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Abstract: In an effort to understand the effects of H2O activity on zeolite formation, we have synthesized
LTA zeolite using a combination of freezing processes and varying drying temperatures. Sodium
aluminate and sodium silicate were used to form LTA zeolite, according to the IZA (International
Zeolite Association) protocol. The synthesis steps were modified by adding the precursor frozen
process by a rapid liquid nitrogen (−196 ◦C) treatment or slow conventional freezer treatment (−20 ◦C).
The samples were subsequently sonicated and then dried at 80 ◦C or 40 ◦C. X-ray diffraction (XRD)
and scanning electron microscopy (SEM) were performed on the samples immediately after the
drying process as well as after 2 weeks and 1 month of aging the solid products. The results indicated
that LTA zeolite does not form. The silica-alumina precursor after both freezing processes and after
being dried at 80 ◦C showed the presence of sodalite displaying stable behavior over time. Both sets of
samples dried at 40 ◦C and did not show the presence of zeolite immediately after the drying process.
However, after 2 weeks, the liquid nitrogen–frozen precursor was characterized by the presence
of EMT whereas zeolites never formed in the −20 ◦C samples. These results suggest that freezing
processes differently control the H2O activity during the drying and aging processes in the solid state.
Thus, although the precursor chemical composition is the same, the type of zeolite formed is different.

Keywords: LTA; liquid nitrogen freezing; conventional freezer process; drying temperature; amorphous
ice; crystalline ice

1. Introduction

Zeolite Linde Type A (Zeolite LTA or Zeolite A) [Na12[(AlO2)12(SiO2)12] ·27 H2O [1] can be synthesised
using a variety of sources including different types of alumina and silica materials [2–13]. Many
nucleation and crystal-growth mechanisms have been proposed for this type of zeolite [14–18],
and many literature data have documented microcrystals zeolite A growth on various substrates to
form highly oriented monolayers or multilayers composed of micro crystalline building blocks [19–21].

Numerous studies have also been performed to investigate the evolution of this type of zeolite
into more thermodynamically stable hydroxisodalite [22–24]. In our previous papers, two processes
for LTA synthesis were analysed concluding that rapid zeolite crystallization by sonication treatment
ensures rapid transformation into more stable sodalite, whereas the slower double-step mechanism
of geopolymer transformation into the crystalline phase by a conventional hydrothermal process is
responsible for a very slow transformation of LTA into sodalite [25,26].

Zeolites are typically synthesized by a hydrothermal process [27] and, indisputably, the water
plays a key role in this process. Water molecules have, in fact, an important structural directing action
in zeolite formation [28]. The action of H2O molecules in precursor materials and metastable products
can also be influenced by their position in restricted geometries (nanopores). Literature data have
documented that H2O confined in mesopores and nanopores shows properties different from those of
common bulk water [29–31].
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Generally, it is assumed that, under ambient conditions, ice occurs in the stable hexagonal form (ice
Ih) or in the metastable cubic form (ice Ic). However, in the last few years, ice crystallization in nanopores
in the form of intercalated cubic and hexagonal layers has been documented [32–34]. Jażdżewska and
co-workers [35] demonstrated that ice confined in nanopores having pore diameters of 5.9 nm has
cubic sequences interlaced with hexagonal sequences, producing a stacking-disordered ice (ice Isd).
According to the authors [35], the unique behavior in the nanoscale environment is due to a competition
between the H2O–wall and H2O–H2O intermolecular interactions as well as an unspecified size effect.

Many other research data indicate that the properties of H2O in pores <2 nm are different from
the properties of H2O in pores with a larger size, and it is common to consider that the freezing
temperature of H2O in pores decreases with a decline in pore size [36]. For nanopores with a pore size
of 2 nm, water can be supercooled to −90 ◦C [37,38], and Jannes et al. [39] showed that homogeneous
nucleation of structural H2O molecules takes places at ~−40 ◦C inside the microporous structure of
zeolites. Bordoninskii and Olov [36] described a multiphase transition of ice structures in natural zeolite
(natural powder zeolite composed of 90% clinoptilolite) with pore sizes from 0.2 to 2 nm over a range of
temperature from −150 to −100 ◦C. Some simulation studies carried out using zeolite A indicated that
the H2O nanoclusters in this type of zeolite are too small to crystallize, thus displaying amorphous ice
behavior [29]. The formation of low-density amorphous ice in nano-structural zeolite-template carbon
was also documented by Kyakuno et al. [40]. Water (liquid water) “freezing” in zeolite (powder zeolite)
is influenced by the type of freezing process used. The vitrification determined by liquid nitrogen
is based on a rapid temperature lowering process that does not favor the nucleation of crystal water.
Due to this, the technique is largely used to preserve biomaterials without ice or with a very limited
amount of ice formation [41–43]. The slow cooling due to conventional freezer treatments, instead,
determines the crystallization of larger water clusters [44]. In the last few years, the application of
ultrasound to liquid freezing has also attracted great interest, and freezing by sonication has been used
in many applications such as medical science or food engineering [45–48]. Literature data have shown
that an ultrasound can accelerate mass transfer determining rapid droplet cooling [49]. Sonication
causes cavitation with formation of bubbles inside the liquid. These bubbles can affect mass transfer and
heat transfer mainly at the liquid surface, thereby facilitating liquid cooling and freezing. Some studies
have analysed the variation of ultrasound propagation speed based on the physical properties of a
medium that they go through (e.g., ice) [50,51]. This mechanism has also been investigated for crystal
ice nucleation in water [52–54]. However, according to our knowledge, a study on the effects of an
ultrasound on frozen hydrogel-colloidal precursors of zeolite has not been performed.

We performed a preliminary study on the effects of a rapid and a slow freezing treatment
(by liquid-nitrogen and conventional freezer, respectively) of zeolite precursor combined with
subsequent low (−40 ◦C) or high temperature (80 ◦C) drying. The potential effect of brief sonication
on frozen samples before the drying processes was also investigated. The study aims to provide
insights into the fundamental role of water and its form during zeolite crystallization with the hope of
providing new insights into understanding formation mechanisms.

2. Experimental Section

2.1. Samples Preparation

An NaOH (Sigma Aldrich-Europe, Darmstadt, Germany, 98+% NaOH) solution was prepared by
gently mixing 0.723 g of NaOH in 80 mL of distilled water until it is dissolved. Half of this alkaline
solution was then used to dissolve 8.3 g of sodium aluminate (Sigma Aldrich-Europe, Darmstadt,
Germany, Al (Al2O3):50–56% Na (Na2O):40–45%) (Solution A). In addition, 15.48 g of sodium silicate
solution (Sigma Aldrich) were dissolved in the second half (Solution B). Finally, solution A was quickly
added to solution B under vigorous stirring. Solutions A and B were prepared according to the IZA
protocol and the method proposed by Thompson and Huber [1,55]. However, in this study, the next
steps to form LTA zeolite were modified as follows: (i) the resulting suspension (combination of
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Solution A and B) was divided in two parts, (ii) one part was frozen by liquid nitrogen (~ −196 ◦C)
(LN) for five minutes (rapid freezing treatment) and the other by conventional freezer treatment
(~ −20 ◦C) (CF) for 2 h (slow freezing treatment), (iii) both frozen samples were sonicated using an
ultrasonic water bath (240 W, 35 kHz) for 5 min. US temperature was 10 ◦C, thus melting the samples,
iv) both sonicated LN and CF samples were split into two parts and then dried in open vessels at 40 ◦C
and 80 ◦C for 24 h, respectively. The experiments were also performed by washing LN with ethanol
before drying at 40 ◦C and 80 ◦C for 24 h (LNE). Finally, additional tests were carried out without any
freezing treatment. In detail, the suspension resulting from mixing of Solution A and Solution B was
divided into two portions. One was centrifuged and dried at 40 ◦C and 80 ◦C for 24 h (ZC), separately.
The other portion was directly dried at 40 ◦C or 80 ◦C without being centrifuged (Z). The scheme of the
experiments is illustrated in Figure 1.
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Figure 1. Schematic presentation of the experiments performed.

2.2. Sample Characterization

The mineralogical composition of all the synthetic products was determined by X-ray powder
diffraction (XRD) using a Rigaku Rint 2200 powder diffractometer (Tokyo, Japan) with Cu Kα graphite
monochromatized radiation (30 kV–40 mA). XRD profiles were collected in θ–θ geometry over the
angular range 3◦–70◦ 2θ, step size 0.02◦, and scan-step time of 3 s. The synthetic products were analysed
immediately after the drying process (1 day) as well as 2 weeks and 1 month after. The samples
were stored at room temperature (about 20 ◦C). Table 1 summarizes the codes for different samples,
according to the processes used for their synthesis. Morphological observation of products was
performed by scanning electron microscopy (SEM) using a Zeiss Supra 40 microscope (Oberkochen,
Germany) equipped with energy dispersive X-ray analysis (EDX)
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Table 1. Scheme of Experiemnts and Relative Sample Codes.

Sample Code
Freezing Process Additional Treatments Drying Temperature Aging Time at Solid State

Main Mineralogical
CompositionLiquid

Nitrogen
Conventional

Freezer
Ethanol
Washing Centrifuge 40 ◦C 80 ◦C 1 Day 2 Weeks 1 Month

LN1d-40 x x x Amorphous, Al and Na silicate
LN1d-80 x x x Amorphous, Sodalite
LN2w-40 x x x Amorphous, EMT, Sodalite
LN2w-80 x x x Amorphous, Sodalite
LN1m-40 x x x Amorphous, EMT, Sodalite
LN1m-80 x x x Amorphous, Sodalite
CF1d-40 x x x Amorphous, Al and Na silicate
CF1d-80 x x x Amorphous, Sodalite
CF2w-40 x x x Amorphous, Al and Na silicate
CF2w-80 x x x Amorphous, Sodalite
CF1m-40 x x x Amorphous, Al and Na silicate
CF1m-80 x x x Amorphous, Sodalite

LNE1d-40 x x x x Amorphous, Al and Na silicate
LNE1d-80 x x x x Amorphous, Sodalite
LNE2w-40 x x x x Amorphous, Al and Na silicate
LNE2w-80 x x x x Amorphous, Sodalite
LNE1m-40 x x x x Amorphous, Al and Na silicate
LNE1m-80 x x x x Amorphous, Sodalite
ZC1d-40 x x x Amorphous, LTA
ZC1d-80 x x x LTA, EMT, sodalite
ZC2w-40 x x x Amorphous, LTA
ZC2w-80 x x x LTA, EMT, sodalite
ZC1m-40 x x x Amorphous, LTA
ZC1m-80 x x x LTA, EMT, sodalite
Z1d-40 x x Amorphous, Al and Na silicate
Z1d-80 x x Sodalite
Z2w-40 x x Amorphous, EMT, LTA
Z2w-80 x x Sodalite
Z1m-40 x x Amorphous, EMT, LTA
Z1m-80 x x Sodalite
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3. Results

Figure 2 shows X-ray diffraction patterns of the LN1d and CF1d samples immediately after drying
at 40 and 80 ◦C. The samples dried at 40 ◦C (CF1d-40 and LN1d-40) are characterized by the presence of
aluminium silicate and sodium silicate in addition to amorphous material (Figure 2a). The XRD peaks
for the samples dried at higher temperatures (CF1d-80 and LN1d-80) were mainly indexed to sodalite
with minor aluminium silicate and sodium silicate as well as amorphous material (Figure 2b).
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Figure 2. X-ray patterns of CF and LN samples immediately after drying at 40 (a) and 80 ◦C (b).

The presence of spherical nanocrystal aggregates characterizes SEM images of CF1d-80 (Figure 3a)
whereas the nanocrystals organized to form cubic forms in the LN1d-80 sample (Figure 3b). CF samples
dried at 40 ◦C and analysed after 2 weeks (CF2w-40) and 1 month (CF1m-40) do not show the presence
of any newly formed zeolite (Figure 4a). The peaks are indexed to aluminium silicate and sodium
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silicate. The XRD pattern of LN dried at 40 ◦C and analysed after 2 weeks of aging (LN2w-40) is, instead,
characterized by the presence of EMT zeolite, which increased after 1 month (LN1m-40) (Figure 4b and
Figure S1).
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The typical morphology of this newly formed zeolite is displayed in Figure 5a,b. The presence of
other zeolites (e.g., sodalite) was confirmed by SEM (Figure 5c).
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Figure 5. SEM images of EMT zeolite in (a) LN2w-40 and (b) LN1m-40. (c) Sodalite formed in both
LN2w-40 and LN1m-40.

Figure 6a,b displays the XRD results for the samples dried at 80 ◦C and analysed after 2 weeks
and 1 month of aging in the solid state. The data indicate that sodalite is the primary newly formed
mineral in both CF and LN samples. XRD patterns of the samples washed with ethanol (LNE) show the
absence of zeolite in all samples treated at 40 ◦C (Figure 7a) and the presence of sodalite after drying at



Materials 2020, 13, 4780 8 of 16

80 ◦C (Figures 7b and 8). Finally, Figure 9 shows XRD profiles of ZC and Z samples at low drying
temperature. The results demonstrate the synthesis of EMT in Z samples after 2 weeks and 1 month of
aging. EMT is not present immediately after drying Z samples at 40 ◦C (Figure 9a). LTA is the primary
newly formed zeolite in centrifuged samples (ZC) (Figure 9b). At higher temperature (80 ◦C), sodalite
and LTA with sharp XRD peaks characterize Z and ZC products, respectively (Figure 10a,b).
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4. Discussion

These preliminary results reveal the complex behavior of aluminosilicate precursor of LTA zeolite
when subjected to combined freezing and drying processes. The data show that LTA zeolite does
not form when the aluminosilicate precursor is rapidly frozen by liquid nitrogen and dried at 40 or
80 ◦C nor when it is dried at the same temperatures after conventional freezer treatment. These results
suggest that the type of freezing treatment affects the availability of water in the precursor during the
drying process (also based on the drying temperature), thereby influencing the type of zeolite formed
and its stability after aging in the solid state. In detail, XRD profiles for both CF and LN immediately
after drying at 40 ◦C are characterized by the presence of peaks indexed to aluminium silicate and
sodium silicate. This is due to rapid precipitation in the supersaturated solution. Short time and
lower heating temperature (40 ◦C) do not facilitate the synthesis of LTA zeolite (Figure 2a). This is
also confirmed by the large presence of amorphous material. The data for the process at 80 ◦C show
sodalite formation in both CF and LN samples (CF1d-80 and LN1d-80) (Figure 2b), and LTA zeolite
does not form. SEM images are displayed in Figure 3a,b. After 2 weeks of aging in the solid state at
room temperature, LTA zeolite did not form in CF samples initially dried at 40 ◦C (Figure 4a) whereas
LN2w-40 is characterized by the presence of newly formed EMT zeolite detectable after 1 month in
LN1m-40 (Figure 4b). This is well detectable in Figure 5a,b showing the typical EMT morphology.
Both CF and LN samples that initially dried at higher temperature (80 ◦C) are characterized by the
presence of sodalite (Figure 6a,b) after 2 weeks and 1 month of aging in the solid state.

We do not assume that the nature and the aggregation state of the aluminosilicate phases
precipitated during the freezing process condition the behavior of the different samples. Our speculative
hypothesis to explain the different behavior between CF and LN samples dried at a low temperature
(40 ◦C), which is based on the assumption that rapid freezing by liquid nitrogen (−196 ◦C for few
minutes) does not favor the nucleation of crystalline ice in the aluminosilicate precursor matrix,
but, instead, leads to the formation of amorphous ice [29,40]. The presence of amorphous ice leads
to a higher H2O activity in the matrix, which controls the transformation of aluminosilicate and
amorphous material into EMT zeolite in 2 weeks (LN2w-40). Single crystals of sodalite also formed
(Figure 5c). We propose that the process can be explained by considering partial hydrolysis at room
temperature in the presence of enhanced H2O availability [56]. Conversely, the conventional freezer
treatment is a slow process (2 h) occurring at−20 ◦C. This allows the formation of crystalline clusters [57]
into the large amorphous material, thus making water molecules unavailable for zeolite crystallization
at 40 ◦C and after aging in the solid state (CF2w-40 and CF1m-40). The presence of sodalite in both
CF and LN samples dried at 80 ◦C (Figures 2b and 6b) indicates that different processes take place,
making water molecules available to form this more stable mineral. The presence of this newly formed
phase after 2 weeks and 1 month of solid-state aging are in accordance with literature data [58,59].
Our hypothesis on the role of the H2O form (crystalline cluster or amorphous ice) in type and stability
of zeolite formed is indirectly confirmed by additional experiments performed by washing the LN
precursor with ethanol (before drying) or by repeating the synthesis without freezing. In the first case,
the results indicate that, at 40 ◦C, no zeolite formed immediately after drying as well as after 2 weeks
and 1 month of solid-state aging (LNE1d-40, LNE2w-40, and LNE1m-40) (Figure 7a). This is due to the
partial replacement of water molecules by ethanol [60], confirming the importance of water availability
in zeolite formation. After drying at 80 ◦C, sodalite formed (Figure 7b) despite the morphology of
this newly formed mineral not being well organized, and the crystals are a few hundred nm in size
(Figure 8).

Likely, the higher drying temperature makes the water molecules available, which are still
confined in colloidal precursor after ethanol treatment. The data for untreated samples (no freezing
or centrifugation) confirm the absence of zeolite immediately after drying at 40 ◦C. The progressive
transformation of aluminosilicate and amorphous material into EMT and LTA takes place after 2 weeks
and 1 month (Figure 9a). The results after centrifugation indicate the crystallization of LTA zeolite
takes place at 40 ◦C, and LTA is stable over time (2 weeks and 1 month) (Figure 9b).
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At 80 ◦C, sodalite formed in Z and is unchanged after solid-state aging (Figure 10a). These data
are in accord with the results obtained at the same temperature for the LN sample. The results after
centrifugation (ZC) reveal the crystallization of LTA zeolite at 80 ◦C as well as its presence after 2 weeks
and 1 month (Figure 10b). Our hypothesis is that centrifugation has an influence on water available for
the zeolite synthesis, conditioning LTA zeolite synthesis. Finally, no conclusion can be drawn on the
effect of sonication.

5. Conclusions

In this study, the effects of freezing on zeolite synthesis from an LTA precursor was analysed with
the aim to evaluate the role of H2O and its form as amorphous or crystalline ice in determining zeolite
type and long-term stability.

Based on the results, our speculative hypothesis is that the formation of amorphous ice rather
than crystalline ice in the aluminosilicate precursor controls the synthesis of different zeolites both
immediately and after solid-state. The presence of amorphous ice in the precursor by a rapid liquid
nitrogen freezing process (−196 ◦C) raises the possibility of the hydrolysis mechanism in the samples
dried at 40 ◦C and zeolite evolution to a more stable form at room temperature. The formation of
ice crystalline clusters by slow conventional freezer treatment at −20 ◦C, instead, is responsible for
low water molecules availability in the samples, making no zeolite crystallization over time. In all
the samples, the drying process of the precursor at 80 ◦C makes available water molecules due to a
melting process of ice, forming sodalite with a stable behavior up to 1 month.

The results also display that the action of short time sonication after the freezing treatment
is negligible.

In our opinion, these types of experiments make an important contribution to understanding
crystallization mechanisms of minerals forming in extreme environmental conditions. However, further
investigation is needed.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/21/4780/s1.
Figure S1: X-ray diffraction profiles of LN2w-40 and calculated EMT zeolite.
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