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Abstract: The accurate estimation of rock strength is an essential task in almost all rock-based projects,
such as tunnelling and excavation. Numerous efforts to create indirect techniques for calculating
unconfined compressive strength (UCS) have been attempted. This is often due to the complexity of
collecting and completing the abovementioned lab tests. This study applied two advanced machine
learning techniques, including the extreme gradient boosting trees and random forest, for predicting
the UCS based on non-destructive tests and petrographic studies. Before applying these models,
a feature selection was conducted using a Pearson’s Chi-Square test. This technique selected the
following inputs for the development of the gradient boosting tree (XGBT) and random forest (RF)
models: dry density and ultrasonic velocity as non-destructive tests, and mica, quartz, and plagioclase
as petrographic results. In addition to XGBT and RF models, some empirical equations and two
single decision trees (DTs) were developed to predict UCS values. The results of this study showed
that the XGBT model outperforms the RF for UCS prediction in terms of both system accuracy and
error. The linear correlation of XGBT was 0.994, and its mean absolute error was 0.113. In addition,
the XGBT model outperformed single DTs and empirical equations. The XGBT and RF models also
outperformed KNN (R = 0.708), ANN (R = 0.625), and SVM (R = 0.816) models. The findings of this
study imply that the XGBT and RF can be employed efficiently for predicting the UCS values.

Keywords: rock strength prediction; physical properties; non-destructive tests; regression tree
techniques; gradient boosting tree; random forest

1. Introduction

In various domains of geotechnical engineering structures, including tunnels and
dams, appropriate measurement of unconfined compressive strength (UCS) of rocks is
of vital significance. The UCS provides a desirable evaluation of the capacity of rock
bearing. To be specific, an unsuitable calculation of the UCS can be dangerous, because
it causes the depreciation of the final bearing capacity. The unconfined compression
test in labs is typically employed to ascertain rock strength. The standard procedures,
including the International Society for Rock Mechanics (ISRM), are followed to carry out
the test. Nevertheless, various hindering issues in the direct determination of UCS in
the lab are available. For example, providing the needed rock core specimens is usually
challenging, particularly for highly fractured rocks and those that show notable foliation
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and lamination [1,2]. It is extremely costly and prolonged for ascertaining the UCS directly
at the initial steps of design [3]. Although, different and secondary methods of rock
strength prediction are available, including common regression models and machine
learning techniques.

To date, many researchers have sought to develop standard techniques for UCS as-
sessment. Certain distinct techniques for UCS forecast are regularly in the classes of simple
regression between UCS and straightforward index tests of rocks, including the Schmidt
hammer, ultrasonic velocity, or Vp, Brazilian tensile strength, point-load index, and slake
durability index tests [4–6]. In addition, the successful utilisation of multiple regression
analysis for rock strength forecast is also reported in the literature [7]. However, some
available reports found that these associations were inadequate for producing extremely
reliable UCS values [8,9]. Typically, it is suggested to employ these equations simply for
particular types of rock [9]. Moreover, the analytical forecast techniques cannot adjust
themselves with the changes in data, which means if different data from the initial set of
data is added to these models, the equations should be renewed [10,11]. More recently,
researchers and practitioners of geotechnical engineering highlighted the utilisation of
machine learning (ML) techniques, including decision trees (DTs), the artificial neural
network (ANN), support vector machine (SVM), and the adaptive neuro-fuzzy inference
system (ANFIS) in problems of this domain [12–15]. These highlighted techniques are
related to the firm fact that ML techniques are fit and likely instruments for engineering
problem-resolving, especially when the association varieties between the predictors and
target variable are concealed [11,16–26]. From a monetary perspective, the application
of ML techniques is also profitable, because it reduces the costs related to lab tests for
ascertaining the UCS. It is important to note that the mentioned ML techniques have been
used and applied to solve science and engineering problems [21,23,27–59].

The UCS value of the Main Range granite in Malaysia is predicted in this work using
two state-of-the-art tree-based techniques, namely random forest (RF) and extreme gradient
boosting trees (XGBT). These two models are among the most robust ML models, and their
predictive potential has been shown in several areas of study, e.g., [60,61]. To date, however,
these approaches have not been used to forecast the unconfined compressive strength
of rock materials. These models are also less susceptible to overfitting, a major problem
with ML approaches with limited data (which is also true for this study). This process
considers and selects non-destructive rock index tests and petrographic investigations, as
both categories are crucial in predicting rock strength values. Comparative analysis is also
conducted among the RF and XGBT models, simple regression, and single DTs.

2. Rock Strength Research Significance

In the past, rock strength was considered as the model output of many empirical,
semi-empirical, and intelligent studies. In these studies, both destructive parameters such
as point load index and Brazilian tensile strength (BTS) and non-destructive parameters
such as p-wave velocity and Schmidt hammer have been considered as model inputs.
However, conducting some of these tests, such as BTS, is still time-consuming and requires
sample preparation. On the other hand, rock minerals have theoretical relationships with
strength-related parameters of the rock material, and they can also be considered as input
parameters to predict rock strength. These minerals and their percentages can be easily
identified through petrographic analysis on thin sections of the same rock. There are
only a few studies considering different rock minerals as input variables, and there is a
need to combine these parameters with non-destructive parameters as inputs to estimate
rock strength. This can aid in the development of a predictive model with simpler input
parameters and, as a result, greater applicability in real-world projects.

3. Earlier Related Studies

Several previous studies employed ML techniques for UCS prediction. In 1999, a study
by Meulenkamp and Grima [62] forecasted UCS was utilising a backpropagation ANN.
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These researchers applied this technique to 194 various kinds of rock samples, including
dolomite, sandstone, and limestone. They have employed several inputs for predicting the
UCS, including density, porosity, grain size, rock type, and Equotip hardness reading. Their
findings showed that the ANN outperformed the traditional statistical techniques in terms
of generalization capabilities. A fuzzy inference system (FIS) was applied to 164 samples
of Ankara agglomerate by Sonmez et al. [63] for the UCS forecast. Their results indicated
that the fuzzy logic technique yields a highly reliable UCS prediction. A different study
by Gokceoglu and Zorlu [64] applied both regression and fuzzy models to 82 samples
from problematic rocks for UCS prediction. They considered the ultrasonic velocity, point
load index, tensile strength, and block punch index as their inputs. In comparison with
multiple and simple regression methods, the fuzzy model had a better performance for
UCS prediction. Feed-forward neural network and regression models were applied to a
dataset including 30 travertine rock data by Dehghan, Sattari, Chelgani, and Aliabadi [8].
Their inputs included Schmidt hammer rebound number, velocity, porosity, point load
index, and ultrasonic. This study suggested that the ANN method is a more powerful
model than regression analysis for UCS prediction. Mishra and Basu [65] employed simple
and multiple regression techniques as well as FIS. They suggested that the FIS and multiple
regression techniques are more efficient for predicting the UCS than the simple regression
technique. For sedimentary rock samples, the efficiency of ANN was reported by Cevik
et al. [66]. They applied this model to 56 samples and considered clay contents, the origin
of rocks, slake durability indices, two/four-cycle as inputs of UCS prediction. A different
study by Yesiloglu-Gultekin, Gokceoglu, and Sezer [18] reported the advantage of the
ANFIS over the multiple regression and ANN. They employed 75 rock samples from a
granite mine. They utilized p-wave velocity, rock tensile strength, block punch index, and
point load index as inputs. They also concluded that if p-wave velocity as well as tensile
strength are considered for building the ANFIS prediction model of UCS, this model shows
its best performance.

Singh et al. [67] found a number of relationships between various measures of strength
and various schistose rock index characteristics. They also applied an ANN to their
dataset and concluded that the ANN outperformed the established correlations in terms of
accuracy. Gokceoglu [68] employed a fuzzy triangular chart for UCS prediction relating to
the petrographic composition. The author created fifteen membership functions for fifteen
samples. It was demonstrated that the fuzzy inference system could reliably predict the
UCS values. Zorlu et al. [69] examined the associations between UCS and petrographic
properties of sandstone. They evaluated the accuracy of multiple regression and ANN
for the prediction of stone UCS. Their conclusion showed the superiority of ANN over
multiple regression. For UCS forecast of carbonate rocks, Yagiz et al. [70] developed
nonlinear regression and ANN models. Their dataset included 54 samples. They also stated
that the ANN model outperforms the nonlinear regression model in terms of accuracy.
Table 1 presents a summary of some recent studies on the application of ML techniques for
predicting the UCS.

Table 1. Some studies on UCS forecast utilizing ML techniques.

Author ML Technique Input R

Beiki, Majdi and Givshad [9] GP Density, p-wave velocity, porosity 0.91

Ceryan et al. [71] ANN
Porosity, slake durability index, p-wave

velocity in solid part of the sample, effective
porosity, petrography study values

0.94

Dehghan, Sattari, Chelgani, and
Aliabadi [8] ANN P-wave velocity, slake durability

index, porosity 0.93

Gokceoglu and Zorlu [64] FIS Slake durability index, block punch index,
p-wave velocity, BTS 0.82

Meulenkamp and Grima [62] ANN Equotip value, porosity, density, grain size 0.97
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Table 1. Cont.

Author ML Technique Input R

Momeni, Nazir, Armaghani, and
Maizir [20] PSO-ANN Density, p-wave velocity, slake

durability index, 0.98

Rabbani et al. [72] ANN Porosity, bulk density, water saturation 0.98
Rezaei, Majdi, and Monjezi [11] FIS Density, porosity 0.97

Singh, Singh, and Singh [67] ANN Petrography study values -
Marto, Hajihassani, Jahed

Armaghani, Tonnizam Mohamad,
and Makhtar [19]

PSO-ANN Slake durability index, BTS, bulk density,
p-wave velocity 0.98

Yesiloglu-Gultekin, Gokceoglu,
and Sezer [18] ANFIS BTS, p-wave velocity 0.77

Yilmaz and Yuksek [7] ANFIS P-wave velocity, slake durability index,
water content 0.97

Zorlu, Gokceoglu, Ocakoglu,
Nefeslioglu, and Acikalin [69] ANN Quartz content, packing density,

concavo convex 0.87

4. Collection of Case Studies and Data

The team of this research collected the rock samples from a water transfer tunnel,
starting from Pahang state and ending in Selangor state. The data were collected from the
study published by Armaghani et al. [73]. The tunnel supplies the extra water needs for
Kuala Lumpur and Selangor states. The tunnel was constructed by the tunneling workforce
to pass through the Main Range, which runs between the states of Pahang and Selangor.
The spine of Peninsular Malaysia with a height range of 100 to 1400 m is formed by this
mountain chain. Granite is the major type of rock, which is locally called Main Range
granite. The intact granite strength is typically between 150 and 200 MPa. Table 2 shows
the specifications of the tunnel.

Table 2. Tunnel specifications.

Specification Value

Length 44,600 m
Diameter 5.2 m

Longitudinal gradient 1/1.900
Maximum discharge of raw water 27.6 m3/s

Thirty-five kilometers of the tunnel were unearthed utilizing a tunnel boring machine
(TBM). The rest of the tunnel was unearthed employing traditional tools and blast tech-
niques. For getting the best excavation performance for this tunnel, the tunnelling team
planned three TBM and four traditional drill and blast segments.

The research team collected a number of core samples from the boreholes and sent
them to a laboratory to check the important granite material and engineering attributes. The
team also lapped the edge of the surfaces of the cut cores to achieve the needed finishing and
appearance. For the laboratory tests, many granitic rock material samples were prepared.
To avoid any unwanted differences in features and early breakdowns, the team carefully
inspected the samples for extant fractures and different tiny-scale discontinuities. The
physical characteristics (i.e., non-destructive) tests involved Vp and dry density (DD).
In addition, uniaxial compression examinations were conducted to ascertain the granite
UCS. The team followed the ISRM [74] standards of testing and preparing all tests and
investigations. Eventually, a database with the 45 data samples (all input and output
parameters) was prepared for data analysis.

A polarizing petrological microscope was also used to conduct the petrographic inves-
tigations of the granite samples. To this end, small segments of the samples were provided
to distinguish the portion of various minerals. The specimens display non-porphyritic and
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holocrystalline mineral composition as well as essentially comprise interlocking coarse-
grained crystals of quartz (Qtz), plagioclase (Plg), biotite (Bi), and alkali feldspar (Kpr).
The before-mentioned composition is expected of plutonic igneous rock. It is important
to note that micas are denoted by 3 elements: sericite, muscovite, and biotite. For more
information regarding study area and the data used for modeling, it is recommended to
review Armaghani, Mohamad, Momeni, and Narayanasamy [73].

5. Analysis of Data

In this study, various statistical and simulation techniques were employed to analyze
the results of laboratory tests. The subsequent sections explain the application of the
techniques mentioned before to forecast the UCS of granite samples. Ultimately, the UCS
values achieved from laboratory tests were compared with those predicted. The process
of this study is presented in Figure 1. Two ML algorithms, including XGBT and RF, were
employed to predict the UCS. Before the models’ development, an input selection was
performed using the Pearson’s Chi-Square test. The inputs selected by this test were used
to develop XGBT and RF models. The models were then evaluated by several performance
criteria, including R, MAE, and gain charts. Additionally, the results of XGBT and RF
models were compared with those of single decision trees, including CART and CHAID.

5.1. Regression Techniques

This study developed several empirical equations using simple regression technique.
The simple regression is represented by the general form of Y = AX + B, “A” is the coefficient
of regression and “B” is a constant value of “Y” once all input parameters equal zero. These
equations and their square of the correlation coefficient (R2) are shown in Figure 2. Among
all variables used in this study, DD was the most correlated variable to UCS, followed by
Vp. As can be seen, the best R2 belonged to Figure 2a followed by Figure 2b. The lowest R2

belonged to Figure 2d. However, these accuracies show that empirical regression models
applied to only one predictor are insufficient to solve the UCS issues. According to Yilmaz
and Yuksek [7], the main conceptual shortcoming of all regression approaches is that they
cannot reveal the precise causation process, just connections.

Using their assumption-free characteristics, ML approaches may circumvent the above
difficulties. There are several ML approaches capable of resolving UCS-related issues.
Among these ML approaches, academics and practitioners paid less attention to DTs and
their ensemble variations. This work will thus use two powerful ensemble DT methods, RF
and XGBT, to forecast the UCS values of Malaysian Main Range granite.

5.2. Decision Tree Models

Various decision tree (DT) models are available and each of them has its own ad-
vantages and disadvantages. DTs employ a tree-like model of choices and their potential
outcomes, such as chance event results, resource costs, and utility. It can show a condi-
tionally controlled scheme. Some well-known DTs are classification and regression tree
(CART), Chi-square automatic interaction detection (CHAID), and quick, unbiased, efficient
statistical tree (QUETS). However, these tree-based models are classified as single DTs. The
common flaw of these single DTs is their susceptibility to overfit with a small training set.

To remedy the abovementioned issue, some other advanced DTs, including random
forest (RF) [75] and extreme gradient boosting tree (XGBT) [76] can be employed. Both
algorithms belong to the ensemble DTs family. While RF follows the bagging principles,
the XGBT follows the boosting standards. A schematic diagram of boosting and bagging
and their application in DTs is presented in Figure 3.
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RF is a variance-reducing bagging method, as was previously explained. DTs are
very sensitive to even little variations in the input. By using the “bagging” method, the
RF is able to generate a stable model that lessens the variation. Bagging is an ensemble
method that uses several averaging procedures, such as the mean, the majority vote, and
the weighted average, to construct and integrate many predictions.

One of the most efficient machine learning techniques for classification and regression
problems is gradient boosting (GB). GB creates a strong predictive model by combining
weak learners such as DTs. If the weak learner is a DT, the resulting model is termed a
gradient boosted tree (GBT). The GBT employs a conventional technique, including mean
squared error (MSE), to build the regression trees and ascertain the most desirable division
for the tree. For each possible node division, the GBT approximates the MSE and selects
the one with the lowest MSE as the split to utilize in the tree.
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−6.718 × Chl + 110.84; R2 = 0.0469; (g) UCS = −3.563 ×Mica + 129.63; R2 = 0.0611.

One of the variants of GBT, which employs more precise estimates to decide the most
suitable tree model, is Extreme Gradient Boosting Tree (XGBT). The XGBT applies several
efficient methods, which make it extraordinarily strong, especially with structured data.
Contradictory to conventional GBT, XGBT applies its process of creating trees where the
similarity score (SS) and gain ascertain the fittest node divisions. The SS can be calculated
utilizing Equation (1). Once the SS for each leaf is calculated, the gain can be estimated
using Equation (2). Then, the node division with the greatest gain is selected at the most
suitable division for the tree.
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SS =
(∑n

i=1 Ri)
2

∑n
i=1[PPi ∗ (1− PPi)] + λ

(1)

G = LLs + RLs − ROs (2)

where SS is the similarity score, “R” represents the residual, PP signifies previous probabil-
ity, λ denotes a regularization parameter. LLs is the left leaf similarity, RLs is the right leaf
similarity, ROs is the root similarity.

6. Results and Discussion

This research applied two advanced decision tree techniques, including RF and XGBT,
to predict the UCS. These techniques were applied to 45 data points or samples collected
from the case study sites. Before the development of these models and because the data
were unbalanced, the input and target fields were normalized. For this purpose, a z-score
transformation technique was utilized for inputs and a Box–Cox transformation technique
was used for the target variable.

In order to reduce the data dimensionality and identify the most relevant predictors of
UCS prediction, the authors employed a Pearson’s Chi-Square test. The candidate inputs
included DD, Vp, Qtz, Kpr, Plg, Chl, and Mica. The feature selection technique selected
the most important predictors, including DD, Vp, Qtz, Plg, and Mica, which are used for
developing the RF and XGBT models.

To develop the RF and XGBT models, 10-fold cross validation was used as the valida-
tion scheme. Since there are few samples, as a rule of thumb, the cross validation works
better than the holdout technique. Cross-validation protects the ML predictive models
against overfitting, especially when the number of samples is limited. This technique di-
vides the sample frame into an established number of parts, and then averages the overall
errors. The cross-validation procedure is shown in Figure 4.



Materials 2023, 16, 3731 10 of 17

Materials 2023, 16, x FOR PEER REVIEW 10 of 17 
 

 

6. Results and Discussions 

This research applied two advanced decision tree techniques, including RF and 

XGBT, to predict the UCS. These techniques were applied to 45 data points or samples 

collected from the case study sites. Before the development of these models and because 

the data were unbalanced, the input and target fields were normalized. For this purpose, 

a z-score transformation technique was utilized for inputs and a Box–Cox transformation 

technique was used for the target variable. 

In order to reduce the data dimensionality and identify the most relevant predictors 

of UCS prediction, the authors employed a Pearson’s Chi-Square test. The candidate in-

puts included DD, Vp, Qtz, Kpr, Plg, Chl, and Mica. The feature selection technique se-

lected the most important predictors, including DD, Vp, Qtz, Plg, and Mica, which are 

used for developing the RF and XGBT models. 

To develop the RF and XGBT models, 10-fold cross validation was used as the vali-

dation scheme. Since there are few samples, as a rule of thumb, the cross validation works 

better than the holdout technique. Cross-validation protects the ML predictive models 

against overfitting, especially when the number of samples is limited. This technique di-

vides the sample frame into an established number of parts, and then averages the overall 

errors. The cross-validation procedure is shown in Figure 4. 

 

Figure 4. A ten-fold cross-validation procedure. 

The RF and XGBT models were developed using several parameters. To achieve the 

optimized value for each parameter of these models, a grid search technique was used. 

This technique systematically creates and assesses a model for various mixtures of algo-

rithm parameters particularized in a grid. Figure 5 displays the process of the grid search 

technique while a 10-fold cross validation technique is applied. 

For RF, the following parameters were optimized and used: (1) number of trees to 

build = 10.0; minimum leaf node size = 1.0. The algorithm also used bootstrap and out-of-

bag samples to calculate the accuracy of generalization. For XGBT, (1) the booster type 

was set as “gbtree”; (2) the boosting round number was set as 10; (3) Lambda was set as 

1.0; (4) Alpha was set as 0.0; (5) max depth was set as 6.0; and (6) minimum child weight 

was 1.0. 

Two standard metrics, linear correlation (R) and mean absolute error (Mae), were 

used to evaluate the effectiveness of these models (MAE). Below are the equations for 

determining these criteria: 

Figure 4. A ten-fold cross-validation procedure.

The RF and XGBT models were developed using several parameters. To achieve
the optimized value for each parameter of these models, a grid search technique was
used. This technique systematically creates and assesses a model for various mixtures of
algorithm parameters particularized in a grid. Figure 5 displays the process of the grid
search technique while a 10-fold cross validation technique is applied.

For RF, the following parameters were optimized and used: (1) number of trees to
build = 10.0; minimum leaf node size = 1.0. The algorithm also used bootstrap and out-
of-bag samples to calculate the accuracy of generalization. For XGBT, (1) the booster type
was set as “gbtree”; (2) the boosting round number was set as 10; (3) Lambda was set as
1.0; (4) Alpha was set as 0.0; (5) max depth was set as 6.0; and (6) minimum child weight
was 1.0.

Two standard metrics, linear correlation (R) and mean absolute error (Mae), were
used to evaluate the effectiveness of these models (MAE). Below are the equations for
determining these criteria:

R =
∑n

i=1(ei − ei)(mi −mi)√
∑n

i=1(ei − ei)
2(mi −mi)

2
(3)

MAE =
∑n

i=1|ei −mi|
n

(4)

where ei and mi denote nth real and predicted values, respectively; ei and mi signify the
average values of actual and forecast values, correspondingly; n stands for the number of
samples in the dataset.

The RF and XGBT models were evaluated with the abovementioned statistical eval-
uations (Figure 6) with further assessments of minimum, maximum, and mean errors
(Table 3). The evaluation of models developed in this study showed a more accurate
prediction of XGBT as compared to the RF model. The R of XGBT and RF models were
0.994 and 0.939, respectively. In addition, the MAE of XGBT and RF models were 0.113 and
0.298, respectively. A plot of actual and predicted values of XGBT and RF models is shown
in Figure 6.
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Two single DT models, CART and CHAID, which can be used for regression problems,
were also developed to compare these models with XGBT and RF. The R of CART and
CHAID models were zero and 0.65, respectively. For MAE, CART and CHAID had values
of 0.811 and 0.593, respectively (Figure 7). In addition, a gains chart provides a more
in-depth comparison between these models (Figure 8). In machine learning, the gains are
explained as the proportion of entire hits that happen in every quantile. The gains are
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estimated using Equation (5). Here, “hits” mean how the model is successful in forecasting
the values greater than the middle value of the UCS (UCS_transformed > −0.477).

Gains =
a
b
× 100 (5)

where “a” implies the number of hits in quantile and “b” refers to the aggregate number
of hits.
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Table 3. Statistical error evaluation functions of the models.

RF XGBT

Minimum error −0.975 −0.58
Maximum error 0.658 0.34

Mean error −0.062 −0.041
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In Figure 8, the red diagonal line shows the baseline, and the pale blue line represents
the perfect model. Typically, the higher lines show better models. As can be seen, the
lowest line belongs to CART and follows the diagonal line from the lower left to the upper
right. It is evident from the chart that RF and XGBT models have better performance than
the other two single DT models. More importantly, the XGBT model followed the perfect
model, which shows the superiority of this model over the RF and other models.
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The better performance of XGBT over the RF can have several reasons. To start, XGBT
has a high similarity score for a direct pruning tree, which is a first step toward the ultimate
modeling objectives. Selecting the right node and figuring out the information gain is
made simpler by the similarity score. Second, XGBT is trustworthy when working with
imbalanced datasets, but RF is not. One last key distinction between XGBT and RF is that
the former routinely gives more weight to functional space when reducing a model’s cost,
while the latter aims to allow greater leeway to hyperparameters to improve the model.

This study also compared the results of the models developed in this study with those
of some other common ML techniques, including k-nearest neighbors (KNN), ANN, and
SVM. The outcomes of this comparison are shown in Figure 9. As can be seen, both XGBT
and RF outperformed KNN, ANN, and SVM models.
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When comparing the XGBT model’s accuracy (R = 0.994) to that of prior research,
we found that Armaghani, Mohamad, Momeni, and Narayanasamy [73], who used an
ANFIS model with the identical sample size and four inputs, performed somewhat better.
Furthermore, the accuracy attained in this investigation was better than that of previous
studies shown in Table 1.

7. Limitations and Future Works

It is a common fact that ML studies have always included several limitations and
difficulties. One of the limitations of this study is related to the rock type, which is granite.
The next limitation is related to the number of data samples used in the analysis, which is
45. The proposed models in this research are effective with the expected accuracy if the
same input parameters are used in the future. In addition, if the same inputs are used
but out of the range of our inputs, there is a possibility of an error in the analysis. Future
studies with more data samples (more petrographic tests) should be conducted to propose
a more generalized ML model. Furthermore, additional rock index tests, such as point load
tests, should be performed and used as model inputs to map the behaviors of rock strength
in greater and more accurate detail.

8. Conclusions

This present study aimed to predict the UCS using two advanced ensemble tree-based
models, including the RF and XGBT. These models were applied to 45 data samples of rock
material collected from a mountain range in Malaysia. Before the development of these two
models, some simple regression equations were developed and showed that these models
were insufficient for UCS prediction. Among the candidate inputs, the Pearson’s Chi-
Square test selected the following as the inputs of the XGBT and RF models: DD, Vp, Qtz,
and Plg. These two models were developed, and the results showed that the XGBT model
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outperformed the RF in terms of both accuracy and error. The XGBT model had a linear
correlation of 0.994, while the RF model had a linear correlation of 0.939. These models
were compared with two single DTs, including CART (linear correlation = 0) and CHAID
(linear correlation = 0.65). Expectedly, both ensemble models outperformed the single DTs.
In addition, XGBT and RF models were compared with ANN, KNN, and SVM models.
Again, the two ensemble models outperformed the ANN (linear correlation = 0.625), KNN
(linear correlation = 0.708), and SVM (linear correlation = 0.816) models.

The sample size of this study was small. Further studies can apply these advanced
ensemble DT techniques to larger sample sizes to achieve higher accuracies. However,
depending on the specifics of the situation, the aforementioned predictive methods may be
used to make predictions about UCS. Furthermore, it was said that the use of XGBT and RF
offers a practical method for reducing uncertainties during the design of rock engineering
projects, which is important in terms of performance. Many additional mining difficulties,
not only Young’s modulus, may be predicted using these approaches. It has been shown
that XGBT is a practical, accurate, and effective algorithm. Tree learning techniques and
linear model solvers are both in XGBT’s toolkit. Being able to conduct several computations
in parallel at once is what makes it so fast.
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