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Abstract: Due to their complex microstructures, the research on the static and dynamic behaviors
of triangular honeycomb sandwich panels (triangular HSPs) is limited. In this study, the effective
plate properties of triangular HSP was obtained by the homogenizing of the unit cell, and then the
input to a VAM-based two-dimensional equivalent plate model (2D-EPM) to perform static and
dynamic analyses. The accuracy of the proposed model for predicting the equivalent stiffness of the
triangular HSP was verified by three-point bending experiments of 3D-printed specimens. Then,
the static displacement, global buckling, and free vibrations predicted by 2D-EPM were verified
with the results from three-dimensional finite element model simulations under various boundary
conditions. The influences of structural parameters (including angle, core wall thickness, and cell
side length of the unit cell) on the static and dynamic characteristics of triangular HSPs were also
investigated, which can provide a useful tool for the modeling and evaluation of triangular HSPs
under different conditions.

Keywords: variational asymptotic method; triangular honeycomb sandwich panel; equivalent plate
model; multiscale analysis; free and forced vibration

1. Introduction

The honeycomb sandwich structure originated in the field of bionics and was named
after its resemblance to honeycombs. The honeycomb sandwich structure is a porous
material with excellent characteristics, such as high strength, low weight, and thermal
insulation. Honeycomb sandwich structures have been widely used in fields from aerospace
to home decoration, and materials with this structure have attracted a considerable amount
of research attention. Many theories, such as the Gibson formula [1,2], energy method [3],
and homogenization method, have been developed to characterize the performances of
honeycomb sandwich structures.

At present, a series of relevant theories, such as first-order shear theory (FOST) [4,5],
high-order shear theory [6], layered theory [7], and zig-zag theory [8], have been proposed
to examine the mechanical mechanism of the honeycomb sandwich panels. Huang et al. [9]
developed a finite element model to investigate the vibration and damping of elastic–
viscoelastic–elastic sandwich beams. To examine the dynamic characteristics of functionally
graded porous sandwich plates, Gao et al. [10] developed a sandwich plate model by
integrating the FOST, the equivalent theory of material mechanics, and the Newmark–Beta
approach. Many studies have investigated sandwich panels by using high-order shear
theory [11], with the displacement field serving as the high-order term of the thickness
direction coordinates, to improve the calculation accuracy of the sandwich structure.
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If the whole sandwich layer is modeled by first- or higher-order shear theory, it is
collectively referred to as equivalent single-layer theory. However, a shear strain disconti-
nuity exists in the equivalent single-layer theory at the layered interface of the structure.
As a result, the delamination theory satisfying the interface continuity of the shear stress
has also been developed [12]. Each layer has a corresponding displacement field, which
can make the shear stress and displacement continuous, resulting in a good displacement
response and stress distributions. However, there are certain disadvantages to the layered
theory. In particular, the number of calculations of the model established according to the
layered theory increases as the number of layers increases.

The dynamic characteristics of the honeycomb sandwich structure have also received
a considerable amount of attention. There are many methods for analyzing the damping
performance, including the complex eigenvalue technique (CET) [13] and the modal strain
energy approach (MSE) [14]. Based on the MSE and the frequency variation characteristics
of viscoelastic materials, Zhang et al. [15] studied the damping loss performances of
frequency-varying-material composite sandwich structures through an iterative method.
The main solution method for the issue of the frequency response is an iterative method,
which combines the MSE and complex eigenvalue method to address the dynamic problems
of the structure. Meunier et al. [16] determined the free vibrations and dynamic responses
of composite sandwich panels by an iterative method based on the elastic viscoelastic
correspondence principle. Moura [17] used an iterative technique to derive the damping
and stiffness matrix based on the modal eigenvalues and eigenvectors and proposed a series
of mass matrix processing methods to solve the dynamic problem of a frequency-varying
viscoelastic interlayer.

The analytical theory of honeycomb sandwich panels began to be coupled with the
finite element technique as a result of the aforementioned theoretical progress. For example,
Farsani et al. [18] and Wu et al. [19] investigated the free vibrations of composite sandwich
panels by using the FOST and global–local high-order deformation theory combined with
the finite element method, respectively. As a result, numerical simulations have also become
the main approach for investigating the mechanical properties of honeycomb sandwich
panels, in addition to carrying out experiments to directly study such structures [20,21].

There are two main methods of numerical simulation for honeycomb sandwich struc-
tures. One is to directly establish a three-dimensional (3D) model of the honeycomb
sandwich structure and carry out numerical simulation, but this approach is time consum-
ing and labor intensive. The second is the micromechanical equivalent calculation of a
honeycomb sandwich structure by using the Voight–Reuss formula [22], homogenization
method [23,24], and other theories. Compared with the former, the latter saves more time
and labor. The periodic unit cell is selected as the characterization unit, the equivalent prop-
erties are calculated, and the equivalent sandwich plate is taken as a homogeneous material.
In this way, the challenges of complicated modeling and time-consuming calculations can
be solved.

The “variational asymptotic method” (VAM) developed by Cesnik and Hodges has
recently been extended to deal with periodic materials and structures [25–27]. The core
of the VAM is to transform the difficulty of determining the definite solution of complex
elasticity into a problem of asymptotically solving for the extreme value (or stationary
value) of the functional, which is then summarized as solving the linear algebraic equations.
The variational problem involved in mechanical problems is often associated with the
energy principle. For example, if the system is in equilibrium, the stationary value of the
system energy—the minimum potential energy principle—must be used. The original
complicated 3D plate model can be made equivalent to a two-dimensional (2D) model by
using the VAM, which has a high accuracy and has been applied in many areas [28–31].

At present, the research has mostly focused on hexagonal honeycomb sandwich
panels, and their mechanical mechanisms are well understood. However, there has been
less research on triangular honeycomb sandwich panels (triangular HSPs), and their static
and dynamic behaviors remain unknown. One goal of our study is to reveal the mechanical
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mechanism of triangular HSPs by using a VAM-based equivalent plate model, as well as to
determine the variation characteristics of its effective performance under various boundary
conditions. Therefore, the starting point of this study focuses on the effective performance
that is mainly concerned when the structure is applied in engineering, rather than the
detailed study of physical properties.

The original problem of characterizing the effective performance of triangle HSPs
has been solved in this work. Compared to the existing literature, the novelties of this
work are that the effective plate properties of triangle HSPs were obtained by constitutive
modeling over the unit cell, and inputted into the 2D-equivalent plate model (2D-EPM) for
global analysis. The main contributions of the paper are the verification of the accuracy and
validity of the present equivalent model in the global analysis of triangle HSPs, and the
systematic analysis of the influence of parameters (including angle, core wall thickness, cell
side length, and core form) on the effective performance (especially the specific stiffness) of
triangle HSPs. To make the present work more self-contained, the authors have chosen to
refer some text and equations from their previous publications.

2. Theoretical Foundation
2.1. 3D Energy Formulation of Triangular HSPs

Figure 1 shows the analytic process of the triangular HSP by using a VAM-based
equivalent model. From a macroscopic standpoint, the whole plate was equivalent to a
continuous medium, with the displacement expected to vary slowly over one unit cell. From
a microscopic standpoint, the displacement showed a considerable but small amplitude
change over one unit cell. Hence, the displacements of the original triangular HSP may be
represented by the displacements defined along the reference plane x1 − x2 (x3 disappears),
with the partial derivative [31]

∂u(xα; yi)

∂xα
=

∂u(xα; yi)

∂xα

∣∣∣∣
yi=const

+
1
η

∂u(xα; yi)

∂yi

∣∣∣∣
xα=const

≡ u,α +
1
η

u|i, (1)

where yi(i = 1, 2, 3) and xα(α = 1, 2) are micro- and macro-coordinates, and η is a small
parameter indicating the scale ratio.

Figure 1. Analytic process of triangular HSPs by using the VAM-based equivalent model. (a) The 3D
finite element model (3D-FEM), (b) constitutive modeling over the unit cell, and (c) 2D equivalent
plate model (2D-EPM) (top facesheet removed for better view).
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2.2. Step 1: Equivalent 2D Displacements from 3D Displacements

To develop the equivalent plate model of the triangular HSP by using the VAM, the
3D displacement field of the original triangular HSP ui must be represented by 2D plate
variables ūi, such that

u1(x1, x2, y1, y2, y3) = ū1(x1, x2)− ηy3ū3,1 + w1(x1, x2, y1, y2, y3),

u2(x1, x2, y1, y2, y3) = ū2(x1, x2)− ηy3ū3,2 + w2(x1, x2, y1, y2, y3),

u3(x1, x2, y1, y2, y3) = ū3(x1, x2) + w3(x1, x2, y1, y2, y3),

(2)

where ūi and ui are the displacements of the 2D-EPM and 3D-FEM, respectively, and wi rep-
resents unknown warping functions to be solved. The underlined terms may be interpreted
as the deformation of the reference surface, which should meet the following constraints:

hūa(xα) = 〈uα〉+ 〈ηy3〉ū3,2,

hū3(xα) = 〈u3〉,
(3)

where 〈·〉 denotes the volume integral over the unit cell.
The 2D displacements are the averages of the 3D displacements if the origin of local

coordinates was located at the geometric center of the unit cell, and the warping functions
are constrained by

〈ηwi〉 = 0. (4)

In the linear elastic stage, the 3D strain may be approximated by a linear form by using
the decomposition of the rotation tensor [32], e.g.,

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
. (5)

A variable change is implemented in the 3D warping functions,

wi(x1, x2, y3) = ηy3 ϕi(x1, x2) + vi(x1, x2, y3), (6)

where ϕ1 and ϕ2 represent the rotations of a transverse normal around the x2 and x1 axes,
respectively, and ϕ3 denotes the elongation of a transverse normal along the x3 axis.

Substituting Equations (2) and (6) into Equation (5) and removing higher-order terms
with negligible effect on the total energy yields explicit expressions of the 3D strain field:

ε11 = ε11 + ηy3κ11 + ηy3 ϕ1,1 + v1,1,

2ε12 = 2ε12 + 2ηy3κ12 + ηy3 ϕ2,1 + v2,1 + ηy3 ϕ1,2 + v1,2,

ε22 = ε22 + ηy3κ22 + ηy3 ϕ2,2 + v2,2,

2ε13 = ϕ1 + v1,3 + ηy3 ϕ3,1 + v3,1,

2ε23 = ϕ2 + v2,3 + ηy3 ϕ3,2 + v3,2,

ε33 = ϕ3 + v3,3,

(7)

where εαβ and καβ can be defined as

εαβ(x1, x2) =
1
2
(
ūα,β + ūβ,α

)
, καβ(x1, x2) = −ū3,αβ. (8)

The 3D strain field E may be represented as

Ee = [ε11 ε22 2ε12]
T = ε + ηy3κ + Iα

(
ηy3ϕ‖,α + v‖,α

)
,

2Es = [2ε13 2ε23]
T = ϕ‖ + v‖,3 + eα(ηy3 ϕ3,α + v3,α),

Et = ε33 = ϕ3 + v3,3,

(9)
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where the subscripts e, s and t denote in-plane, shear, and thickness, respectively;
()|| = [()1 ()2]

T, ε = [ε11 2ε12 ε22]
T, κ = [κ11 κ12 + κ21 κ22]

T, and

e1 =

{
1
0

}
, e2 =

{
0
1

}
, I1 =

 1 0
0 1
0 0

, I2 =

 0 0
1 0
0 1

. (10)

2.3. Step 2: Energy Expression of the Triangular HSP

The panel’s strain energy may be expressed as

U =
1
2

∫ b/2

−b/2

∫ a/2

−a/2

1
Ω
UΩdx2dx1, (11)

where b and a are the width and length of the panel, respectively. UΩ represents the strain
energy over the domain of the unit cell, which can be expressed as

2UΩ =2×
∫ 0

−t f

∫ l
2

− l
2

∫ l
2

− l
2

ET
ADAEAdy1dy2dy3

+ 4×
∫ hc

0

∫ −y1− l
2+
√

2
2 t

−y1+
l
2−
√

2
2 t

∫ l−t
2

t
2

ET
B DBEBdy1dy2dy3

+ 4×
∫ hc

0

∫ l
2

0

∫ t
2

0
ET DCECdy1dy2dy3

+ 4×
∫ hc

0

∫ l
2

0

∫ 2

l−t
2

ET
DDDEDdy1dy2dy3,

(12)

where the subscripts A, B, C, and D represent the facesheet, inclined wall, middle wall, and
side wall, respectively, as illustrated in Figure 2, t f and t are the thickness of the facesheet
and core wall, respectively, hc is the height of the core layer, and l is the cell side length.

Figure 2. Integral domain division of unit cell (top facesheet removed for better view).

Equation (12) can be expressed compactly as

U =
1
2

〈
ETDE

〉
=

1
2

〈
Ee

2Es
Et


T De Des Det

DT
es Ds Dst

DT
et DT

st Dt


Ee

2Es
Et


〉

, (13)

where De, Des, Det, Ds, Dst, and Dt are the corresponding sub-matrices of the 3D 6 × 6
material matrix.
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The virtual work done by the external load may be expressed as

W3D =W2D +W∗
=
∫

s(piūi + qαδū3,α)ds +
∫

s(〈 fiwi〉+ τihϕi/2− βihϕi/2)ds,
(14)

where δW∗ and δW2D are the virtual work related to and independent of the warping
function, respectively, s denotes the surface of the 2D-EPM, −hϕi/2 and hϕi/2 denote
the warping displacements on the bottom and top surfaces, respectively, fi is the body
force, βi and τi are the traction forces on the bottom and top surfaces, respectively, and the
distributed forces and moments along the reference surface are defined as pi = 〈 fi〉+ τi + βi
and qα = h/2(βα − τα)− 〈ηy3 fα〉, respectively.

The absolute velocity of a generic point in the triangular HSP may be expressed as

v = V + ω̃(ξ + w) + ẇ, (15)

where V is the absolute velocity of a point in the deformed reference surface, ẇ = ∂w/∂t,
ω̃ denotes the inertial angular velocity, ω̃ = −eijkω, with eijk as the permutation symbol,
and ξ = [0 0 x3]

T .
The kinetic energy of the panel may be represented as

K =
1
2

∫
V

ρvTvdV = K2D +K∗

=
1
2

∫
Ω

(
ρ̄VTV + 2ωT ρ̃ξV + ωTΦω

)
dΩ

+
1
2

∫
V

ρ
[
(ω̃w + ẇ)T(ω̃w + ẇ) + 2(V + ω̃ξ)T(ω̃w + ẇ)

]
dV ,

(16)

where ρ is the mass density, ρ̄ = 〈ρ〉, ρξ =
⌊

0 0 〈ηy3ρ〉
]T , and

Φ =

 〈
ηy2

3ρ
〉

0 0
0

〈
ηy2

3ρ
〉

0
0 0 0

.

The elastodynamic behavior of the triangular HSP is governed by the Hamilton principle∫ t2

t1

[δ(K2D +K∗ −U ) + δW2D + δW∗]dt = 0, (17)

where t1 and t2 are arbitrary fixed times.
A common way of solving Equation (17) is to assume a form of the unknown warping

function wi, so as to directly reduce the original 3D model to a 2D plate model. Such an
assumption, however, may introduce inaccuracies into a triangular HSP made of high-
porosity and periodic microstructures. The asymptotic analysis of the variational statement
in Equation (17) may be employed to obtain the solution of wi, which will be detailed next.

2.4. Step 3: Dimensional Reduction Analysis

To solve the unknown warping function wi based on the VAM, the order of each term
in Equation (17) should first be assessed as

εαβ ∼ hκαβ ∼ ϕi ∼ ξ, vi ∼ hξ, v‖;α ∼ w3;α ∼
h
a

ξ,

v‖;3 ∼ v3;3 ∼ ξ, h fα ∼ τα ∼ βα ∼ n
h
a

ξ, h f3 ∼ τ3 ∼ β3 ∼ n
(

h
a

)2
,

(18)

where n and ξ are the order of the material properties and the minimum strain, respectively.
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According to the VAM, the terms of K∗ and δW∗ that are asymptotically smaller than
other terms can be removed, and the the variational statement in Equation (17) can be
rewritten as ∫ t2

t1

[
δ

(
K2D −

∫
Ω
U0dΩ

)
+ δW2D

]
dt = 0, (19)

where U0 denotes the zeroth-order approximation strain energy, which can be obtained as

2U0 =

〈 (ε + ηy3κ)TDe(ε + ηy3κ) +
(

ϕ‖ + v‖,3
)T

Ds

(
ϕ‖ + v‖,3

)
+2(ε + ηy3κ)T

(
Des

(
ϕ‖ + v‖,3

)
+ Det(ϕ3 + v3,3)

)
+2
(

ϕ‖ + v‖,3
)T

Dst(ϕ3 + v3,3) + (ϕ3 + v3,3)
TDt(ϕ3 + v3,3)

〉
. (20)

According to the principle of minimum potential energy, the warping function can be
solved from

min
〈ηwi〉=0

U0. (21)

From Equation (20), the corresponding Euler–Lagrange equations are obtained as[
(ε + ηy3κ)TDes +

(
ϕ‖ + v‖,3

)T
Ds + (ϕ3 + v3,3)Dst

]
,3
= λ‖,[

(ε + ηy3κ)TDet +
(

ϕ‖ + v‖,3
)T

Dst + (ϕ3 + v3,3)Dt

]
,3
= λ3,

(22)

where λ|| = [λ1 λ2]
T and λ3 are Lagrange multipliers.

The boundary conditions (BCs) of the bottom and top surfaces can be obtained as[
(ε + ηy3κ)TDes +

(
ϕ‖ + v‖,3

)T
Ds + (ϕ3 + v3,3)DT

st

]+/−
= 0,[

(ε + ηy3κ)TDet +
(

ϕ‖ + v‖,3
)T

Dst + (ϕ3 + v3,3)Dt

]+/−
= 0,

(23)

where the superscript “+/−” denotes the terms at the top/bottom surface.
v|| and v3 can be solved from these conditions as

v‖ =
〈
−(ε + ηy3κ)D̄es(Ds)

−1
〉T

,

v3 =
〈
−(ε + ηy3κ)D̄et(D̄t)

−1
〉

,
(24)

where
D̄es = Des − D̄et(Dst)

T(D̄t)
−1,

D̄et = Det − Des(Ds)
−1Dst,

D̄t = Dt − (Dst)
T(Ds)

−1Dst.
(25)

Substituting Equation (24) in Equation (21), we obtain

U2D = 1
2

〈
(ε + ηy3κ)TK(ε + ηy3κ)

〉
= 1

2

{
ε
κ

}T[ A B
BT D

]{
ε
κ

}
, (26)

where A, B, and D are the 3× 3 tensile, tension-bending coupling, and bending stiffness
matrices, respectively,

A = 〈K〉, B = 〈ηy3K〉, D =
〈
ηy2

3K
〉
,

K = De − D̄esD−1
s DT

es − D̄etDT
et/D̄t.

(27)
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The constitutive relation could be obtained by defining the force resultants N = ∂U2D
∂ε

and moment resultantsM = ∂U2D
∂κ , as follows:

N11
N22
N12
M11
M22
M12


=



A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66





ε11
ε22
2ε12
κ11
κ22
2κ12


. (28)

Although Equation (28) is similar to the CLT based on the Kirchhoff-love assumption,
the present model is asymptotically correct. The transverse normal and shear stresses can be
shown to vanish, a direct result of model derivation rather than an a priori assumption. The
macroscopic behavior of the panel is governed by the variational statement in Equation (19)
that involves the 2D field variables. Hence, the 2D-EPM may be used to represent the
original structure in the global displacement, buckling, and free vibration analyses by using
a FE linear solver in the ABAQUS package.

3. Validation Example

In this section, numerical simulations and experiments are used to validate the accu-
racy of 2D-EPM. The comparison analysis process is shown in Figure 3. Compared with the
bending test, the buckling and dynamic tests are more complex. This article mainly studies
the stiffness, buckling eigenvalue and natural frequency of triangle HSPs, which are also
mainly related to the equivalent stiffness. Therefore, the accuracy of different static and
dynamic numerical simulation depends on the accuracy of calculated equivalent stiffness,
which is verified by the bending test to a great extent.

Figure 3. Comparison analysis process of the 3D-FEM, 2D-EPM, and experimental results.

The differences between the 3D-FEM, 2D-EPM, and experiment results are compared
by using the following equations:

Diff1 =
| 2D-EPM results − Experimental results |

Experimental results
× 100%, (29)

Diff2 =
| 3D-FEM results − Experimental results |

Experimental results
× 100%, (30)
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Diff3 =
| 2D-EPM results − 3D-FEM results |

3D-FEM results
× 100%. (31)

The thicknesses of the top and bottom facesheets were 1 mm, and the thickness of the
core layer was 8 mm. The core layer was created by repeating the core cell 13 times and
6 times along the x1 and x2 directions, respectively. The core cell was composed of two
isosceles triangles and a partition wall, as shown in Figure 1b. The macroscopic dimensions
of the panel were 260 mm × 130 mm, and the three baseline geometric parameters of the
core cell used in the verification were the cell side length l = 20 mm, core wall thickness
t = 2 mm, and included angle α = 45◦. The material properties of the test specimen and
numerical model were the same: elastic modulus E = 2100 MPa, Poisson’s ratio µ = 0.41,
and density ρ = 1300 kg/m3. The indices C, S, and F represent clamped, simply supported,
and free boundary conditions, respectively. The 3D-FEM and 2D-EPM respectively had
49,673 C3D10 and 4880 S4R elements after mesh convergence study. Table 1 shows the
equivalent stiffness obtained by homogenizing the unit cell for reference.

Table 1. Equivalent stiffness of the triangle HSP (unit: SI).

1.25 × 104 2.85 × 103 7.31 × 10−2 6.25 × 104 1.43 × 104 3.28 × 10−2

6.96 × 103 1.79 × 10−1 1.43 × 104 3.48 × 104 8.15 × 10−2

2.94 × 103 −1.88 × 10−1 −4.59 × 10−1 1.47 × 104

sym. 4.55 × 105 1.19 × 105 −2.40 × 100

2.90 × 105 −5.86 × 100

1.12 × 105

3.1. Three-Point Bending Verification

Three-point bending experiments were performed by using a 50-kN screw-driven test
machine (INSTRON 8832). The tests were carried out at a constant speed of 0.5 mm/min,
with the applied load and central roller displacement recorded. A closed single-nozzle type
was used in a 3D printer to ensure a higher accuracy of the printed specimens, and the
printing material was a resin consumable with a diameter of 1.75 mm. All the 3D printing
specimens had the same lengths and widths of 260 and 130 mm, respectively.

Table 2 compares the slopes of the displacement–load curves from the experiment
and the 2D-EPM and 3D-FEM simulations under three-point bending. The values of Diff2
in the elastic stage were basically within 5.0%, indicating that the 3D-FEM can be used
instead of experimental verification. Diff1 in the elastic stage was likewise less than 10%,
indicating that it is reasonable to simulate the three-point elastic bending of the triangular
HSP by using the 2D-EPM. The differences in experiments may come from the initial flaws
of the samples. The printed 3D sample cannot reach the ideal homogeneity due to heating,
nozzle pressure and environmental change. Furthermore, due to the limitation of the 3D
printer, the top facesheet must be printed separately, and the top facesheet must be fixed
on the printed core layer with glue of certain strength and adhesion, which will lead to
differences in the connection strength between the top/bottom facesheet and the core layer.
The difference in 3D-FEM and 2D-EPM may come from the boundary conditions utilised
and the simplification of the model. The 2D-EPM greatly improves the calculation efficiency
by removing high-order items in the calculation process, which would lead to the inevitable
loss of accuracy.

The slopes corresponding to the displacement–load curves obtained from the three-
point bending experiment and numerical simulation can be used to reflect the bending
performances of the panels. Based on the principle of control variables, the triangular
HSP with different core wall thicknesses t, including angles α, and cell side lengths l
were selected to ensure the universality of the model verification. Figure 4 compares the
displacement–load curves obtained from three-point bending tests, 3D-FEM and 2D-EPM
simulations, and the images of the deformed test specimens are shown in the subfigure.
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Table 2. Comparison of the slopes of displacement–load curves from the experiments, 2D-EPM, and
3D-FEM with different structural parameters under three-point bending.

Type of Panel
l-t-α

2D-EPM
N/mm

3D-FEM
N/mm

Test Results
N/mm Diff2 Diff1

20-2-30◦ 69.24 67.88 66.33 2.34% 4.39%
20-2-45◦ 72.22 70.05 67 4.55% 7.79%
20-2-60◦ 59.08 56.09 53.95 3.97% 9.51%
20-3-45◦ 76.67 72.85 70.07 3.97% 9.42%
30-2-45◦ 68.33 64.1 65.46 2.08% 4.38%
15-2-45◦ 81.4 80.33 84.35 4.77% 3.50%

(a) 20-2-30◦ (b) 20-2-45◦

(c) 20-2-60◦ (d) 20-3-45◦

(e) 30-2-45◦ (f) 15-2-45◦

Figure 4. Displacement-load curves from experiments, 2D-EPM, and 3D-FEM (l-t-α denotes cell side
length, core wall thickness and included angle).
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3.2. Global Buckling Verification

The 2D-EPM was used for buckling analysis to obtain the eigenvalues, and the findings
are compared with the 3D-FEM results in this section. The boundary conditions (BCs) were
simply supported on four sides (SSSS). A uniform load of 1/10 = 0.1 MPa and a line load of
1 N/mm were applied to the opposite sides of the 3D-FEM and 2D-EPM, respectively. The
legends of the buckling modes are normalized for unified comparison.

Table 3 compares the first four buckling modes and loads predicted by different models.
The maximum value of Diff3 was 6.68% in the first buckling mode, and the buckling modes
predicted by the 3D-FEM and 2D-EPM were almost identical. That is, there were one, two,
three, and four half-waves along the x2 direction, whereas there was one half-wave along
the x1 direction in the first four buckling modes. Thus, it was proven that the 2D-EPM had
high precision in analyzing the buckling behavior of triangle HSPs.

Table 3. Comparison of the buckling modes and buckling loads of the triangular HSP under simply
supported boundary conditions predicted by different models.

Model 1 2 3 4

3D-FEM

1123.4 N 1126.8 N 1661.1 N 2235.3 N

2D-EPM

1048.0 N 1158.0 N 1711.7 N 2347.9 N

Diff3 6.68% 2.84% 3.01% 5.01%

Table 4 compares the buckling modes and corresponding buckling loads predicted by
different models under various boundary conditions. The errors of the buckling loads were
within 5%, which would fully meet engineering requirements. The buckling modes pre-
dicted by the two models under various boundary conditions were consistent, illustrating
the correctness of the 2D-EPM in buckling analysis under various boundary conditions.

3.3. Free Vibration Verification

Vibration modal analysis is the basis of structural dynamic response analysis. In this
section, four boundary conditions (CCCC, CCCF, CCFF, and CFFF) were selected to examine
the accuracy of the 2D-EPM in predicting the free vibrations. Table 5 compares the natural
frequencies obtained by different models under the four boundary conditions. The natural
frequencies increased as the boundaries became more constrained. The error of the natural
frequencies was less than 6%, which would fully meet engineering requirements. The 2D-
EPM can be used to replace the 3D-FEM to simulate the free vibrations of triangular HSPs.
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Table 4. Comparison of the buckling modes and loads of the triangular HSP under various boundary
conditions predicted by different models.

Items CSFS CSFC FSFC CSCC

B.C.

3D-FEM

241.13 N 416.12 N 273.03 N 1222.9 N

2D-EPM

238.44 N 416.37 N 271.25 N 1265.7 N

Diff3 1.12% 0.06% 0.65% 3.50%

Table 5. Comparison of the first four natural frequencies (Hz) of the triangle HSP predicted by
different models.

Orders
CCCC CCCF

3D-FEM 2D-EPM Diff3 3D-FEM 2D-EPM Diff3

1 1965.0 1977.0 0.61% 1364.0 1420.8 4.16%
2 3553.4 3534.4 0.53% 2117.1 2077.8 1.86%
3 3769.1 3712.3 1.51% 3301.6 3473.8 5.22%
4 5062.7 4919.2 2.83% 3727.2 3569.5 4.23%

Orders
CCFF CFFF

3D-FEM 2D-EPM Diff3 3D-FEM 2D-EPM Diff3

1 402.46 401.77 0.17% 218.43 221.75 1.52%
2 1299.4 1233.1 5.10% 480.15 472.98 1.49%
3 1505.9 1458.9 3.12% 1186.5 1172.8 1.15%
4 2460.4 2314.0 5.95% 1235.0 1236.0 0.08%

To investigate the accuracy of the 2D-EPM for higher-order free vibration analysis,
the first eight natural frequencies and vibration modes under CCCC boundary conditions
are compared in Table 6. The legends of the vibration modes are normalized for unified
comparison. It can be observed that the vibration modes predicted by different models
were very consistent, with reasonably similar frequencies at different orders. The errors
were within 6%, which would fully meet engineering requirements.
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Table 6. Comparison of the higher-order vibration modes and the corresponding frequencies under
CCCC boundary conditions predicted by different models.

Orders 1 2 3 4

3D-FEM

1965.0 Hz 3553.4 Hz 3769.1 Hz 3769.1 Hz

2D-EPM

1977.0 Hz 3534.4 Hz 3712.3 Hz 3712.3 Hz
Diff3 0.61% 0.53% 1.51% 2.83%

Orders 5 6 7 8

3D-FEM

5062.7 Hz 5673.3 Hz 6084.8 Hz 6441.5 Hz

2D-EPM

4919.2 Hz 5581.3 Hz 6280.8 Hz 6821.7 Hz
Diff3 1.62% 3.67% 3.22% 5.90%

3.4. Comparison of Calculation Efficiencies

As shown in Table 7, compared with the 3D-FEM, the 2D-EPM has three advantages:
(1) the definition of contact between the core layer and facesheet, the application of the load,
and the boundary constraints are more convenient and concise; (2) different meshing of the
3D-FEM have a greater impact on the calculation speed and accuracy, whereas the meshing
of 2D-EPM is faster and less difficult; and (3) the calculation efficiency of the 2D-EPM is
nearly 50 times higher than that of 3D-FEM, for example, at 26 s with one CPU versus 9 min
and 42 s with four CPUs in three-point bending analysis. The computer configuration
included a Lenovo XiaoXinAir 15 ITL powered by an 11th Gen Intel i5-1135G7 CPU with a
clock rate of 2.4 GHz and 16 GB of RAM.

Table 7. Comparison of the calculation efficiencies between the different models.

Items 3D-FEM
2D-EPM

Unit Cell 2D Plate

Element type C3D10 C3D10 S4R
Number of elements 49,673 30,907 4880

Number of nodes 82,937 49,116 5485

Global 3-point bending 113 min – 128 s
response Buckling 55 min – 52 s
analysis Vibration 24 min – 48 s
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In summary, using the 2D-EPM instead of the 3D-FEM to complete the numerical
simulation would not only meet the engineering requirements but could also greatly
improve the calculation efficiency and minimize the numerical simulation complexity. As a
result, the following geometric study will use the 2D-EPM to investigate the influences of
the geometric parameters on the static and dynamic behaviors of triangular HSPs.

4. Parametric Study

The effects of the core cell parameters (included angle, core wall thickness, and
cell side length) on the equivalent stiffness, buckling load, and natural frequency of the
triangular HSP are examined in this section. The macroscopic dimensions of the panel were
260 mm × 130 mm, and the BCs used for buckling and free vibration analysis were SSSS
and CCCC, respectively.

4.1. Included Angle

Figures 5 and 6 show the geometric configurations of core cells with different included
angles and their effects on the equivalent stiffness. There were three main factors affecting
the equivalent tensile stiffness. The first was the filling degree of the core layer under the
same macroscopic dimensions, which could be judged qualitatively based on the equivalent
density. The second factor is the projected area of the core layer in different axial directions.
The last factor is the in-plane equivalent elastic modulus.

Figure 5. Geometric configurations of core cells with different included angles.
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(b) Equivalent bending stiffness

Figure 6. Effects of the included angles on the equivalent stiffness of the triangular HSP.

The in-plane equivalent elastic modulus and the equivalent density decreased with
an increasing included angle, resulting in a decrease in the equivalent tensile stiffness A11.
However, the tensile stiffnesses in the other directions decreased first and then increased
because they were also affected by the change of the projected area in the corresponding
axial direction. Thus, the equivalent plate showed distinct anisotropy. As shown in
Figure 6b, the variation trend of the equivalent bending stiffness was similar to that of the
tensile stiffness, mainly because the bending-resistance ability of the panel was mainly
provided by the normal stress in the facesheets and the core far from the central layer.
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Furthermore, the flexural equivalent elastic modulus affected the bending stiffness in a
proportional manner. As the flexural equivalent elastic modulus decreased with increasing
included angle, so did the equivalent bending stiffness. As a result, from an economic
standpoint, choosing a panel with a smaller included angle is not always the best option.

Figure 7 shows the effect of the included angle on the buckling load and natural
frequency under the same conditions. The equivalent density of the triangular HSP de-
creased with an increasing included angle, indicating that the filling degree of the core layer
diminished. The buckling load was related to the Poisson’s ratio, BCs, and elastic modulus
at the macroscopic level. The equivalent elastic modulus of the triangular HSP decreased
with increasing included angle, so the corresponding anti-buckling capacity also decreased.
From a microscopic perspective, the calculated length of the facesheet without core support
increased with increasing included angle, resulting in a decrease in the buckling load.
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(b) Natural frequencies

Figure 7. Effects of the included angles on the buckling loads and natural frequencies of the
triangular HSP.

Figure 7b shows that the natural frequency of the triangular HSP increased with
the increasing included angle. The natural frequency was positive proportional to the
equivalent stiffness, while also inversely proportional to the equivalent density. The
equivalent density decreased and the equivalent stiffnesses A11 and D11 increased with
the increasing included angle. As a result of the combined impact of the two factors, the
natural frequency increased.

4.2. Core Wall Thickness

Figures 8 and 9 show the the geometric configurations of core cells with different
core wall thicknesses and their effects on the equivalent stiffness. The equivalent elastic
modulus and equivalent density increased with increasing core wall thickness. That is,
the filling degree of the core layer and the contact area between the core layer and the
facesheet increased with the same macroscopic dimensions, resulting in an increase in
tensile stiffness. Furthermore, the change of each stiffness component was not the same
when the core wall thickness increased by the same amount.

Figure 8. Geometric configurations of core cells with different core wall thicknesses.
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(b) Equivalent bending stiffness

Figure 9. Effects of the core wall thicknessews on the equivalent stiffness of the triangular HSP.

Figure 9b shows that the variation trend of the equivalent bending stiffness was similar
to that of equivalent tensile stiffness, and both increased with increasing core wall thickness.
The reason may be that the bending capacity of the plate mainly determined by the part
away from the neutral axis of the plate. The sectional moment of inertia of the plate
increased with increasing core wall thickness, so that the moment of the bending equivalent
elastic modulus also increased with increasing core wall thickness.

Figure 10 shows the influence of the core wall thickness t on the buckling load and
natural frequency of the triangular HSP. From a macroscopic standpoint, the equivalent
elastic modulus of the 2D-EPM increased with the increase of core wall thickness, so the
buckling load of the panel also increased. From a microscopic standpoint, increasing the
core wall thickness reduced the calculated length of the panel, which would improve the
buckling resistance of the panel. The effect of increasing the equivalent density caused
by the increasing core wall thickness on the natural frequency was greater than that of
increasing the equivalent stiffness, so the natural frequency of the triangular HSP decreased.
In practice, a high anti-buckling capacity can be realized by increasing the core wall
thickness and the boundary constraints, whereas a higher frequency can be obtained by
reducing the core wall thickness and increasing the boundary constraints.
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(b) Natural frequencies

Figure 10. Effects of the core wall thicknesses on the buckling loads and natural frequencies of the
triangular HSP.

4.3. Cell Side Length

Figures 11 and 12 show the the geometric configurations of core cells with different
cell side lengths and their effects on the equivalent stiffness. Figure 12a shows that the
equivalent tensile stiffness decreased gradually as the cell side length increased. The
main reason was that increasing the cell side length reduced the equivalent density and
in-plane equivalent elastic modulus. Figure 12b shows that the equivalent bending stiffness
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decreased gradually with increasing cell side length, which was consistent with the change
of the equivalent tensile stiffness.

Figure 11. Geometric configuration of core cells with different cell side lengths.
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(b) Equivalent bending stiffness

Figure 12. Effects of the cell side lengths on the equivalent stiffness of the triangular HSP.

Figure 13 shows the effect of the cell side length on the buckling load and natural
frequency of the triangular HSP. From a macroscopic standpoint, the equivalent elastic
modulus of the 2D-EPM decreased with increasing cell side length, so the buckling load
also decreased. From a microscopic standpoint, increasing the cell side length would
increase the calculated length of the panel and further reduce the buckling load. The effect
of the decreasing equivalent density caused by the increase in the cell side length on the
natural frequency was greater than that of the decreasing equivalent stiffness, so the natural
frequency of the triangular HSP increased. A high anti-buckling capacity of the triangular
HSP can be realized by decreasing the cell side length.
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Figure 13. Effects of the cell side lengths on the buckling loads and natural frequencies of the
triangular HSP.



Materials 2022, 15, 4766 18 of 25

4.4. Specific Stiffness

Figure 14a shows the specific stiffness (equivalent stiffness-to-density ratio) of the
triangular HSP corresponding to different included angles. The specific stiffnesses mainly
increased with the increasing included angle, indicating that a panel with a larger included
angle could improve the bending performance. Therefore, it is necessary to choose the in-
plane core layout with a larger included angle to make full use of the bending performance
in practical use.
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Figure 14. Specific stiffnesses of the triangular HSP corresponding to different parameters.

Figure 14b shows the specific stiffness of the triangular HSP corresponding to different
core wall thicknesses. The specific stiffness decreased as the core wall thickness increased,
and the reduction rate decreased as well. In practice, if there were no additional special
requirements or restrictions on the core wall thickness, the triangular HSP with thinner core
wall thickness should be used since it can improve the bending performance of the panel.

Figure 14c shows the specific stiffness of the triangular HSP corresponding to different
cell side lengths. It can be found that with the increase of the cell side length, the specific
stiffness of D11/ρ∗ and D22/ρ∗ increased, while the changes of D33/ρ∗ and D12/ρ∗ were
not monotonic. In addition, the change range of the specific stiffness was not obvious with
the increase of the cell side length. Therefore, the effect of cell side length on the specific
stiffness should be placed secondarily in practical application.

5. Comparison of Different Core Forms

In addition to the triangular HSP, there are many other forms of honeycomb cores,
such as diamond, orthogrid, and X-shaped, as illustrated in Table 8. To investigate the
influence of the core forms on the static and dynamic behaviors of the panel based on the
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principle of control variables, the sandwich plates only had different core forms, and the
cell and macroscopic dimensions were the same. The geometric parameters and other
material properties were the same as those in Section 3.

Table 8. Geometries of honeycomb sandwich panels with different core forms.

Items Triangular HSP Diamond HSP Orthogrid HSP X-Shaped HSP

Core forms

Core cell

5.1. Bending Performance

Three-point bending numerical simulations of four HSPs with different core forms
were carried out by using different models. On this basis, the bending capacities of
the four sandwich panels were compared according to the slopes of displacement–load
curves. Figure 15 shows the simulation results of the 2D-EPM and 3D-FEM. The errors
between the simulation results of the different models were small, and the two curves were
approximately coincident, indicating that the numerical simulation results were relatively
reliable and that these simulations can be used for detailed analysis. Furthermore, the
triangular HSP exhibited the strongest bending performance (slope = 72 N/mm), followed
by X-shaped HSP (slope = 65 N/mm), diamond HSP (slope = 64 N/mm), and finally, the
orthogrid HSP (slope = 58 N/mm), which was mainly related to the sectional bending
modulus of the x1–x3 plane.

5.2. Global Buckling

The global buckling behaviors of four sandwich panels with the same dimensions were
numerically simulated by using the 2D-EPM and 3D-FEM under SSSS boundary conditions
and bi-axial loading. A plate with dimensions of 240 mm × 240 mm was selected for
buckling analysis. The dimensions were different from those of the previous buckling
example in Section 3 to verify that the simulation results were independent of the panel
size after the convergence study.

Tables 9–12 compare the buckling modes and loads of the diamond HSP, orthogrid
HSP, X-shaped HSP, and resized triangular HSP, respectively, and the relative errors of the
buckling loads were indicated by red numbers in brackets. The first four buckling loads
predicted by the different models were essentially the same, and the errors were within
10%, which fully meets engineering requirements. The first- and fourth-order buckling
modes of the two models were basically the same, which were the f (1, 1) and f (2, 2) modes,
respectively ( f (m, n) denotes the mode shape with m and n representing the number of
half-waves along the x1 and x2 directions, respectively), whereas the second- and third-
order buckling modes were slightly different, which may have been due to the different
equivalent stiffnesses along the x1 and x2 axes caused by different core forms.
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Figure 15. Comparison of displacement–load curves of HSPs with different core forms predicted by
different models.

Table 9. Comparison of the buckling modes and buckling loads of the diamond HSP under SSSS
boundary conditions predicted by different models.

Model 1 2 3 4

3D-FEM

59.164 N 143.93 N 144.00 N 233.46 N

2D-EPM

55.210 N (6.68%) 139.60 N (3.01%) 139.60 N (3.06%) 230.84 N (1.12%)

The first four buckling loads of the four HSPs were not significantly different, but they
showed different anti-buckling abilities. The first buckling load of the X-shaped HSP was
the largest, followed by that of the triangular HSP, and that of the orthogrid HSP was the
smallest. The variation of the second buckling load was still similar than that of the first
buckling load, but the third buckling load of the triangular HSP was significantly larger.
This was related to the sectional moments of inertia, which were in the order of X-shaped
HSP > triangular HSP > diamond HSP > orthogrid HSP, and the buckling loads were also
arranged in this order.
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Table 10. Comparison of the buckling modes and buckling loads of the orthogrid HSP under SSSS
boundary conditions predicted by different models.

Model 1 2 3 4

3D-FEM

49.979 N 123.21 N 125.75 N 213.54 N

2D-EPM

52.918 N (5.88%) 134.21 N (8.93%) 134.21 N (6.73%) 221.40 N (3.68%)

Table 11. Comparison of the buckling modes and buckling loads of the X-shaped HSP under SSSS
boundary conditions predicted by different models.

Model 1 2 3 4

3D-FEM

59.164 N 143.93 N 145.39 N 238.09 N

2D-EPM

60.288 N (1.90%) 153.19 N (6.43%) 153.19 N (5.36%) 253.67 N (6.54%)

Table 12. Comparison of the buckling modes and buckling loads of the resized triangular HSP under
SSSS boundary conditions predicted by different models.

Model 1 2 3 4

3D-FEM

58.933 N 138.83 N 148.01 N 232.60 N

2D-EPM

56.867 N (3.51%) 135.33 N (2.52%) 155.60 N (5.13%) 240.27 N (3.30%)

5.3. Free Vibrations

Tables 13–16 compare the first four free vibrations of four HSPs with the same dimen-
sions predicted by different models, and the red numbers in brackets indicated the relative
errors of the natural frequencies. The vibration modes predicted by the two models were
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almost identical, and the differences of the natural frequencies between the two models
were less than 10%, which would meet engineering requirements. The natural frequencies
of the triangular HSP were the smallest, and those of the triangular HSP were the largest.
The reason was mainly related to the equivalent elastic moduli and equivalent densities of
the HSPs with different core forms.

Table 13. Comparison of the first four free vibrations of the diamond HSP under CCCC boundary
conditions predicted by different models.

Model 1 2 3 4

3D-FEM

1965.0 Hz 3553.4 Hz 3769.1 Hz 5062.7 Hz

2D-EPM

1977.0 Hz (0.61%) 3534.4 Hz (0.53%) 3712.3 Hz (1.51%) 4919.2 Hz (2.83%)

Table 14. Comparison of the first four free vibrations of the orthogrid HSP under CCCC boundary
conditions predicted by different models.

Model 1 2 3 4

3D-FEM

2273.3 Hz 4187.4 Hz 4374.0 Hz 6248.4 Hz

2D-EPM

2364.9 Hz (4.03%) 4324.1 Hz (3.26%) 4324.1 Hz (1.14%) 5839.1 Hz (6.55%)

Table 15. Comparison of the first four free vibrations of the X-shaped HSP under CCCC boundary
conditions predicted by different models.

Model 1 2 3 4

3D-FEM

2059.3 Hz 3746.3 Hz 3751.6 Hz 5134.6 Hz

2D-EPM

2065.2 Hz (0.29%) 3745.1 Hz (0.03%) 3745.1 Hz (3.26%) 5073.4 Hz (1.19%)
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Table 16. Comparison of the first four free vibrations of the resized triangular HSP under CCCC
boundary conditions predicted by different models.

Model 1 2 3 4

3D-FEM

2075.9 Hz 3657.5 Hz 3920.1 Hz 5190.9 Hz

2D-EPM

2107.4 Hz (1.52%) 3731.9 Hz (2.03%) 3933.9 Hz (0.35%) 5181.9 Hz (0.02%)

6. Conclusions

Based on the VAM, the equivalent plate model was developed to investigate the
global behavior of triangular HSPs. The following conclusions can be drawn from ana-
lyzing the influence of structural parameters on the static and dynamic characteristics of
triangular HSPs.

(1) The 2D-EPM of triangular HSPs has high accuracy and efficiency. In the three-
point bending simulation, the maximum slope error of displacement-load curve between
2D-EPM and experimental result is 6.60% and the minimum is 1.33%. In the buckling
analysis, the maximum error of buckling load between 3D-FEM and 2D-EPM is 6.68% and
the minimum error is 0.06%. In free vibration, the maximum error of natural frequencies
between 2D-EPM and 3D-FEM is 3.67%, and the minimum error is 0.53%. The above errors
are less than 10%, indicating that using 2D-EPM instead of 3D-FEM meets the engineering
requirements. Moreover, the calculation efficiency of 2D-EPM is more than 50 times that of
3D-FEM, and 2D-EPM is better than 3D-FEM in contact definition between the core layer
and facesheets, as well as application of load and the boundary constraint.

(2) The changes of the included angle α, cell side length lc and core wall thickness t
would affect the effective plate properties. The equivalent stiffness and buckling load de-
crease as well as the natural frequency increases with increasing included angle, decreasing
core wall thickness and increasing cell side length. Compared with other three HSPs with
different core forms, the triangular HSP not only has excellent bending resistance, but also
has better buckling resistance. The research focus on the free vibration of triangular HSP,
and the impact resistance of triangular HSP can be further investigated on this basis.
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