
����������
�������

Citation: Moskal, M.; Migas, P.;

Karbowniczek, M. Multi-Parameter

Characteristics of Electric Arc

Furnace Melting. Materials 2022, 15,

1601. https://doi.org/10.3390/

ma15041601

Academic Editors: Qing Liu and

Jiangshan Zhang

Received: 31 January 2022

Accepted: 17 February 2022

Published: 21 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Multi-Parameter Characteristics of Electric Arc Furnace Melting
Michał Moskal 1,*, Piotr Migas 2 and Mirosław Karbowniczek 2

1 COGNOR SA Branch HSJ in Stalowa Wola, Kwiatkowskiego 1, 37-450 Stalowa Wola, Poland
2 Department of Ferrous Metallurgy, Faculty of Metals Engineering and Industrial Computer Science,

AGH-University of Science and Technology, 30 A. Mickiewicza A., 30-059 Krakow, Poland;
pmigas@agh.edu.pl (P.M.); mkarbow@agh.edu.pl (M.K.)

* Correspondence: mmoskal@hsjsa.pl

Abstract: The article presents the results of analyses of numerical modelling of selected factors in
electric arc furnace melts. The aim of the study was to optimise the melting process in an electric arc
furnace using statistical-thermodynamic modelling based on, among other things, multiple linear
regression (MLR). The article presents tools and methods which make it possible to identify the
most significant indicators of the process carried out on the analysed unit from the point of view of
improvement. The article presents the characteristics of the process and creation of the MLR model
and, by applying its numerical analyses and results of calculations and simulations for selected
variables and indicator, identifying the operation of a selected furnace. Developed model to demand
of electric energy identification was used for calculations of energy balances, the distribution of the
energy used in the furnace was presented.

Keywords: electric arc furnace; energy efficiency modelling; process optimization; mass and en-
ergy balances

1. Introduction

Observed climatic changes in the environment are causing recycling technologies for
steel production to increase their share in the total balance of crude steel production. This is
particularly noticeable in the European Union. Therefore, the electric arc furnace is becom-
ing one of the leading processing units for steel scrap used in crude steel production [1].
Electricity consumption in this process still accounts for about 50–80% of the total energy
consumption during melting. Technological progress and the development of information
technology create opportunities to reduce the unit demand for electrical or chemical energy.

Mathematical descriptions and characterisations of the arc furnace smelting process
are complicated due to its nature resulting from, among others, high temperature and
chemical composition gradients, turbulent flows, multiphase and heterogeneity of the
system, significant mass flow of substrates, high speed of phase transformations and non-
linearity of phenomena. Therefore, the development of modelling of selected stages or the
entire arc furnace smelting process remains justified [2].

The models used to describe the melting technology can be physical models—
reproducing the processes on a smaller scale (e.g., laboratory and/or using other me-
dia than liquid metal and slag with the use of criterion numbers). An example of the
application of a high-temperature model can be the studies on the performance of burners
in an electric arc furnace carried out by Yonmo Sung [3]. They presented modification of
oxy–gas burners, which was validated on a test bench.

Studies of scrap melting phenomena were also carried out based on water models [4]
(using ice, three heating rods, and steam nozzles, which reflected scrap, electric arc, and
oxy–gas burners, respectively).

Numerical methods can also be used to model the process. Mombeni [5] used a
CFD model calculated in the commercial software ANSYS FLUENT to address the crack
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formation of water-cooled panels installed in the furnace vault. CFD modelling can also
be used to determine the temperature distribution in a metal bath in the context of burner
placement and media flow rates [6].

However, the mathematical models are the most universal method, which take into
account physicochemical processes, thermodynamic and theoretical equations, mass and
energy balances, or only technological data from the process [7]. They can be divided into
two categories: linear and non-linear.

Linear models are created as a linear combination of predictor variables [8] based on
average statistical input and output data from the process, or assumed theoretical values.
They describe the relationship between individual parameters and their importance for
the outcome of the calculation. Linear models are static and refer to only two points in
time; they are the result of input data and, as mentioned above, they can only be used with
reference to average values of a given process [9].

The most popular is the Kohle model, which describes the influence of process param-
eters on electricity demand.

Another model based on a multivariate linear regression equation is the one developed
by Haupt [10]. He determined the influence of scrap quality on the melting process in an
electric arc furnace.

However, non-linear models have the ability to describe the process more accurately. R.
Morales created one of the first models, which included heat and mass transfer calculations
and chemical reaction kinetics in terms of use the direct reduced iron [11]. The author
created a dynamic model, which took into account the relationships between individual
phenomena in terms of their physical course and not just the result, which was a statistical
outcome of many variables. Thus, it makes it possible to analyse single melts and to follow
the course of change of the result in time.

Attempts have been made to simplify the models and organise their construction.
Clear boundaries of individual zones in the furnace were set. In terms of both: furnace
construction, melting stages, and division into individual phases of materials/substances
present in the furnace space. Bekker [12] specified two groups of solids and liquids in
the constructed model. On the other hand, Logar [13,14] created a system of dependent
modules representing particular groups of phenomena (including solid scrap zone, solid
slag zone, liquid slag zone, liquid metal zone, and wall and roof zone). Models using neural
networks are becoming increasingly popular. The first versions were developed in the
1990s. Ledoux and Bonnard, in their work, built a model based on a multi-layer perceptron.
The model described the dynamics of an electric arc during the melting process.

Due to the process complexity, it is necessary to select models in such way that
sufficient representation of the processes is maintained with the best possible ability to
interpret and understand the simulation results [15]. The balance between these two
characteristics depends largely on the type of models and the modelling methods [16].

2. Materials and Methods
2.1. Theoretical Mathematical Models

Mathematical models are the most commonly used in EAF simulation. They can be
both linear and non-linear in nature. This classification results from taking into account the
above-described variability of process efficiency as well as the variability of the parameters
themselves during the melt [17]. Taking into account the kinetics of the reaction or the vari-
ation in the efficiency of media use or their control transforms the model into a non-linear
form. Non-linearity is understood as effects ranging from media consumption dependent
on melting programmes to the dependence of heat losses on the number and height of
scrap heaps and thus arc exposure. When creating mathematical models, theoretical data or
available technological and statistical data are used—which, depends on their availability
and quality.
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2.2. Linear Modelling of Steel Melting in Electric Arc Furnace

Regression linear models are created as a linear combination of predictor variables
based on statistical mean input and output data from a process, or assumed theoretical
values. This means that they refer to (only) two points in time, they are the result of input
data and, e.g., output data, and as mentioned above, and they can only be used with respect
to the average values of a given process. Static models often do not take into account some
process disturbances and micro-scale phenomena (of low weights) and, therefore, their
use for the analysis of single melts becomes difficult or, even impossible, due to the high
variability of the real process conditions [18].

The most widely used statistical model in the literature is the Köhle model [18,19].
Köhle’s Equation (1) describing the demand for electricity:

Wr

kWh/t
= 300 + 900

[
GE

GA
− 1
]
+ 1600

GZ

GA
+ 0.7

[
TA
◦C
− 1600

]
+ 0.85

tS + tN

min
− 8

MG

m3/t
− 4.3

ML

m3/t
(1)

where Wr is the electric energy demand, kWh/Mg; GE is the weight of ferrous materials,
kg; GA is the tap weight (mass of the bath), kg; GZ is the weight of slag components, kg; TA
is the temperature before taping, ◦C; tS is the power on time, min; tN is the power off time,
min; MG is the natural gas consumption, Nm3; and ML is the oxygen consumption, Nm3.

This model characterises the electric energy demand, which in this case (of the units
analysed by Köhle) is between 380 and 600 kWh/Mg with an accuracy equal to the standard
deviation of 5 kWh/Mg.

The disadvantage of this solution is the low sensitivity of the model to changes in
process conditions (occurrence of disturbances, change of the melting programme for the
arc control system, or burners) which translates into a high error for individual melts.
However, it is also an advantage in terms of long-term prediction. The Köhle model, due
to its hybrid empirical–theoretical character, remains easy to interpret while maintaining
sufficient accuracy.

In industrial practice, problems are encountered due to, e.g., insufficient process
metering and difficult definition of boundary conditions. The amount of electrical energy
supplied is easy to determine, whereas the efficiency of heat transfer through the arc
depends on a large number of factors, e.g., the melting stage, the phenomena associated
with arc burning (arc length, arc stability), or the plasma temperature associated with the
gas atmosphere of the furnace, as well as the parameters characterising the steel scrap.
Identifying the efficiency of the use of chemical energy—dependent on the reactions taking
place in the reactor, which is the volume of the furnace bowl—is also a challenge. Its
determination requires the identification of the reactions taking place and the distribution
of the heat obtained between the phases, as well as the dynamics of the process [11–13,20].

When constructing models, it is necessary to perform mass and energy balances.
Carrying out correctly defined balance calculations (of mass and energy) is essential from
the point of view of the overall characteristics of the energy efficiency of the process and
the determination of process boundary conditions [11].

In the course of the analyses, a database of indicators and technological parameters
was created, which included 1953 records from one specific EAF. Due to a wide range of
steel grades, the database was based on the most frequently manufactured group of steel
grades and data was selected by rejecting melts:

• from furnace start-up periods;
• with furnace operation disturbances;
• switching from or to grades with large differences in chemical composition, when

there was a justified suspicion of wet pouring;
• with process parameter values that are outliers.

The parameters included in the database are batch, material, and energy parameters.
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2.3. Mass Balances

The mass balance is based on the assumption that the sum of the masses of the inputs
min equals the sum of the outputs mout.

mscr + msf + mc + mfa + mox + mCH4 + mla = mhm + msl + mf + mwg (2)

where mscr is the mass of the scrap, kg; msf is the mass of the slag formers, kg; mox is the
mass of the oxygen, kg; mCH4 is the mass of the natural gas, kg; mc is the mass of the
carburizer, kg; mfa is the mass of the foaming agent, kg; mla is the mass of the leaked air,
kg; mhm is the mass of the hot metal, kg; msl is the mass of the slag, kg; mwg is the mass of
the waste gases, kg; and mf is the mass of the fumes, kg.

For the purposes of consideration, the assumption has been made that the mass of
the hot heel does not change between heats. In reality, the mass of hot heel changes and is
difficult to estimate due to the relatively small volume it occupies and the constant irregular
changes in the scale changing the volume of the furnace hearth.

2.3.1. Slag Weight Calculations

Slag mass was calculated on the basis of the chemical composition of the scraps used,
assuming that the elements contained in them: Si, Mn, Cr, C, P, and Al are oxidised to the
average of the level characterising the composition of the metal bath, and the amount of
oxidised Fe constitutes 5.5% of the charge mass. These elements and the oxygen needed to
burn them together with the addition of CaO and MgO make up the slag mass. The slag
mass also includes ash from carbon carriers.

Chemical compositions of the slags were identified via energy dispersive X-ray flu-
orescence (XRF Oxford X-MET 3000TX +). In order to identify the chemical composition
of the steel, a spectrophotometric method of analysis was used on a FOUNDRY-MASTER
spark spectrometer.

The correctness of assumptions and calculations was checked by calculating the slag
mass on the basis of CaO introduced into the process, which, as a component not dissolving
in the metal bath, theoretically remains entirely in the slag.

msl =

(
mCaO met.·0.958 + mCaO inj.·0.864

)
·100%

%CaOslag
(3)

where mCaO met. is the mass of the metallurgical calcium, kg; mCaO inj. is the mass of the
injected pulverized calcium, kg; and %CaOslag is the percentage of mass weight of CaO
in slag.

A calculation was then made of the mass of each element that was oxidised during
bath melting and slag formation, thus reducing the metal yield.

mae =
MAe ·%tl ·msl

MAo

. (4)

where mae is the mass of the alloying element melted in slag, kg; %tl is the percentage of
mass weight of given element in slag; MAe is the atomic mass of element, u; and MAo is the
atomic mass of oxide of given element, u.

2.3.2. Calculation of Waste Gas Masses

In order to calculate the mass of waste gases taking into account the course of the
reaction of combustion of coal and methane, Reactions (5)–(7) were written:

C +
1
2

O2 → CO (5)

C + O2 → CO2 (6)
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CH4 + 2O2 → CO2 + 2H2O (7)

The mass of carbon monoxide and carbon dioxide for each reaction for one kilogram
of product burnt was calculated. The values obtained were, respectively, 2.33 kg, 3.67 kg,
and 2.75 kg (from Reactions (5)–(7)). Due to the lack of measurement of the flue gas
composition, it was assumed that all the substrates burned completely, and left entirely
with the flue gases. Therefore, in the mass of waste gasses mwg, the components according
to the Equation (8) are included:

mwg = mN2 + mCO2 + mH2O (8)

2.3.3. Calculation of Metal Bath Weight

The theoretical weight of the metal bath was calculated as the difference between the
weight of the scrap, the alloying elements contained in the bath (including iron), and the
estimated amounts of fumes.

mhm = mscr − Σmae −mf (9)

where mhm is the mass of hot metal, kg; mscr is the mass of the scrap, kg; mae is the sum of
masses of alloying elements that went into slag, kg; and mf is the mass of the fumes, kg.

2.4. Energy Balances

The energy balance assumes that the sum of the energy input Ein into the process is
equal to the sum of the energy output from the process in the form of product heat Qout
and thermal losses Qloss. The energy input to the system consists of electrical energy and
chemical energy. In the other direction, the energy is transferred out of the process in the
form of metal baths, liquid slag, waste gases, dusts, and heat losses.

Eel. + Echem. = Qhm + Qsl + Qwg + Qf (10)

where Eel. is the electrical energy, MJ; Echem. is the chemical energy, MJ; Qhm is the heat of
hot metal, MJ; Qsl is the heat of the slag, MJ; Qwg is the heat of waste gases, MJ; and Qf is
the heat of the fumes, MJ.

The chemical energy was calculated on the basis of enthalpies of exothermic reactions—
oxidation of bath components and combustion of methane. The Perry Nist Janaf method
was used to calculate the enthalpies of the reactions.

2.4.1. Calculation of the Physical Heat of Hot Metal

Calculation of the physical heat of the hot metal is based upon the values of the specific
heat of the hot metal, its mass, and the temperature rise. It also takes into account the
phase transition by using the values of latent heat, liquid temperature, and differentiation
of specific heat into that occurring in the liquid and solid state.

For the calculation of the physical heat of the metal bath, the Formula (11) is used:

Qhm = mhm·(css·(Tm − Ta) + Qlst + cls(T− Tm))/1000 (11)

where, Qhm is the physical heat of the metal bath at temperature T, MJ; mhm is the mass of
hot metal, kg; css is the average specific heat of steel in the solid state, kJ/kg K; cls is the
average specific heat of steel in the liquid state, kJ/kg·K; Qlst is the latent heat of fusion of
steel, kJ/kg; T is the steel tap temperature, K; Tm is the steel melting temperature, and K;
Ta is the ambient temperature, K.

The specific heat of the liquid state was taken as 0.836 MJ/Mg·K and that of the solid
state as 0.698 MJ/Mg·K. The latent heat of fusion for the steel was taken as 271.7 kJ/kg.
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The melting point of steel with a hot metal composition was calculated according to
the Formula (12):

Tm = TFe −
n

∑
i=1

piki (12)

where Tm is the melting point, K; TFe is the melting point of pure iron (1812 K); pi is the
percentage content of the element in the metal bath, %; and ki is the temperature reduction
factor (according to the Table 1) [21].

Table 1. Temperature reduction factor for individual elements [21].

Element C Mg Si P S Cu Ni V Mo Cr

ki 65 5 8 30 25 5 4 2 2 1.5

2.4.2. Calculation of the Physical Heat of Slag

The calculation of the physical heat of slag was based on the values of the slag’s
specific heat, mass, temperature rise, and latent heat. The following Formula (15) was used
to calculate the physical heat of slag:

Qsl =
msl(csl(T− Ta) + Qlsl)

1000
(13)

where Qsl is the physical heat of slag at temperature T, MJ; msl is the slag mass, kg; csl is
the specific heat of slag at temperature T, kJ/kg·K; Qlsl is the latent heat of melting of slag,
kJ/kg; T is the slag tap temperature, K; and Ta is the ambient temperature, K.

The specific heat of slag was calculated from the Formula (14):

csl = 0.736 + 2.93·10−4T (14)

The assumed latent heat of fusion is 209 kJ/kg.

2.4.3. Calculation of the Physical Heat of Waste Gases

The calculation of the physical heat of the waste gases is based on the specific heat
values of the gases of their mass and temperature rise. The formula was used to calculate
the physical heat of the waste gases:

Qwg = mwgcwg(T− Ta)/1000 (15)

where Qwg is the physical heat of the waste gases at temperature T, MJ; mwg is the mass of
the waste gases, kg; cwg is the specific heat of the waste gases at temperature T, kJ/kg·K; T
is the temperature of the gases, K; and Ta is the ambient temperature, K.

The average specific heat of the waste gases is 1.33 kJ/Nm3, whereas 1450 ◦C was
taken as the value of gas temperature.

3. Results

In the field of research, considering modelling (MLR) as a first step, an attempt was
made to apply and subsequently modify the Köhle equation [22]. Based on the analyses
carried out on a furnace operating under the industrial conditions, one should state the
lack of universality for the form of the model proposed by Köhle. The obtained values
differ from the measured ones by an average of 50% for the 1992 version and by an average
of 10% for the 2002 version of the equation [23]. As part of the work performed, the model
was modified, and one of the changes made was the replacement of the ML coefficient
relating to oxygen consumption by an equation taking into account the heat gain from the
oxidation of individual elements. This is due to the previously mentioned large number of
scrap classes, as well as the large share of the iron oxidation reaction as a source of chemical



Materials 2022, 15, 1601 7 of 14

energy. Therefore, the replacement of the coefficient that represents the average heat gain
by a separate function is justified. This function is written in the form:

EM = ∑
M

Msl·
MAM·avg%MO.sl·1000 kg

Mg

100%·MAMO
·∆HM

 (16)

where Msl is the mass of slag, Mg; MAM is the atomic weight of considered metal, u;
avg%MO.sl is the average considered metal oxide content of slag, %; MAMO is the atomic
weight of considered metal oxide, u; and ∆HM is the the enthalpy of the oxidation reaction
of a considered element, converted to kWh/kg; (where M = Cr, Mn, Fe, Al, Si).

Figure 1 shows the comparison of the real values of electricity consumption with the
model values obtained based on two versions of the Köhle model: the 2002 version and its
modification. It can be noted that for the modified version a much higher model fit was
obtained (average difference 1%, maximum 20%).
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Figure 1. Comparison of Köhle model results with real electricity consumption [23].

In the realities of the furnace characterised, the model did not adequately provide
quantitative answers as to what steps and extent of change should be taken to optimise the
process.

Therefore, mass and energy balances were calculated and a linear multiple regression
(MLR) model was undertaken.

For the calculation of mass and energy balances, it was necessary to identify the
chemical composition of the liquid products (slag and steel). For this purpose, slag and
metal samples were taken. A study of the chemical composition of slags was carried out for
200 melts in the same group of steel grades. The obtained average chemical compositions
of slag and steel are presented in Tables 2 and 3.

Table 2. Average chemical composition of EAF slags before tap.

Oxide CaO MgO MnO Cr2O3 SiO2 P2O5 Al2O3 TiO2 FeO

% of weight 29.54 5.71 9.09 7.52 9.55 0.41 1.19 0.42 36.57
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Table 3. Average chemical composition of liquid bath before tap.

Element C Mn Cr Ni Si P S

% of mass 0.071 0.083 0.107 0.109 0.005 0.008 0.107

In the case of the unit under consideration, the insufficient metering, the high diver-
sification of the steel grades, and the high variability of the charge (based on more than
40 scrap grades) led to some simplifications. For example, assuming a constant hot heel
level; ignoring the change in furnace geometry resulting from erosion of the lining and,
thus, assuming that the oxygen stream always reaches the bath and is fully consumed; and
assuming that the chemical composition of the scrap corresponds to the average of the
ranges described in PN 85/H 15000.

The results of the mass and energy balances obtained, and their analysis, clearly
indicate the areas which should be investigated in order to improve the scrap melting
process, e.g., appropriate use of natural gas, problems with furnace leak-tightness, and
use of oxygen. However, the predominance of chemical energy in the melting process
suggests that its optimisation will have a significant impact on the overall energy balance
of the melt.

The parameters used to create the MLR were time, which is related to the amount of
heat loss in the process; oxygen and gas consumption, as sources of chemical energy; the
amount of slag-forming materials used, whose melting requires a significant amount of
energy; and the scrap yield, which gives information on the amount of iron oxidised.

Calculations and multiple regression analyses were carried out to obtain the equation
identifying the demand for electric energy. Table 4 presents the results for the selected back-
ward MLR analysis, which gave the selected statistical model—the form of Equation (17).
Statistical calculations were performed for the total sample size, which was N = 1959; the
significance level of α = 0.05 was assumed. Statistical correlation between the considered
independent variables was checked; the relationships between the variables present in the
equation were statistically insignificant.

Table 4. Statistical parameters of calculated MLR model.

Variable b* Std. Err. of b* B Std. Err. of b t(1953) p-Value

Intercept 169.942 8.689 19.558 0.000
Tap-to-tap time 0.248 0.020 0.263 0.021 12.324 0.000

Oxygen to charge 0.403 0.020 3271 0.166 19.670 0.000
Natural gas to charge −0.055 0.020 −2633 0.952 −2767 0.006
Slag formers to charge 0.064 0.020 0.113 0.036 3166 0.002

Scrap yield 0.123 0.021 48.787 8.377 5.82 0.000

b* is a structural parameters of the regression function; B is an estimators of obtained regression equation; t is a
t-Student test probability distribution; and p-value is a probability level of variable.

Statistical results were obtained: the regression coefficient at the level of R = 0.497;
comparing for Rtable = 0.1946 (for N > 1000), one can state the significance of the calculated
linear correlation. Fisher–Snedecor’s F-value, at the α = 0.05 level, F(5.1953) = 128; for
Ho’s hypothesis, comparing it with the table critical value of Ftable = 2.108, Ho’s hypothesis
of statistical significance R2 of the equation—can be accepted at the significance level of
α = 0.05, which implies the possibility of rejecting the alternative hypothesis. It can also be
seen that for all selected variables, the probability p is less than the significance level of 5%
(p < α), and the independent variables present in the equation are individually statistically
significant.

Following the above, a linear regression model was created (3), resulting in:

Eel = 169.94 + 0.26·tTTT + 3.27·mox

mscr
− 1.98·

mCH4

mscr
+ 0.11· msf

mscr
+ 48.79·mhmł

mscr
(17)
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where tttt is the tap to tap time, min.; mscr is the mass of scrap in charge, kg; mox is the mass
of oxygen, kg; mCH4 is the mass of natural gas, kg; msf is the mass of slag formers, kg; and
mhm is the mass of hot metal, kg

In Figure 2, the normality analysis of the distribution of the residuals was shown. It
seems, Shapiro–Wilk test: SW–W = 0.9971, p = 0.0009. Variance constancy: fulfilled, the
uniformity of the scatter of the residuals is constant across the width of the interval.
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Figure 2. Normal distribution of residuals.

Simulations using the created MLR model confirmed the conclusions of the analysis
of the balances performed, i.e., the predominance of chemical energy and the inverse
proportionality of methane consumption to electrical energy consumption.

Taking into account the analysis results, which confirmed the conclusions of the mass
and energy balance, the description of the process efficiency (defined as the ratio of the
supplied energy to the amount of physical heat of the metal bath) as a function of the share
of chemical energy was undertaken.

In Figure 3, the analysis of the dependence of process efficiency on the share of chemical
energy was shown. A decrease in process efficiency (ηEAF) is visible with an increase in the
share of chemical energy in the process. This trend in melt efficiency prompted an analysis
of the efficiency of chemical energy use in the process under study.
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As an example, the amount and timing of CH4 addition was analysed as a function of
the efficiency of the heat generated by its combustion.

It was assumed that the efficiency will change with the progress of scrap melting.
This is due to phenomena such as a change in the scrap surface with the progress of
melting, but most importantly due to a decrease in the temperature difference between the
flame and the charge, which heats up during the process. The change in burner efficiency
was re-calculated on the basis of the approach presented in [21,24,25] and is presented in
Figure 4.
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from [21]).

The energy efficiency of the burners was considered first. This varies with the progress
of melting. This efficiency is, on average, between 70 and 40%, and can drop as low as
20%. To identify the energy transfer efficiency, the Gottardi methodology was used [25],
which made the energy efficiency of the burner dependent on, among other things, the
temperature difference between the flame and the charge, which decreases with the progress
of melting and, additionally, with a decrease in the scrap surface area. This dependence is
described by the function (18):

ηCH4
= 70.272− 8·10−3·p2

t + 5·10−5·p3
t (18)

where ηCH4
is the energy efficiency of the burner [%]; and pt is the melting progression [%].

Based on the mathematical description of the change in burner efficiency as a function
of melting progress, three patterns of energy gain as a function of the average gas flow
possible under the conditions of the unit analysed were simulated. Boundary conditions
were established: minimum gas flow in burner mode, 90 Nm3/h; the currently used average
gas flow rate, 110 Nm3/h; and near-maximum flow rate, 200 Nm3/h. The maximum burner
operation time—resulting from the melting stage characterised by the presence of scrap in
the “cold regions” of the walls—is 30 min in total for all the baskets.

The change in energy contributed by the burners over time (Figure 4), the cumulative
energy per 30 min (Figure 5a), and the cumulative energy as a function of the maximum
possible amount of gas supplied (Figure 5b) were considered.
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Figure 5. (a) Variation of burner energy input as a function of burner operating time (b) cumulative
energy as a function of burner operating time

From the simulations obtained, it can be concluded that it is beneficial to intensify
the gas flow in the initial stage of the melt, as this allows the burner to use its moment of
greatest efficiency. The calculated maximum achievable gas consumption is, respectively,
135, 165, and 300 Nm3, and the energy contributed is 826 kWh, 1009 kWh, and 1835 kWh.

Finally, the equation was created to simulate production costs (in the sense of direct
manufacturing costs), CO2 emissions, and process efficiency (Mg of hot metal/h)—it is
assumed that such a construction of the model will allow to control the technology in a
manner depending also on economic objectives.

The attempt to consolidate the results in terms of obtaining the unit melt cost function
contributed to the creation of Equation (19).

Pc = Eel·X1 + mCH4 ·X2 + (mscr −mhm)·X4 + mox·X3 +
(
mC + mCH4

)
·44
16
·X5 + msf·X6 (19)

where Pc is the production cost; X1 is the cost per unit of electrical energy, PLN/kWh; X2
is the cost per unit of natural gas, PLN/Nm3; X3 is the cos per unit of technical oxygen,
PLN/Nm3; X4 is the average unit cost of scrap purchase, PLN/Mg; X5 is the cost per
emission of CO2 unit PLN/Mg; and X6 is the cost per unit of slag formers, PLN/kg.

Equation (5) was used to calculate production costs (in terms of direct production costs
of liquid steel), CO2 emissions, and process efficiency (Mg of hot metal/h)—assuming that
such a model construction would allow to control the technology in a manner depending
also on economic objectives. After calculating the production costs for the smelters under
consideration (forming the database), a correlation analysis was carried out between the
production cost (less the price of scrap metal forming the metal bath) and the amount of
chemical energy input; the results are presented in Figure 6.
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Figure 6. The amount of chemical energy in relation to the direct cost of producing a tonne of
metal bath.

The correlation coefficient is R = 0.513 and the t-Student’s t-value reaches t = 41.51 with
ttabular = 1.960. From the existence of this relationship (Figure 6) it should be concluded
that it is advantageous to increase the share of chemical energy in the process, but taking
into account the efficiency of its transfer by the oxygen treating bath stage.

4. Discussion

Modelling of the melting process in an electric arc furnace is possible under industrial
conditions, even with incomplete metering. However, the individual characteristics of the
unit under consideration have to be taken into account as existing models do not show
universality. The use of models developed for other units requires their modification and
taking into account the characteristics resulting from the proportion and share of chemical
and electric energy as well as the input and technological conditions of the furnace.

Increasing the chemical energy input into the melt lowers the required total amount
of electrical energy—methane consumption is inversely proportional to electrical energy
consumption. However, due to the technological effect of the fact that oxygen is fed most
intensively at the time of charge reheating—throughout this period—its correlation with
electrical energy is positive.

Based on model calculations for the analysed furnace unit using a modified Köhle
model from 2002, the model and actual data converged at the level of R = 0.36. The
calculated electricity demand differed from the actual demand at the maximum level of
20%. However, it did not give sufficient guidance for process control.

Thanks to the mass and energy balance calculations performed, results were obtained
from which it can be concluded that there is a predominance of chemical energy (52%) in
the process compared to electrical energy.

It can be concluded that it is advantageous to intensify the gas flow at the initial
stage of melting, as this makes it possible to use the moment of maximum efficiency of the
burners (presented on Figure 5a,b). These conclusions require a complementary analysis;
the real conditions of the process should be taken into account, which limit the maximum
flow on the oxy–gas burners in the initial stages of the process (risk of burner damage by
flame reflection from the scrap metal near the walls) and the fact that a higher energy input
will lead to a faster melting of the deposited scrap metal

The statistical calculations carried out and the analyses of the statistical indices ob-
tained made it possible to select the multiple linear regression model Equation (17)—as a
method giving the possibility of an easy interpretation with an appropriate representation
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of the process in these conditions. The regression coefficient for the calculated model is
R = 0.497, the difference between the calculated value and the real one is, at maximum, 17%
(with mean 0). The obtained model was extended by the analysis of natural gas efficiency
and consolidated with the cost calculation equation.
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