allowing the diffusion,
adsorption, and close proximity between reactant molecules on the active sites of the
27NiO/CeO2 catalyst before they are converted into TAT. As a result, this new reaction
pathway lowers the activation energy from 149.3 kJ/mol to 106.6 kJ/mol and enhances the
reaction kinetics.
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3.4. Possible Mechanism of the Acetylation Reaction of Glycerol

The proposed mechanism is based on the current results and previous research [61].
The most plausible pathway for the acetylation of glycerol with ethanoic acid involves the
activation of the carbonyl group of ethanoic acid by NiO in a 27NiO/CeO2 catalyst, which
increases the electrophilicity of the carbonyl carbon (Figure 14). CeO2, on the other hand, is
a redox catalyst and is capable of providing oxygen vacancies to aid the catalytic reaction
process. The oxygen in glycerol attacks the carbonyl carbon, resulting in the formation
of an intermediate species. The proton is transferred from the intermediate to the second
hydroxyl group of glycerol, leading to the formation of an activated complex and a water
molecule. Monoacetin (MAT) is formed subsequently. The aforementioned mechanism
is augmented by the interaction of MAT with ethanoic acid, which forms diacetin (DAT)
and triacetin (TAT). Besides increasing the glycerol conversion, the addition of both NiO
and CeO2 also accelerates and increases the selectivity of the glycerol acetylation reaction.
The mechanism combines acid–base and redox chemistry, which is facilitated by the task-
specific properties of the incorporated NiO and CeO2 support.
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Figure 14. Plausible reaction mechanism for the acetylation of glycerol to yield monoacetin (MAT),
diacetin (DAT), and triacetin (TAT) over the 27NiO/CeO2 catalyst.

4. Conclusions

In summary, NiO incorporated onto CeO2-supported solids (xNiO/CeO2) was pre-
pared, and these solids were used as highly selective catalysts for glycerol acetylation. The
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XRD, SEM, and TEM data confirm that the NiO nanoparticles are well dispersed on the
CeO2 support, and the chemical interactions between the NiO nanoparticles and CeO2
support are proven by the DRS UV-Vis spectroscopy. Furthermore, enhanced conversion of
glycerol to MAT, DAT, and TAT products with ethanoic acid was successfully performed
with all the prepared catalysts (CeO2, 9NiO/CeO2, 27NiO/CeO2, and 45NiO/CeO2).
27NiO/CeO2 appears to be the best catalyst in catalyzing the glycerol acetylation, with very
high efficiency (97.6% glycerol conversion; 70.5% selectivity towards TAT) under optimum
conditions, where the formation of by-products can be suppressed thanks to its strong
acidity and high accessible surface area. Thus, this study demonstrates that 27NiO/CeO2
is very promising for catalyzing glycerol within a short reaction time (<30 min), thanks to
the instant heating mode of the Monowave 50 reactor. Furthermore, the catalyst is reusable
(up to 10 times) with minimal effect on the reaction performance. We thus believe that
27NiO/CeO2 will be a very promising heterogeneous catalyst and has high potential for
synthesizing renewable biofuels in the petrochemical industry.
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