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Abstract: The heat treatment of a metal is a set of heating and cooling cycles that a metal undergoes
to change its microstructure and, therefore, its properties. Temperature–time–transformation (TTT)
diagrams are an essential tool for interpreting the resulting microstructures after heat treatments.
The present work describes a novel proposal to predict TTT diagrams of the γ′ phase for the Ni-
Al alloy using artificial neural networks (ANNs). The proposed methodology is composed of
five stages: (1) database creation, (2) experimental design, (3) ANNs training, (4) ANNs validation,
and (5) proposed models analysis. Two approaches were addressed, the first to predict only the nose
point of the TTT diagrams and the second to predict the complete curve. Finally, the best models for
each approach were merged to compose a more accurate hybrid model. The results show that the
multilayer perceptron architecture is the most efficient and accurate compared to the simulated TTT
diagrams. The prediction of the nose point and the complete curve showed an accuracy of 98.07%
and 86.41%, respectively. The proposed final hybrid model achieves an accuracy of 96.59%.

Keywords: TTT diagrams; artificial neural networks; thermal treatment; additive manufacturing

1. Introduction

Large industries such as energy or aerospace, among others, often use metal alloys
that have different properties from those of pure metals. Even small amounts of an element
can considerably change the mechanical properties of an alloy such as toughness, resistance
to fatigue or corrosion [1]. The mechanical properties of metals are defined by their
microstructure, which can be modified by thermal, thermomechanical, or thermochemical
treatments [2]. The growth kinetics of phases or precipitates is limited mainly by the
diffusion of elements on solidification. In addition, it is described by phase diagrams,
time–temperature–transformation (TTT) diagrams, and continuous cooling transformation
(CCT) diagrams.

Due to their excellent mechanical strength at high and low temperatures and their
outstanding resistance to oxidation and corrosion, nickel-based (Ni) alloys are widely used
in very demanding applications such as turbine components. However, for non-ferrous
alloys such as those that are nickel-based, there are few reports of their respective TTT
diagrams. Their main phase is gamma (matrix); nevertheless, other phases such as the
gamma prime (γ′, Ni3[Al, Ti]) are more important since they are responsible for conferring
their outstanding mechanical properties. In precipitation-hardened nickel-based alloys, the
TTT diagrams define the solubilizing temperatures and the aging times and temperatures
that generate the reinforcing phases (γ′, γ′′) and avoid phases that deteriorate mechanical
properties, such as delta or Laves [3]. The concentration of these reinforcing phases, as well
as their size and location, depends on heat treatments designed based on the TTT diagrams.
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There are different ways to obtain the TTT diagrams of an alloy: (i) by experimentation,
(ii) by simulation, and (iii) by prediction. The experimental investigation and design of
TTT and CCT diagrams are both costly and time-consuming [4]. There is presently still a
lack of such diagrams even for well-known nickel-based alloys because the experimental
determination of the TTT diagrams is a nontrivial proposition [5]. In addition, for alloys
with several elements, the simulation can take hours or even days. This type of program
uses specific information on the elements that compose the alloy (mobility, conductivity,
diffusivity, etc.) which is contained in costly databases. Alternatively, it may be advanta-
geous to predict the TTT diagram of a particular alloy using suitable modeling techniques,
where the chemical compositions are set as the input parameters. Due to the presence of
a large number of variables and complex relationships between them, an artificial neural
network (ANN) is thought to be the only solution for approaching this model. Recently,
some scientific groups have begun to develop predictive systems of TTT diagrams for
various alloys.

In the early period of this millennium, ref. [4] published the first approach to an ANN
for the simulation of time–temperature–transformation (TTT) diagrams for titanium alloys.
A standard backpropagation multilayer (BP) network was implemented and trained using
data from the published literature. The prediction of the Ti6–Al4–V curves was studied.
One of the disadvantages of this work is that it only determines the nose point through the
network; the rest of the curve is created through formulas. Ref. [6] extends their previous
work by comparing the results with experimental data. The models are used to track and
analyze the influence of different parameters such as alloy composition and processing
conditions. In the same year, ref. [7] reports an ANN to simulate the nonlinear relationship
between the beta transus (βtr), the temperature of titanium alloys, and the alloy chemistry.
The authors configured their model to receive as input the chemical concentration of the
alloy elements, while the output of the model is the temperature βtr. The results showed
a good agreement with the experimental data. Estimation of the temperature of βtr by
thermodynamic calculation was performed for comparison.

The work presented by [5] addresses the identification of optimal chemical compo-
sition to precipitate an ultrafine bainite microstructure, where TTT diagrams of different
compositions have been predicted using the conjugate gradient algorithm to reduce the
experimental tests required. In another work, TTT diagrams reported in the literature were
used to predict the curves of other steels having similar alloy components using a support
vector machine (SVM) model. The proposed methodology, reported in [8], can be used for
the prediction of TTT curves for cold-work steels and the prediction of phases for different
heat-treatment methods. Accuracy greater than 90% is reported. Recently, refs. [9,10] report
a combination of algorithms, including BP, random committee, random forest, and bagging,
for predicting TTT diagrams with relevant descriptors (alloying elements, austenitization
temperature, and retention time). The database was composed of data reported in the
literature.

The prediction of CCT diagrams using ML techniques is also reported. The prediction
of CCT diagrams in synthetic welding heat-affected zones for Ni-Cr-Mo steels using descrip-
tors of relevant material is presented in [11], including chemical compositions and cooling
rate. The authors describe that the random forest (RF) technique was the one that showed the
best performance when predicting with greater precision the starting temperature of the
ferrite and bainite transition. In addition, the k-nearest neighbors (KNN) strategy facilitated
the prediction of the start temperature of the martensite transformation, and the use of
a random committee (RC) was used to predict hardness. Ref. [12] published molecular dy-
namics (MD) simulations. This study proposes a combined method of classical nucleation
theory and MD simulations. The method is used to calculate the TTT diagrams and the
critical cooling rates of bulk metallic glass alloys using two compositions Cu50Zr50 and
Cu20Zr80. The proposed method reasonably predicts the critical cooling rate based on the
calculated TTT. The authors do not report the exact accuracy of the model.
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Numerical methods for the calculation of CCT diagrams for low- and medium-carbon
steels are reported in [13]. Comparisons were made with a multilayer perceptron (MLP)
neural network. The input data are the chemical composition and the austenitization
temperature. The results of the calculations consist of the temperature of the beginning and
the end of the transformation, the volume fraction of the structural components, and the
hardness of the steel after heat treatment. The authors do not report the effectiveness of the
studied model.

The analysis of the process of austenite decomposition during the cooling process of
various steel grades is studied in [14]. The authors propose a network of the long short-term
memory type for the analysis of the transition path of the cooling curve. Experimental
values from CCT diagrams were used as training data for the neural network.

In [15,16], different ML models are compared to predict the nose point and the TTT
diagram for pearlitic steels and galvanized dual-phase steels. To compare the proposed
models, different metrics are used, e.g., the correlation coefficient (R2), the root mean
square error, and the mean absolute percent error (MAPE). The studied ANN architectures
are implemented in the MATLAB environment and configured with different activation
functions (hyperbolic tangent, ReLu, Sigmoidal, etc.) and up to 48 epochs. The authors report
that the SVM architecture and multilayer backpropagation have the best results in the
prediction tasks.

A prediction of the nucleation lag time of iron and steelmaking melts solely from
elemental composition and temperature was produced via deep neural networks by [17].
The authors use data available in the literature and claim their work as the first published
instance of the prediction of nucleation lag time that does not require composition specific
empirical data. The implemented deep neural network achieved an average absolute scaled
error of 39.9%.

Table 1 summarizes the related works that have already been published. The table
shows the technical characteristics that each work used to determine the TTT/CCT dia-
grams. It is important to mention that there are few published works in this regard. This
may be due to the fact that, within the scientific community, the use of specialized software
(such as Thermo-Calc™) has been taken as the standard for the study of phase precipitation.
However, the use of techniques belonging to AI within the TTT area has begun to gain
strength due to the multiple advantages it offers, which is observed with the increase in
research groups in this new sub-field.

In this work, a methodology to determine TTT diagrams of the γ′ phase for the Ni-Al
alloy is presented, using a novel hybrid architecture of ANNs trained with reported and
simulated data. The manuscript is organized as follows: in the next section, the related
works are discussed; then, the proposed methodology is presented; and then, the results
are discussed. Finally, the conclusions are presented.

Table 1. Related works for TTT prediction. Due to the novelty of the use of ML techniques in the
prediction of TTT diagrams, there are still few reported works.

Related
Works Prediction Implemented

Algorithm/Architecture
Material

[4] TTT diagrams Backpropagation multilayer Ti6-Al4-V
[7] βtr

Temperature phase
Backpropagation

Multilayer
Titanium alloys

[6] TTT diagrams Titanium alloys
[5] TTT diagrams of

ultrafine bainitic
Conjugate gradient

algorithm
Commercial steels

[13] CCT diagrams Backpropagation
multilayer

Steels
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Table 1. Cont.

Related
Works Prediction Implemented

Algorithm/Architecture
Material

[12] TTT diagrams Nucleation theory Metallic glasses
based

[8] TTT diagrams Support vector machine High carbon steels
[17] Nucleation lag

Time
Deep neural networks Iron and steelmaking

Slags

[9] TTT diagrams
Backpropagation, random

committee and random
forest algorithms

Stainless steels

[11] SH-CCT diagrams
Random forest, k-nearest

and random
committee algorithms

Ni-Cr-Mo Steels

[14] Austenite decomposition
during cooling

Long short-term memory Medium carbon steel

[15] TTT diagrams Support vector machine Pearlitic steel
[16] Optimal design of

hot-dip galvanized TT
Backpropagation multilayer

and genetic algorithm
Galvanized steel

2. Materials and Methods

The present work implements a classical methodology for prediction tasks (see
Figure 1). The first part addresses the creation of a database, which will be used in
the training/validation tasks. Subsequently, the ML algorithms to study were selected,
according to what is reported in the current literature. Next, the training and validation of
each of the architectures were developed. This ends with the proposal of a model, in this
case, a hybrid model, which showed better precision.

Figure 1. Proposed methodology for determining TTT diagrams using ANNs.

The current literature included a few works related to the use of intelligent systems to
predict TTT diagrams of nickel-based alloys. The main reinforcing phase in nickel-based
alloys is γ′ [18]. This phase reinforces the matrix without reducing the fracture resistance
of the material. In addition, it has a primitive cubic crystal structure (L12), with aluminum
atoms at the corners of the cube and nickel atoms at the centers of the faces, according
to [18]. Therefore, the present work will focus on the use of ANNs to predict the TTT
diagram of the γ′ phase in the NiAl alloy.
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2.1. Database Creation

For any approach based on ML, it is necessary to define a database (DB) for the training
and validation tasks. The current literature was reviewed to generate the DB. Few works
have been reported by [19–21] addressing the calculation of TTT diagrams for NiAl binary.
Due to these limitations, the DB was fed with some simulated diagrams using specialized
software based on the CALPHAD methodology. There are several software packages on
the market, for example, FactSage™, MTDATA™, PANDAT™, MatCalc™, JMatPro™, and
Thermo-Calc™.

The Thermo-Calc™ was used for the extensive calculations it can perform [22]. The
Precipitation Module (TC-PRISMA) was also used, since it incorporates more functionality
to Thermo-Calc™ such as simultaneous nucleation, growth/dissolution, and coarsening
under arbitrary heat-treatment conditions in multicomponent and multi-phase systems
using Langer–Schwartz theory and the Kampmann–Wagner numerical approach. Further,
two databases were used, the TCNI8 and the MOBNI5.

Using the phases diagram (see Figure 2), the minimum and maximum temperature
ranges were determined, as well as the chemical composition in which the phases γ and γ′

are present as stable phases and the mixing zone of these two phases. The diagram has a
weight percentage range between 0 and 20. The ranges in the presence of a mixing zone
of the phases γ and γ′ were from 5.3 to 13.3 percentage weight of aluminum; from these
limits, work began on the simulation of TTT diagrams through the TC-PRIMA module.

Figure 2. NiAl phase diagram in weight percent. Both diagrams simulated by Thermo-Calc™.

The TCBIN database was used to define the minimum and maximum percentages of
Ni and Al in which the mixing zone was created, as well as the limits of the stable zone of
the γ and γ′ phases. As shown in Figure 2, the lower limit for the area of the mixing zone
of the phases γ and γ′ is at a 323.15 ◦K, which ranges from 0.70% to 13.3% of aluminum
percentage. The upper limit is at the temperature of 1640.15 ◦K, which ranges from 11.0%
to 12.7% of aluminum.

Once the range of chemical composition where the γ′ phase precipitates were set, all
the parameters to perform the simulation was defined. The parameters were the chemical
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composition, elastic properties, simulation temperature, phase to be precipitated, and
grain size. Table 2 shows the values for each parameter. The simulations began with the
lowest composition of aluminum (5.3% Al and 94.7% Ni), determining the first TTT of
the phase γ′, up to the maximum value of 13.3% Al with an increase by 0.1 % wt. Values
outside this range cannot be simulated by Thermo-Calc™, due to the short precipitation
times (microseconds or nanoseconds) and the limited presence of the γ′ phase.

Table 2. Parameters used for the simulation of TTT diagrams in the software Thermo-Calc™.

Input Parameters

Ni composition Balance
Al composition 5.3, 5.4, ..., 13.2, 13.3% wt
Elastic properties Cubic
Min. temperature 323.15 °K
Max. temperature 1640.15 °K
Matrix phase FCC (Gamma)
Precipitation phase FCC L#12 (Gamma prime)
Grain size 100, 1000, 10,000 µm

The grain size and step parameters do not have an influence on the precipitation times
and temperatures of the phases (Thermo-Calc™ calculations), as can be seen in Figure 3.
Hence, these parameters were not taken into account for the simulation. As a result, a
compilation of 96 TTT diagrams was obtained (simulated) to compose the DB; each diagram
corresponds to a different chemical composition.

(a) (b) (c)

Figure 3. Comparison of simulated TTT diagrams varying (a) steps, (b) grain size and (c) chemical
composition. It is observed that only the chemical composition has a considerable impact on the TTT
diagrams. Due to this, the steps and grain size were discarded as inputs to the ANNs.

With all sets of simulated TTT diagrams, two databases were created. Each DB is
composed of the Euclidean coordinates of the points that describe the curve. The first, and
following the proposed by [4], was used to predict only the nose point of the diagrams. The
nose point is the shortest time that a phase requires for its precipitation. The second DB
was used to predict the complete TTT curves. In this case, the curves of each diagram are
divided from the nose point, into an upper and lower part (sub-curves). In addition, since
the TTT curves are not symmetrical, values for the shorter sub-curve were interpolated
to obtain the same number of coordinates for both segments. Each DB was divided into
two, the nose point DB consists of 96 data points, and the complete curve DB consists of
19,296 data points. The first part was used to train the models (66% of data) the second part
was used to validate the models (33% of data).
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2.2. ANN Definition

There are several ML architectures for the experimental design. We refer, in the first
instance, to those that have already been reported. Support vector machines (SVM) [23] and
multilayer perceptron (MLP) [24] have been used in the literature for TTT/CCT prediction.
On the other hand, it is proposed to use an LSTM architecture because it is a type of
architecture that is designed with a memory cell to preserve the state of the activation
function for a long period [25]. It is a recurring network.

It is necessary to validate the performance of each architecture. There are several
standardized metrics. In this work, two metrics were used to validate the performance of
each ANN. On the one hand, the Score metric was evaluated, which indicates the degree
of similarity that the predicting data has with respect to those it has for validation; closer
to 1 indicates greater effectiveness. It was decided to use those architectures with a value
greater than 0.95. On the other hand, the root mean square error (RMSE) was also used.
This metric indicates the absolute fit of the model to the data, and how close the observed
data points are to the model’s predicted values. Being a minimization metric, it is expected
to have the smallest possible value. The RMSE is calculated as:

RMSE =

√
∑N

i=1(Predictioni − Currenti)2

N
(1)

2.3. Experimental Design

The implemented experimental design contemplates four experiments (see Table 3).
The predictions of the nose point and the complete curve were evaluated individually.
From here on, each of the experiments is referred to as Exp. 1, Exp. 2, Exp .3 and Exp. 4.

Table 3. Experimental design to predict the nose point and the complete TTT curves with different
inputs. Temperature (T) and time (t). Table 2 shows the parameter values.

DoE Algorithms Prediction
Strategy 1 Strategy 2

Input Output Input Output

Exp. 1 SVM–MLP nose
point

Al % t Al % T
Exp. 2 SVM–MLP Al % T Al % and T t

Exp. 3 MLP Al % t, T - -

Exp. 4
SVM–MLP–

LSTM
complete

curve
Al %,

[Tmax, Tmin]
t - -

Exp. 1 was comprised of two strategies, the first has as input the chemical composition
to predict the temperature. The second one is to predict the time, having as input the
chemical composition. For Exp. 2, two strategies were also implemented, and data was
shared between them. The first one has as input the chemical composition to predict
the temperature. This value was an input along with the chemical composition for a
second network to predict the time. Exp. 3 was comprised of only one ANN, which has
the chemical composition as input, and the temperature and time parameters as output.
Similarly, Exp. 4 has only one strategy; this network consists of two inputs (chemical
composition and temperature) to obtain the time as output.

For Exp. 1, Exp. 2, Exp. 3, the precision of prediction was calculated according
Equation (2). The precision was calculated as the ratio between the number of positive
values (time–temperature pair) correctly predicted to the total number of values predicted
(either correctly or incorrectly). A threshold of ±10 s was defined to consider the prediction
of a value as true. The precision measures the model’s accuracy in predicting the time–
temperature pairs as positive. When the model makes many incorrect positive predictions
or few correct positive predictions, this increases the denominator and makes the precision
small. On the other hand, the precision is high when the model makes many correct positive
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predictions (maximizing true positives) or when the model makes fewer incorrect positive
predictions (minimizing false positives).

Precision =
Predictiontrue_positive

Predictiontrue_positive + Prediction f alse_positive
(2)

For Exp. 4, the precision was calculated using the Kolmogorov–Smirnov goodness of
fit test (K-S test), which assesses how a dataset is significantly different from the probability
model specified under the null hypothesis and fits to the same distribution. The K-S test
statistic quantifies the distance between the measured dataset distribution and that of the
observed dataset [26].

Different configuration parameters were modified for each analyzed algorithm (e.g.,
kernel, gamma, solver, number of layers, activation function). For the MLP and LSTM networks,
different alternatives were implemented: single layer, bilayer, and trilayer. The idea is
to obtain the best performance with the least number of layers and the least number of
neurons. The LSTM/SVM/MLP algorithms were used for the prediction of the complete
curve. Similarly, SVM/MLP algorithms are also used to predict the nose point.

3. Results

As previously mentioned, two databases were used. One was used to train an algo-
rithm to predict the nose point and the other one to predict the complete curve. Subse-
quently, the different evaluated algorithms (SVM, MLP, and LSTM) were configured with a
specific set of parameters for each of the four different experiments proposed in Table 3.
The algorithms that obtained a higher Score and lower RSME during training were selected
as viable options.

The prediction results were analyzed to validate the accuracy with which both the nose
point and the entire curves were predicted. For this, different chemical compositions and
different temperature ranges (within the maximum–minimum previously defined) were
randomly evaluated. Since Thermo-Calc™ is a reference within the scientific/industrial
community to calculate the phases’ precipitation, this work assumes as a highly precise ref-
erence the TTT diagrams calculated by Thermo-Calc™. The predicted results are compared
against to the diagrams simulated by Thermo-Calc™.

3.1. Nose Point Prediction

Table 4 shows the measured metrics (RMSE and Score) to validate the performance
of the considered algorithms (SVM, MLP) to predict the nose point. (see the experimental
design in Table 3). It is observed that to predict the time, Exp. 1 is the best option, using
the MLP (three-layer) algorithm configuration, with the lowest RMSE (279.10 s), as well
as a Score of 0.9999. On the other hand, the best configuration to predict the temperature
was Exp. 3 with the MLP (mono-layer) algorithm, with an RMSE of 3.37 ◦K and a Score of
0.9997. It is important to mention that the SVM algorithm has the worst results. This is
probably due to the weakness of the soft-margin-optimization problem. This resulted in
the hyperplanes being skewed to the minority class when imbalanced data was used in the
training task. Another reason could be a wrong kernel selection; more suitable function
kernels should be analyzed in future works.

Exp. 2 was the experiment that showed more deficiencies in the prediction of the nose
point. This is because the output of the first network (strategy 1) was used as input to the
second (strategy 2). There is error propagation in this procedure, which makes it highly
sensitive to variations in input.
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Table 4. RMSE of the predicted data compared to Thermo-Calc™. The best option, with lower RMSE,
was Exp. 1 (bold number), configured as MLP (three-layer) algorithm.

RMSE Score

Algorithm Time (s) Temperature (K) Time (s) Temperature (K)

Exp. 1

SVM 10,294.3788 44.9792 0.9921 0.9542
MP1 1016.3671 3.4586 0.9999 0.9998
MP2 4108.3471 4.6268 0.9999 0.9991
MP3 279.1034 6.2080 0.9999 0.9995

Exp. 2

SVM 11,181.6751 50.1539 0.9945 0.9542
MP1 1207.1683 4.2720 0.9991 0.9998
MP2 3987.9322 5.0901 0.9993 0.9991
MP3 3553.9679 11.3034 0.9990 0.9993

Exp. 3
MP1 11,176.8126 3.3762 0.9997
MP2 11,182.3462 10.5387 0.9978
MP3 11,182.5408 11.7169 0.9999

Therefore, the proposed model to predict the nose point is a dual network that includes
the findings of Exp. 1 and Exp. 3 (see Table 3). Thus, this model will be composed of two
neural networks. The first network will be a multilayer perceptron with three hidden layers
(7-3-10 neurons) to predict the time. Configured with an activation function of tanh type
and Solver lbfgs, with the chemical composition as input and the time as output. The second
network is of the perceptron-multilayer-type composed of one hidden layer (6 neurons).
Configured with an activation function of the type tanh and Solver of the type lbfgs, and
as input the chemical composition and output the time and temperature. In this case,
the time was discarded because it was already calculated with the previously described
configuration. Then, the nose-point ordered pairs were formed with the predicted time
of Exp. 1 and the predicted temperature of Exp. 3. This dual architecture optimizes
performance and increases the accuracy of prediction results. The precision of this dual
architecture was 98.07, using Equation (2).

Considering that the set of time values has a high cardinality (ranging from 1.4× 10−7

to 168,000 s), a more complex algorithm (a larger number of hidden layers) is necessary for
prediction; this is unlike the temperature set (ranging between 740 and 1590 ◦K), which
is simpler. This is the reason why this dual network optimizes the prediction of the nose
point of TTT diagrams.

3.2. Complete Curve Prediction

A similar analysis to the one performed with Exp. 1/Exp. 3 was run with Exp. 4 to
predict the complete curve. Different triples of values (Al%, Tmax, Tmin) were randomly
selected to predict the complete curve of the phase γ′. The chemical compositions range
between 5.3 and 13.3 Al. In a similar way, the maximum and minimum temperature ranges
were taken with respect to those obtained from the Ni-Al binary diagrams in the Thermo-
Calc™ simulation. Subsequently, these triples were used as inputs for the three algorithms
to be evaluated (SVM, MLP, LSTM). The MLP was configured for one/two/three layers,
and LSTM was configured for one/two layers.

Table 5 shows the RMSE values calculated for each algorithm evaluated for Exp. 4.
It is observed that the values of the MLP and LSTM have a higher RMSE (with 1513.74
and 106,438.80 on average, respectively). In fact, the LSTM configured as a monolayer
represented atypical results (outliers), so it was not possible to calculate the dispersion of
the residual analysis. This atypical behavior of LSTM networks can be explained in relation
to the amount of data that the algorithm requires to predict with acceptable precision. In
addition, because there is little reported information (TTT diagrams) for the binary system
studied here, it is not possible to develop a database of the necessary size. Due to these
considerations, neither the LSTM nor SVM algorithms were considered for further analysis.
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On the other hand, it is observed that the MLP algorithm in the different configurations
(1,2,3-layers) shows the best performance. Specifically, the MLP-monolayer has the best
performance, with an average RMSE of 1457.40. It is also observed that as the chemical
composition of Aluminum approaches the upper and lower limits, the RMSE tends to grow.
This is because precipitation times are very fast (fractions of a second) or very slow (several
hours), and the algorithm takes more runtime to converge to the minimum. Figure 4 shows
the prediction performance of the MLP algorithm using the different configurations. The
TTT curve calculated with ThermoCalc is shown within the same diagrams. As mentioned
before, the MLP-monolayer is the best performer.

Table 5. Comparison of the different RMSE (in seconds) calculated for the different algorithms
evaluated in Exp. 4. Figure 4 shows the predicted TTT curves.

Algorithm 6.1 Al 7.3 Al 9.7 Al 10.3 Al 10.9 Al 12.1 Al Average

MLP1 8515.7221 192.8856 11.5931 8.2832 2.2683 13.6867 1457.407
MLP2 8681.1456 821.4856 27.1019 10.0785 23.1313 97.0063 1609.992
MLP3 8833.3507 8621.8408 43.7824 39.2825 38.3795 10.8692 2931.251

LSTM1 Inf Inf Inf Inf Inf Inf Inf
LSTM2 630,231.3461 8211.0746 99.2658 49.9114 23.9607 17.1395 106,438.8

SVM 65,192.8549 1198.1191 17.5913 44.3813 38.0452 10.8817 11,083.65

Ni6.1Al Ni7.3Al Ni9.7Al

Ni10.3Al Ni10.9Al Ni12.1Al

Figure 4. Complete curve prediction behavior of different MLP configurations against the results of
Thermo-Calc™ for different chemical compositions. It is observed that the MLP monolayer has the
best performance.

The accuracy achieved by each of the implemented algorithms to predict Exp. 4 was
also calculated. Table 6 shows the results of the Kolmogorov–Smirnov goodness-of-fit
test [27]. It is observed that the MLP-monolayer has an accuracy higher than 80%, in some
Al%, reaching 95%. The same phenomenon is observed as in the evaluation of the RMSE,
at the limits of the percentage of aluminum, there is less precision in the prediction. The
average precision to predict the complete curve is 86.41% for the MLP-monolayer model.
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Table 6. Accuracy achieved in predicting the complete curve of Exp. 4 using the Kolmogorov–
Smirnov goodness-of-fit test. It is observed that the mono-layer MLP network is the one that obtains
the best precision.

Algorithm 6.1 Al 7.3 Al 9.7 Al 10.3 Al 10.9 Al 12.1 Al Average

MLP1 81.1978 82.7202 89.2906 88.9285 95.0425 76.7524 85.6553
MLP2 76.7708 77.031 63.9706 63.2793 60.1704 53.4611 65.7805
MLP3 42.6717 59.8222 55.9556 58.2392 58.2535 72.2924 57.8724

LSTM1 Inf Inf Inf Inf Inf Inf Inf
LSTM2 29.51 57.9536 60.8414 64.4185 74.3508 81.3568 61.4051

SVM 51.0803 44.8709 49.0361 52.861 54.5565 24.1036 46.0847

3.3. Hybrid Model Proposal

Based on the results obtained from the experimental design (Exp. 1/Exp. 2/Exp. 3/
Exp. 4), the model for predicting the nose point has a precision of 98.07%. On the other
hand, the best model to predict the complete curve has an average accuracy of 86.41%
(MLP-monolayer), which translates into temperature differences greater than 329 °K at
some points. From a practical point of view, this difference is unacceptable, since there is a
risk of precipitating unwanted phases during heat treatment. Therefore, it is concluded
that the results obtained from Exp. 4 do not have adequate precision.

Hence, a hybrid model is proposed which combines the previous best-ranked algo-
rithms, with a better performance to predict time and temperature, both from the nose
point and from the complete curve. The proposal is formed by a dual perceptron multilayer
network which includes a trilayer network of Exp. 1 and a single layer of Exp. 3 to predict
the nose point, as well as the single layer perceptron-multilayer network of (Exp. 4) to
predict the upper and lower parts of the complete curve. The determination of the complete
curve starts at the nose point.

To predict the complete curve, our proposal receives as input the percentage of alu-
minum, temperature limits (lower/upper) and the temperature step to perform the calcula-
tion. Since nickel is the balance element, it is enough to know the percentage of aluminum
to define the chemical composition of the binary alloy. For this study, the temperature
range of 600 to 1500 K was selected, taking into account that the maximum temperature for
the calculation must be between the solvus and solidus temperatures, and the minimum
temperature must be the one in which there is no precipitation of the phase under study.

Although our hybrid model has the competence to predict the entire diagram, it is
only possible to predict within a specific temperature range. The upper-temperature limit is
usually defined by the solvus temperature for the corresponding phase. The lower limit is
the minimum temperature to obtain 1 percent of the phase. These values can be estimated
according to the user’s expertise, or from experimental results or literature reports. The
reason for this temperature setting is that, often, there are limitations derived from the
type of oven that will be used in the heat treatment. The steps define the resolution of
the curve: a small step implies a better resolution. Figure 5 illustrates the proposed final
scheme, which it is made up of three different neural networks. The temperature/time
values previously defined for the dual network in the nose-point prediction are used as
input for the second network.

The prediction results of the proposed hybrid model are presented in
Figure 6. Improved precision is observed in the prediction of the curves compared to
the results obtained from Exp. 4, as well as a smaller deviation with respect to the data
simulated by Thermo-Calc™. Table 7 presents the precision and the RMSE of the diagrams
presented in Figure 6. The prediction limits in the diagrams also affect the accuracy; as has
already been discussed, these range from nanoseconds for chemical compositions with high
Aluminum content due to the rapid precipitation of the γ’ phase, and, for the low amount
aluminum, which occurs in terms of hours. Future works will address this phenomenon,
seeking to optimize the prediction limits.
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Figure 5. PredictionScheme of the proposed hybrid network. The model receives four inputs for the
prediction of the nose point, the top and bottom of the TTT diagram.

Ni6.1Al Ni7.3Al Ni9.7Al

Ni10.3Al Ni10.9Al Ni12.1Al

Figure 6. Prediction results for several chemical compositions of the proposed hybrid model against
the Thermo-Calc™. Table 7 shows the precision for each plot. As the chemical composition approaches
the lower/upper limits, the accuracy decreases.

The overall accuracy of our proposal is 96.59, measured along the lower/upper bounds
of the workspace.



Materials 2022, 15, 8767 13 of 15

Table 7. Table showing the RMSE and accuracy (Acc.) calculated for the proposed hybrid model
at different, randomly selected chemical compositions (see Figure 6). The general accuracy of our
proposal is 96.59.

6.1 Al 7.3 Al 9.7 Al 10.3 Al 10.9 Al 12.1 Al

RMSE 43.89 32.37 21.63 21.39 26.74 51.86

Acc. 93.74 98.17 98.78 99.96 97.88 91.03

4. Conclusions

The present work proposes a strategy based on neural networks to predict, with high
precision, temperature–time–transformation diagrams for the binary NiAl.

A database was built by implementing two strategies. On the one hand, diagrams
already reported on the NiAl alloy were compiled; on the other, TTT diagrams were
generated using the Thermo-Calc™ software. A database of 96 TTT diagrams for the γ′

phase with different chemical compositions was created, of which 66% were used for the
training phase, and 33% for validation. The presented methodology analyzes the prediction
of the nose point and the complete curve of the TTT diagrams for the binary NiAl.

It is concluded that the multilayer perceptron algorithm is the most efficient. A hybrid
model was proposed to predict the complete TTT diagram. This model is formed by a
perceptron-multilayer network configured with three hidden layers and another perceptron-
multilayer network configured with one hidden layer to predict the nose point. In addition,
a multilayer perceptron monolayer network was used to predict the top and bottom of the
complete curve. The determination of the complete curve starts at the nose point.

The proposal presented allows the reduction by several hours of computation via
Thermo-Calc™ or long experimental days in calculating TTT diagrams. The proposed
model does not require an end user with significant technical specialization, since only
the chemical composition and temperature range to be analyzed must be entered and the
system returns the results with an accuracy greater than 95%, on average. This precision
was calculated along the upper and lower limits of the established chemical composition.
As we approach these limits, the accuracy of the calculated diagram tends to decrease. This
is because the limits in the diagrams go from nanoseconds to the bottom and hours to
the top.

In future works, the prediction of the TTT diagrams will be optimized at the limits of
the chemical composition and at the limits of the diagrams individually where there is a
precipitation of the γ′ phase. On the other hand, the use of new programming paradigms
for the coding of neural networks, for example, parallel programming, will improve the
performance of prediction.
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