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Abstract: Although technical improvements to engines and aftertreatment systems have the greatest
impact on pollutant emissions, there is also potential for reducing emissions through driver behavior.
This potential can be realized in the very short term, while better emission-control technologies
only take effect once they have penetrated the market. In addition to a change in driving style, the
vehicle owner’s choice of vehicle technology and size class will also have an impact on the future
emissions of the vehicle fleet. The effects of different driving styles, the tire choice, the vehicle size
class, and propulsion technologies on energy consumption and tailpipe and non-exhaust emissions
are analyzed in this paper for different traffic situations and start temperatures for cars with petrol
and diesel combustion engines and for battery electric vehicles. The analysis is completed with the
corresponding upstream emissions from fuel and electricity production. The analysis is based on
a vehicle simulation using the Passenger car and Heavy-duty Emission Model (PHEM), which is
based on a large database of vehicles created using measurements of real driving conditions. For the
assessment of the driving style, a novel method was developed in an H2020 project, which reproduces
a measured trip with a virtual eco-driver. Carbon dioxide equivalent emissions (CO2eq) increase with
increasing vehicle size, but can be reduced by around 20% for conventional vehicles and 17% for
battery electric vehicles (BEVs) through an environmentally conscious driving style. On average,
BEVs have around 50% lower CO2eq emissions than conventional vehicles, if the emissions from
vehicle production are also taken into account. On an average journey of 35 km, the cold start of
modern diesel vehicles accounts for around half of the total NOx emissions, while the proportion of
cold starts for petrol vehicles is around 25%. Tire and brake wear together generate a similar amount
of PN23 emissions as the exhaust gases from new cars.

Keywords: CO2 emissions; energy consumption; NOx; PN; non-exhaust emissions; cold start; driving
style; passenger cars

1. Introduction

In Europe, traffic and transport have a major impact on air quality, especially passenger
cars and commercial vehicles. The amendment to the German Climate Protection Act, which
came into force on 31 August 2021, tightens the existing climate targets and stipulates the
goal of greenhouse gas neutrality by 2045 [1].

By 2030, total carbon dioxide (CO2) emissions are to be reduced by 65% compared with
the 1990 levels, and by almost 50% in the transport sector. Although CO2 emissions from
passenger cars have barely increased in recent years, according to the Transport Emission
Model (TREMOD), they are still responsible for the majority of CO2 emissions from road
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traffic in Germany, at over 60% [2]. The European Green Deal has similar targets with an
overall 55% reduction by 2030 [3].

Since the vehicle emissions’ limit values for Euro 7 have recently been nearly agreed
upon (see [4]) and also since the ambitious CO2 emissions targets for the EU’s new vehicle
fleets of light-duty vehicles (LDVs) and HDVs appear to be on their way to being adopted
soon, the boundaries for new vehicle technologies seem to be fixed for this decade. These
regulations are expected to need high shares of electric vehicles in new registrations to meet
the CO2 fleet targets, and newly registered vehicles with combustion engines will have to
meet low emission limits in most real-world driving conditions. Overall, further significant
decreasing CO2 and pollutant exhaust gas emissions from road traffic can be expected.
However, the penetration of the new vehicles into the fleet needs time, and any further
reductions in the emissions of the current vehicle fleet that may be necessary require traffic-
and driver-related measures.

As part of the Horizon 2020 project “uCARe” [5] (Grant agreement ID: 815002), simple
and effective tools have been developed for vehicle users to reduce their individual emis-
sions. These tools, such as a software tool to incentivize a low-emitting driving style, can
have a direct impact on the overall emissions of the fleet. As a part of uCARe, a number of
tools have been developed, which are used in this study.

For a holistic view of vehicle technologies and driver influences, the upstream emis-
sions from vehicles and energy generation are also taken into account here

Especially for battery electric vehicles, the electrical energy used has GHG emissions
related to production, which can vary greatly depending on the power source and, thus,
contributes to national CO2 emissions.

Finally, also, so-called non-exhaust particle emissions are considered in this study.
With drastically dropping tailpipe particle emissions as a result of all new cars and heavy-
duty vehicles (HDVs) being equipped with particle filters, tire-, brake-, and road-wear
particles are gaining increasing relevance, especially when, in the future, low PM2.5 air
quality limits are to be met in the EU27 [6].

The overall aim of this study is to assess how a vehicle user can reduce the CO2 and
pollutant emissions including nitrogen oxide (NOx) and particle number (PN) by the choice
of his/her vehicle and by the choice of the driving style.

2. Methods

The central point of this analysis is how the driver can influence the emissions by the
choice of vehicle technology and size and by his/her driving behavior and tire selection.
The effects of the avoidance of unnecessary loading, roof racks, etc., which increase tire
pressure, are published in [7].

The first aspect that the driver can influence is the vehicle technology and size. The
choice of vehicle technology and size influences both CO2 emissions from vehicle pro-
duction and those from vehicle operation. The following variants are compared for the
vehicle technology:

• Diesel vehicles;
• Petrol vehicles;
• Battery electric vehicles (BEVs).

The Euro 6d vehicle technology is considered representative of newly purchased
vehicles. Variations of the vehicle size include the following:

• Small cars;
• Medium cars;
• Sports utility vehicles (SUVs).

The derivation of the vehicle masses for the different propulsion technologies and
vehicle classes is described in Section 2.4.

For the analysis of the impact of the driving style, three different usage profiles
are compared:
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• Average driver;
• Ideal eco-driver;
• Ideal eco-driver using fuel efficient tires.

The methods for modeling the eco-driver are described in Section 2.1.2. These compar-
isons are made for the following trip situations:

• Urban cycle to represent short-distance driving;
• Average urban driving;
• Average rural driving;
• Average motorway driving;
• A 1/3-mix of the average driving cycles to represent commuter driving.

The following sources of CO2 and pollutants are considered in this study:

• Emissions from vehicles with internal combustion engines (ICEs), assuming a warmed-
up exhaust gas aftertreatment (EAS) and cooling system—here referred to as
“hot emissions”;

• Cold start extra emissions from vehicles with ICEs;
• Energy consumption of battery electric vehicles;
• Additional energy consumption due to battery conditioning during the cold start of

battery electric vehicles;
• Particle emissions from non-exhaust sources (tire and brake wear);
• CO2 emissions from fuel and electricity production on average for Europe;
• CO2 emissions from vehicle production.

2.1. Simulation Tool PHEM

The “Passenger car and Heavy-duty Emission Model” (PHEM) simulation tool has
been developed by the Institute for Thermodynamics and Sustainable Propulsion Systems
(ITnA) at Graz University of Technology since the late 1990s. In order to be able to take
current engine and vehicle technologies into account, PHEM is constantly being further
developed. PHEM calculates fuel consumption and exhaust emissions, as well as non-
exhaust emissions (brake and tire wear) at 1 Hz for a given driving cycle. The calculation is
performed based on the equations of the vehicle’s longitudinal dynamics and on engine
maps for fuel consumption and emissions (Figure 1). The engine power required for the
cycles is calculated from driving resistances, the gradient, mass inertia, transmission losses,
and auxiliary power consumption. The engine speed can be specified or calculated using the
tire diameter and transmission ratio of the axle and the gear engaged. If the gears for a cycle
are not known, the PHEM shifting model can be used. Fuel consumption and emissions are
interpolated with the engine power and speed from the maps. A routine for the simulation
of the conversion efficiencies of the exhaust aftertreatment system based on the maps with
the space velocity and catalyst temperature is also implemented. For selective catalytic
reduction (SCR) systems, also the Ammonia (NH3) filling level is considered. This routine
calculates the component temperatures from the heat transfer between the exhaust gas
and exhaust aftertreatment system, as well as between the exhaust aftertreatment system
and environment. Since the vehicle’s longitudinal dynamics model calculates the engine
power and speed from physical relationships, every driving condition can be represented
with this model. The simulation of vehicles with different masses in combination with
gradients and variable speeds and accelerations can, thus, be illustrated by the model, as
well as the effects of different shifting behaviors by the driver. PHEM can also be used to
create emission maps from measured emission data. In this case, the measured emissions
are gridded on emission maps according to the engine power and engine speed. PHEM is
used for many different tasks, e.g., for the simulation of emission factors for the Handbook
Emission Factors for Road Transport (HBEFA) [8–12].

For the simulation of hot tailpipe emissions (CO2, NOx, PN23, etc.), the emission maps
created for HBEFA 4.1 were used. These include both the RDE and chassis dynamometer
measurements of 99 diesel vehicles and 50 gasoline vehicles. These measurements were
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used to derive average maps based on registration statistics in order to represent the fleet
mix [13]. The BEV model is based on three measured BEVs from [2].
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Figure 1. Schematic illustration of the PHEM simulation tool [8].

The next sections show the sub-models that have been included in PHEM and deal
with specific topics.

2.1.1. Cold Start Extra Emissions and Modelling
Cold Start Behavior of Combustion Engines

Cold-started internal combustion engines create a high amount of extra emissions.
The cold start extra emissions (CSEEs) represent the difference in emissions between a
cold-started and a hot-started cycle in g/start, as shown in Figure 2. Most instantaneous
emissions during the cold start phase are significantly higher than the emission rates under
hot running conditions, as normal working temperatures (oil, cooling water, and catalytic
converter temperatures) are not yet reached. Therefore, pollutants such as hydrocarbons
(HCs), carbon monoxide (CO), and NOx are not converted. Moreover, friction losses are
higher in a cold engine, and combustion is impaired by a cold piston or cylinder. This leads
to higher fuel consumption and, thus, higher CO2 emissions, but also increases pollutant
emissions. In Figure 2, the influence of the cold start on the CO emissions is illustrated
by the measurement of an “Inrets Urbain Fluide Court (IUFC)” cycle, which consists of a
repetition of ten micro cycles. It clearly shows that, after approximately 80 s, the measured
CO emissions approximate the values under hot running conditions [14].

The CSEE level depends on vehicle-specific conditions, such as the engine type,
exhaust gas aftertreatment, and corresponding pollutant class, on the start conditions,
such as the ambient temperature and the parking time before the start, and on the driving
style. Most pollutant emissions are higher at lower temperatures, because it takes longer for
the catalytic converters to reach the required operating temperatures. Likewise, a shorter
shutdown period has a positive effect on pollutant emissions, because the exhaust gas
aftertreatment system does not cool down completely, so the system remains closer to
the required operating temperatures. Consequently, the heat-up phase is shorter and the
conversion of the pollutants starts earlier. Due to the influencing the factors mentioned
above, cold start extra emissions are especially relevant in urban areas, where the cold start
is responsible for more than 30% of traffic emissions [14].
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There are already some models for the representation of cold start extra emissions.
One such model is “Computer Programme to calculate Emissions from Road Transport”
(COPERT version 5.7.3), a software tool coordinated by the European Environment Agency
(EEA) and widely used for the mathematical modelling of air pollutant emissions from
the mobile sources. In COPERT, the additional emissions are determined as a factor of
the hot emissions, considering variables such as the distance driven with a cold engine,
a cold/hot emission coefficient, the average speed and temperature of the cycle, and
the engine capacity. Another example is the “Methodologies for Estimating air pollutant
Emissions from Transport” (MEET) method, which has a similar approach, but also includes
a function to correct for very short distances [15,16].

Cold Start Model for Combustion Engines

The instantaneous cold start emission model suitable for implementation in the
software PHEM (version 13.0.6.13) was developed in cooperation with Eidgenössische
Materialprüfungs- und Forschungsanstalt (EMPA) as a part of the H2020 project uCARe [17].
The CSEEs (Equation (1)) are used to describe cold start emissions, since the ratio of
cold/hot emissions seems to be critical for modern vehicles with very low hot emission
levels. Due to the increasing relevance of cold start emissions, a development target was
to design a method that can use any cold-started cycle for model parametrization. Basi-
cally, CSEEs and cold start factors need the same cycle measured once with cold and once
with hot start, ideally at different start temperatures [13]. For well-functioning modern
cars, however, cold start-related emissions are much higher than hot emissions. Thus, for
exhaust gas components and/or vehicles with significant cold start extra emissions, we do
not need a very accurate value for the hot emission level, and we can use simulated hot
emissions instead of measured ones. Inaccuracies in the simulated hot emissions do not
significantly affect the accuracy for such components. For exhaust gas components with a
low contribution from cold start emissions, the subtraction of the simulated hot emissions
leads to a rather high uncertainty in the simulated CSEEs. However, this has little effect on
the uncertainty of the total emissions (hot + cold) because of the small contribution of cold
start emissions.

CSEE = Ecold−measured − Ehot−simulated (1)

CSEE—Cold start extra emissions [g or #]
Ecold-measured—Measured emissions of a cycle including cold start [g or #]
Ehot-simulated—Simulated emissions of a cycle without cold start [g or #]

As the main parameter explaining the CSEEs over time, the cumulated energy loss
of the combustion engine is used. This energy loss is the difference between the energy
provided to the engine by the fuel and the mechanical work delivered by the engine.
During the cold start, a fraction of this energy is used for heating the engine, exhaust gas
aftertreatment components, and the coolant, and the rest is released via the exhaust as the
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enthalpy of the gas at the tailpipe. Thus, the CSEEs should depend to a large extent on this
energy loss [17].

.
Qloss =

.
m f uel ·Hu − Pe (2)

QCum_loss =
∫ .

Qloss dt (3)

.
Qloss —Energy loss of the combustion engine [kW]
.

m f uel—Fuel mass flow [kg/s]
Hu—Lower heating value of the fuel [kJ/kg]
Pe—Mechanical work delivered by the engine [kW]
QCum_loss—Cumulated energy loss of the combustion engine [kWh]

Also, the engine power during cold start has an impact on the emissions, resulting in
increasing CSEEs for increasing power level. However, the limited number of cold start
tests with different driving conditions available per vehicle does not yet allow quantifying
this effect in a fleet-representative manner. The dependency of the CSEEs on Qcum_loss
is defined in the model by a polygon defining the cold start extra emissions, calculated
as the measured cold start emissions minus the simulated hot emissions, over Qcum_loss,
as shown in Figure 3. For comparability of engines of the same emissions class, but
different rated power, Qcum_loss is normalized with the rated power of the engine. For a
standardized presentation, the curve consists of a number of grid points in fixed steps of
Qcum_loss [Wh/kWnominal] [17].
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Since the temperature of the system at the time of engine start has the greatest influ-
ence on the additional cold start emissions, a relationship between Qcum_loss and the start
temperature is necessary. Most of the IUFC measurements from which the CSEE curves
are derived were measured between −7 ◦C and 20 ◦C ambient temperature. In order to
cover a wider temperature range, measurements were also carried out with short preced-
ing shutdown periods and, thus, higher starting temperatures. The starting temperature
considered in this study is 10.5 ◦C and is, therefore, well covered by the measured data.
For a broad applicability, however, the CSEE curve shall be mapped down to −20 ◦C. From
the measurements, it was determined that, for the steeply rising area of the CSEE curve,
there is an approximately linear relationship between Qcum_loss and the system temperature.
This linear relationship was used to extrapolate the CSEE curves down to −20 ◦C. Both
the CSEE polygons and the Qcum_loss @T-start functions are calculated by the model PHEM
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from the measured data specific to the exhaust component and vehicle under consideration.
To simulate the CSEEs in any cycle, the model calculates the corresponding Qcum_loss @
start for a given start temperature. With this “Qcum_loss @ start” value, the CSEE polygon is
entered. From this start value, Qcum_loss is increasing every second in the cycle according to
the calculation of the fuel consumption and engine power in PHEM. The total CSEEs in
g/start are given by the difference between the CSEE value interpolated with the resulting
Qcum_loss at the end of the cold start phase and the CSEE value interpolated for Qcum_loss @
start. The instantaneous CSEEs in g/s are computed from the difference between the CSEEs
in g interpolated for the Qloss per second. To simulate the start temperature for a trip with
engine-off phases, a cool down curve is used, which provides the reduction of Qcum_loss as a
function of the engine-off time. This enables the calculation of the starting conditions for
the given engine-off duration and ambient temperature, as well as the change of Qcum_loss
through engine-off phases during the cycle.

Data for calibrating NOx, CO, HCs, and particles larger than 23 nanometers (PN23)
for the emission classes Euro 3 to Euro 6d for both petrol and diesel were gathered from the
European Research for Mobile Emission Sources (ERMES) [18]. The cold start curves for
diesel used in this work are based on several measurements of three vehicles each, while
four vehicles were measured for the gasoline cold start curves.

For the calculation of CO2 cold start extra emissions, the method of HBEFA was
applied. For this purpose, the additional CO2 emissions per start are defined for each
technology, also taking into account the engine power. When calculating the individual
cycles, it is first considered whether the cycle is long enough for the engine to warm up
completely. If the engine does not warm up completely, only the proportional additional
CO2 emissions are assigned to the cycle.

Cold Start Model for Battery Electric Vehicles

The passenger compartment and the battery have a comfortable temperature of ap-
proximately 20 ◦C. At lower ambient temperatures, depending on the sun radiation, heat
energy is needed to meet these temperature levels. Due to the high efficiency of electric
motors and the battery, only small amounts of heat are generated by losses. Thus, energy
from the battery is needed for heating, whereas in vehicles with combustion engines, there
is sufficient heat available due to the much lower efficiency of the engine. The energy
needed for air conditioning at high ambient temperatures and sun radiation is similar to
that for vehicles with combustion engines and can be considered in the simulation tool
PHEM as constant additional auxiliary power, depending on the ambient conditions.

A recent study for Umweltbundesamt (UBA) Germany elaborated typical extra energy
demands for the initial heating after start, as well as for the heating, ventilation, and air
conditioning (HVAC) system in thermally stable conditions, i.e., after the cold start phase.
The data are based on a literature review and on measurements on two battery electric
vehicles (BEVs) in various real-world driving situations including low temperature tests [2].
In addition to the basic auxiliary power consumption of approximately 300 to 600 W for
the controllers, headlights, wipers, etc., the HVAC system needs between approximately
70 W (only ventilation) and up to 3000 W (heating with fresh ambient air at −20 ◦C).
Figure 4 shows the data used here in the simulation settings, which were calculated for
Central European weather conditions (temperatures with corresponding sun radiation and
humidity). As the traffic flow weighted average over all hours in a year, we calculated an
approximately 550 W power demand for all auxiliaries including increased HVAC power
demand due to a 10.5 ◦C ambient temperature.

On top of the thermally stationary power demand, the heating of the battery and the
passenger compartment need heat to reach the target temperature levels after cold starts at
low temperatures (“cold start extra consumption”). In [2], 730 Wh for conditioning of the
battery after a cold start at 4 ◦C was reported for a Volkswagen ID.3 from the measurements.
The duration of the battery conditioning was approximately 15 min. From this data and the
battery masses, we calculated the electric energy capacities and the specific heat capacities
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of the batteries as a simple equation for the cold start extra consumption (Equation (4))
for application to any BEV in simulation with the model PHEM. The battery weight is
calculated from the battery capacity using average energy densities.

EBat−cond = mbat ∗ cbat ∗
(
ttarget − tstart

)
f or ttarget > tstart, otherwise zero (4)

EBat−cond—Electrical energy consumption for heating the battery cells after a cold
start [Wh]
mbat—Mass of the battery to be heated for conditioning [kg]
cbat—Specific heat capacity of the battery [Wh/kgK]
ttarget—Temperature of the battery at start [◦C]
tstart—Target temperature of the battery for the heat-up phase, usually 15 to 20 ◦C
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function of ambient temperature based on [2].

The average initial heating power for the battery is calculated using the time for the
heating period, which is assumed here to be 900 s. The power for the initial heating of the
passenger compartment is comparable low; see Figure 5. After the initial heat-up time, the
constantly warm air flow gradually heats up the interior.
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2.1.2. Eco-Driver Model

During the H2020 project uCARe, a number of routines were developed that enable
the representation of a “virtual eco-driver” [7]. This makes it possible to simulate measured
cycles both in the actual driven state and with the “virtual eco-driver”, and to assess the
possible emission and energy consumption reduction rates due to an eco-driving style.
These methods include the following measures:

• Optimized gear shifting;
• Speed and acceleration limits;
• Smoother (look-ahead) braking.

Map-Based Gear Shifting: “Efficient Shifting”

This strategy checks all possible gears for possibly lower emission results at the same
power output (including losses for shifting) compared to the pre-selected gear. The best
gear that still allows the target acceleration is then selected. This shifting strategy can be
applied for all exhaust components available in the engine map, as well as for a user-defined
weighted mix of different pollutants [7].

The weighting used here is carried out on the basis of the long-run climate change
avoidance costs for CO2 and on the basis of the external costs for all other pollutant
components. The emission costs originate from the Handbook on the external costs of
transport [19].

Acceleration Limitation

The optimum acceleration behavior of the driver needs to find the best compromise
between the lowest emissions per vehicle kilometer and the acceptance of the drivers. The
first step in this analysis was to find out where the optimal speed of a vehicle is. For this
purpose, a simulation of constant speed points was carried out for several vehicles. Figure 6
shows the simulated CO2 values of different constant speed points for the individual gears
of a Euro 6d-Temp diesel vehicle. At lower speeds, the almost constant auxiliary power
demand leads to high fuel consumption; at higher speeds, the air resistance increasing with
the square of the speed leads to increased fuel consumption. The optimum at a constant
speed, therefore, depends on the air resistance of the vehicle and the auxiliary power
demand, but was always in the range of approximately 50 to 70 km/h for the vehicles
considered in uCARe [7]. It is logical that the vehicle should be operated as much as
possible in the optimum speed range.

To identify the acceleration rates leading to the lowest fuel consumption per kilometer,
simulations were performed in [20]. To analyze the acceptance of the acceleration limits
found in [20], tests with four amateur drivers at the TUG were performed in [7]. The
analysis shows that driving at speeds lower than the optimum should be short, and
consequently, accelerations in this speed range should be high and ideally in the area of the
highest brake-specific engine efficiency. This leads to the lowest specific CO2 emissions per
km in the lower speed range. Full load should be avoided due to increasing brake-specific
pollutant emissions. The acceptance of this strategy was high within the test drivers.

Above approximately 60 km/h, any acceleration increases the fuel consumption per
kilometer. Accelerations in the range of the best engine efficiency at such higher speeds
lead to a rapid increase in speed, which increases the driving resistance disproportionately
due to the quadratic influence of the air resistance. The product of kWh/km × g/kWh is,
therefore, worse than when accelerating below the point with the best engine efficiency.
As a maximum speed of approximately 60 km/h was not accepted by the drivers in extra-
urban trips, a gentle acceleration target was defined above the optimum speed, which drops
to zero at 120 km/h. The resulting limit value for acceleration is shown as the green curve
in Figure 6. The acceleration behavior at different speeds and driving styles was validated
in [7], using 181 measurements from Heinz Steven Data Analysis and Consulting (HSDAC).
The trips performed with the eco-driving style were in the area of the acceleration limit
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from Figure 6, while normal and aggressive trips used much higher accelerations above the
optimum speed.
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vehicle speed.

The acceleration limits identified are in line with the literature data. In [21], it was
investigated how acceleration behavior can be quantified and which accelerations lead to
increased fuel consumption for defined travel distances. There, an acceleration of over
0.8 m/s2 was described as too strong. The 0.5 m/s2 from the optimum speed selected in
this study is below this limit.

The eco-driver model uses this acceleration limit in the simulation and checks every
second whether the desired acceleration resulting from the measured vehicle speed trajec-
tory is above the limit. If this is the case, the acceleration is set to the maximum allowed
value at the current speed. Any resulting change in the speed curve is taken into account
by a distance correction, which extends the travel time so that the same distance is covered
over the entire cycle.

It should be emphasized that road safety has priority over the implementation of the
driving rules. Attempts to follow them as closely as possible must not endanger other
road users.

Deceleration Analysis

By limiting the maximum acceleration and maximum speed, the dynamics are limited
to some extent. Besides this, the way speed reductions are realized has a high impact on
energy consumption and emissions.

The idea for further investigation of the dynamics is that any energy dissipated by
the mechanical brakes must be supplied again later by the engine. Exceptions to this
are electric vehicles and hybrids, which can recuperate a share of brake energy, but even
for these systems, avoiding unnecessary braking reduces the energy consumption and
emissions due to losses in the transformation and storage of energy. The ideal deceleration
is, therefore, coasting with the engine in overrun mode at low speed for a low drag torque.
Since the traffic situations that would have allowed this deceleration style are not known
from the recorded speed trajectory, this step is performed in post-processing based on
statistical data.

The PHEM simulation model splits the deceleration power between mechanical brak-
ing and engine braking, in addition to the deceleration caused by the driving resistances.
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For the post-processing model, an “eco-braking work curve” was derived from measure-
ments with 10 test drivers by Graz University of Technology (TUG) and 181 measurements
from Heinz Steven Data Analysis and Consulting (HSDAC). This shows the braking work
from eco-style driven trips as a function of the average speed for flat roads. The braking
work due to negative road gradients is subtracted in each trip, since mechanical braking to
avoid accelerations in downhill passages cannot be avoided by eco-driving [7].

For a simulated cycle, the average speed and the simulated average mechanical
braking work are considered and compared to the equivalent value from the “eco-braking
curve”, as can be seen in Figure 7. The difference represents the statistically possible
reduction in mechanical braking work. By multiplying the theoretical savings in braking
energy [Wh/tkm] by the vehicle mass [t] and a vehicle-specific CO2 factor [g/Wh], which
is calculated from the trip’s average CO2 emissions and positive engine power, we obtain
the theoretical savings of CO2 [g/km] due to reduced mechanical braking.

∆CO2 brake work = ∆Wbrake ∗ mvehicle ∗ FactorCO2 (5)

∆CO2 brake work—CO2 savings due to reduced mechanical braking [g/km]
∆Wbrake—Possible reduction in braking work [Wh/tkm]
mvehicle—Vehicle mass [t]
FactorCO2—Vehicle-specific CO2 factor [g/Wh]
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For the calculation of the other emission components, this factorization cannot be
applied because the emission behavior is not as linearly related to the engine power as
it is for CO2. For this reason, the average emissions are divided by the average CO2 for
the total cycle. With this factor as g/gCO2 and the CO2 savings, the savings of the other
emission components can be determined. This certainly is a drastic simplification, but no
better approach to assess the savings potential due to eco-braking was identified. Since, in
the post-processing of a trip, the simulation tool does not know which deceleration rates
were necessary to avoid accidents, etc., the measured speed trajectory cannot be adjusted
to represent eco-braking as was performed for the acceleration. Without such an adjusted
speed trajectory, a detailed simulation is not possible with PHEM. However, according
to test runs with 10 different drivers in [7,22], the statistical approach chosen seems to
give a reliable indication to the driver and what emission reductions he/she can expect by
optimizing the braking behavior.
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2.1.3. Non-Exhaust Particle Emission Model

Non-exhaust particle emissions (NEPs), from tire wear, brake wear, and road abrasion,
have recently become more and more the focus of public attention, on the one hand, because
exhaust particle emissions have become lower and lower in recent years due to increasingly
restrictive emission legislation and, on the other hand, because non-exhaust emissions
are rising proportionally with the increasing vehicle mileage driven. Furthermore, a
limit value for brake abrasion particle emissions is already proposed for the upcoming
Euro 7 legislation, which, of course, underlines the importance of investigations into non-
exhaust particulate emissions [4]. Therefore, a new simulation method for tire and brake
wear was developed in the course of the H2020 uCARe project [5]. This method was
designed to allow the assessment of driving style and vehicle technology impacts on the
NEPs and, thus, also uses the 1Hz driving trajectory data as the input, similar to the exhaust
gas simulation. The model is implemented in the simulation tool PHEM and is described in
the following.

Simulation Approach for Brake Wear PN23 and PM

In the newly developed simulation model, the braking power and the speed of the
brake disc are used as explanatory parameters for PN23 brake wear particles. The braking
power is calculated in PHEM from the equations of the longitudinal dynamics. Since
the particles stored in the cavities of the pads tend to be released at higher speeds, it is
assumed to have a dependence on the rotational speed of the discs. The rotational speed
dependency is also shown in [23]. In high-temperature areas of the brake pads, wear is
stored also as sintered pads and resins [24]. The formation and detachment of the pads
is roughly in equilibrium, but detachment is probably more pronounced at very high
temperatures and high thermal stresses. The latter effect may explain the emission peaks at
the beginning of a braking process by releasing the pads formed in the previous braking
event. Furthermore, at high temperatures, vaporizing binders seem to lead to a high
numbers of nucleation particles. Due to a lack of test data with brake wear and temperature
data, the brake temperature is not included in the model yet, although the measurements
show a significant influence on the particle number emission and on the brake particle
size distribution.

The brake abrasion PN23 emissions in #/s are interpolated from a characteristic
curve, which is obtained from the measurement data of tests at the brake test bench. The
measurement data come from the uCARe project [5] of Worldwide Harmonized Light-Duty
Vehicles Test Procedure (WLTP) brake tests and other real cycles, as well as from various
brake disc and pad configurations tested in the course of the model development. The
1Hz PN23 emissions are summed up from the start of a braking process to the start of
the following process and plotted over the average braking power and speed during the
braking intervention. This also records the emissions that are only emitted after the brakes
have been applied. For each measured brake pad and disc combination, a polygon is
built from the test data (Figure 8). In the PHEM model, it is possible to select different
PN23 characteristic curves for a single brake model or as the weighted average for the
simulation. This method allows easy updates of average polygons at any time when
new measurement data are available. Figure 8 shows characteristic PN23 curves for
different brake manufacturers and the average PN23 brake curve for all existing PN brake
measurement data.

PM10 emissions are calculated from PN23 emissions using a density function de-
pending on the disk speed. This reflects a trend reported, e.g., in [23] based on systematic
tests on a brake test rig, namely that the particle density [mg/#] decreases with increasing
disc speed.
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Simulation Approach for Tire Wear PN23 and PM

The aim in developing the model was to be able to evaluate the main influences of the
driving cycle and the vehicle configuration (mass, driving resistance, etc.) on the emission
values from tire wear, as already described for brake wear.

We assumed that the most important influencing factor for the mass of tire wear [mg]
is the energy [kWh] transferred from the tires to the road, and therefore, the emission
factors in mg/h depend on the power [kW] transferred from the wheel. Figure 9 shows the
characteristic PM10 tire wear curve (TU Graz model) implemented in the PHEM model, as
well as other representative PM10 tire wear data from the literature that are the basis of the
TU Graz model curve.

PN23 is calculated via the ratio (density function) PN23/PM10. This ratio, imple-
mented in PHEM, is derived from the literature data [25], as well as from test bench
measurements performed at Graz University of Technology.
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2.2. Validation of the Simulation Program PHEM

Validation exercises of the model PHEM are executed regularly, to provide a state-
ment about the model’s accuracy in the simulation of energy consumption and exhaust,
as well as non-exhaust emissions. Results for diesel and petrol vehicles of different emis-
sions standards have been published in, e.g., [11] for HDVs and in [9] for LDVs. For the
Euro 6 passenger cars, a total of ten vehicles (five diesel and five petrol vehicles) were
examined. The fuel consumption and CO2 emissions were simulated on average in real-
world driving conditions with a deviation of less than 5%. For NOx, CO, HCs, and PM, the
average deviations were below 30% and, for PN23, below 55%.

The BEV validation used measurement data for two battery electric vehicles (Volkswa-
gen ID.3 and Renault Zoe) in several Real Driving Emissions (RDEs) runs, as well as on
the chassis dynamometer. The simulation results deviated on average by 2% (Volkswagen
ID.3) and 3% (Renault Zoe) from the measured energy consumption [2].

The validation of the eco-driver model was carried out within the framework of the
uCARe project and was published in [7]. Several trips of four drivers in untrained and
afterwards in instructed driving styles were examined. The trips contained a
1/3 mix of urban, rural, and motorway driving and were recorded with a portable emission
measurement system. In the simulation of the untrained trips, the virtual eco-driver model
showed an 11% reduction potential for CO2. The measurement of the instructed trips
showed an average reduction of 13% compared to the untrained trips. However, it should
be noted that these drivers already had a normal to economical driving style.

2.3. LCA Analysis of Vehicle-, Fuel-, and Electricity-Production-Related Emissions

For a complete picture of the energy consumption and greenhouse gas emissions
of different propulsion systems, a life cycle assessment (LCA) is needed, which includes
emissions from fuel and electricity production, as well as vehicle production.

As part of the EU project “LONGRUN (Development of efficient and environmentally
friendly LONG distance powertrain for heavy dUty trucks aNd coaches” (Grant agreement
No. 874972) [29], a tool was developed for LCA calculations of greenhouse gas emissions
(gCO2eq/km) and energy consumption (kWh/km). The tool is parameterized with an
extensive collection of LCA data. The well-to-tank (WtT) GHG emissions and grey en-
ergy consumption are provided per MJ of fuel energy, while vehicle-production-related
emissions are provided per mass of the main components [30]. For this work, the fore-
casts for fuel and electricity production for vehicle usage for the year 2030 were used,
which are based on the JRC-Eucar-Concawe collaboration (JEC) WtW report v5 [31]. The
corresponding values are shown in Table 1.

Table 1. Well-to-tank data used for LCA calculation with estimations for 2030 [31].

Fuel Type WtT GHG Emissions
[gCO2eq/MJ]

WtT Grey Energy Demand
[MJ/MJ]

Diesel blend 21.3 0.33
Gasoline blend 17.9 0.31

EU grid average 74.5 1.34

The parameters for vehicle production were taken from a study by the Austrian
Federal Environment Agency [32], which focuses on possible vehicle production paths.
The raw data for this came from the Ecoinvent database. An emission factor of 7.2 kg
CO2eq per kg vehicle weight was used for the production of vehicles with combustion
engines. This value is based on the assumption that the vehicle is produced in Europe
and that the electricity used corresponds to the average European electricity production
mix in 2030. An emission factor of 6.2 kg CO2eq per kg of vehicle weight was used for
BEV body production without the battery, motor, and electric drive train if the vehicle
production (body) is balanced with a European electricity mix. For the production of the
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electric engine, GHG emissions of 4.5 kg CO2eq per kW of engine power were used. This is
based on the assumption that the electric engine is produced in Europe and on the basis
of the average European electricity mix. An emission factor of around 42 kg CO2eq per
kg was assumed for the production of the electric drivetrain (this includes converters,
inverters, on-board charging converters, and power distributors). The literature shows
GHG emissions of 61–106 kg CO2eq per kWh of battery capacity from the production of
Li-ion batteries [33–35]. Another study [36] forecasts an emission factor of approximately
71 kg CO2eq per kWh of battery capacity for the production of Li-ion batteries (without
climate policies) in China in 2030. This value is in the lower forecast range of previous
studies and was used in our calculations. This value seems to be reasonable, as a large
proportion of the vehicle batteries in use today are manufactured in China. Of course, this
value can be much lower for individual companies. The total mileage over the entire life
cycle of a vehicle is estimated here as 225,000 km. For BEVs, it is assumed that this mileage
is achieved with a single battery [32].

2.4. Vehicle Variations and Technologies

For the paper, virtual cars with different drive systems in identical bodies were mod-
elled. As the basis data from Euro 6d, petrol cars for three vehicle categories—small,
medium, and SUV—were used. The diesel and BEV cars for each category were derived
by virtually replacing the engines and energy storage systems. This simulates the driver
having identical basic vehicles just with different technologies to choose from.

Derivation of the Base Vehicle Data

The masses and rated engine power data for the base petrol vehicles were determined
based on typical newly registered vehicles for the year 2022. The rolling resistance coef-
ficient of the tires was calculated assuming a mix of three tire energy labels [13]. Table 2
shows the tire mix and the rolling resistances for each tire label [37]. The tire label A value
was used for the simulation of the fuel-efficient tire-equipped cars.

Table 2. Mix of tire labels used for all simulated cars.

Tire Label RRC [kg/t] Share [%]

E 9.44 20
C 8.12 50
B 6.89 30

A: fuel efficient tires 5.76

For each vehicle technology, the same drag coefficient and cross-section air values per
vehicle category were used. Table 3 shows the main vehicle parameters.

Table 3. Base vehicle data.

Parameter Small Car Medium Car SUV

Rated power in kW 55 110 160
Cd × A in m2 0.647 0.652 0.780
RRC in kg/ton 8.02 8.02 8.02

DIN empty weight of the
base petrol car in kg 974 1147 1415

Based on the empty weight of the base gasoline cars, the body weight for each vehicle
class was calculated by subtracting the weights of the gasoline-ICE-specific components.
The masses used for the components as shown in Figure 10 were found in the literature or
determined by weighing. A fuel tank capacity of 60 l was chosen, 90% filled with petrol
(fuel type E5; density: 743.3 kg/m3 for the standard condition).
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The total masses for the diesel and BEV cars were calculated by adding the masses
of the technology-specific components to the base petrol car body mass. The masses for
the ICEs and for the electric motor depend on the rate and were calculated using the
correlations specified in [38]. The mass of the high-voltage battery for the BEVs was
calculated from the battery capacity and a typical energy density. For the battery capacity,
the average value for the five most registered BEVs in Austria in the year 2022 per vehicle
category was used. Table 4 shows the values for the battery capacity for the BEVs per
vehicle category [39] and the corresponding masses.

Table 4. Battery capacity used for the BEVs per vehicle category.

Parameter Small Car Medium Car SUV

Battery capacity in kWh 41 61 79
Battery mass in kg 255 384 496

Figure 10 shows the resulting vehicle masses and the split between the
main components.

The masses of the electric motors were calculated from the rated power according
to [38]. For the simulation of the exhaust emissions, the average Euro 6d maps for diesel
and petrol cars were used, which were created and used for the simulation of the HBEFA
4.2 emissions factors [13].

The characteristic curves for the battery voltage and resistance to compute charging
losses and the electric motor efficiency map for the BEV were taken from data calibrated
with measurements made at TUG in a project for UBA Germany [2].

2.5. Cycles Used for Scenario Simulation

This subsection describes the cycles used for the simulation. The cycles represent
average driver behavior in Germany for the following:
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• Urban driving;
• Commuter driving;
• Motorway driving.

Those cycles were derived from the HBEFA database in [40]. A 1/3 mix of the hot
emissions simulated for these three cycles in g/km represents approximately the average
car usage. For adding the cold start extra emissions in g/start to the hot emissions in g/km,
the cold start extra emissions are divided by the trip distance driven per cold start. Thus,
cold starts have higher impacts on the results the shorter the trips are. To cover a broad
range of typical mission profiles, also, a short urban trip was derived from real-world
tests carried out by TUG in and around Graz, Austria. Table 5 shows an overview of all
cycles used with the most important cycle data. Also included is the 95th percentile v*apos,
which represents the cycle dynamics. The higher the value, the more dynamic the cycle
is. The v*apos values of the cycles used ranged from 9 to 22 m2/s3. The length of the
individual cycles is between 3 and 260 km, the average speed between 25 and 120 km/h.
If a vehicle cannot follow a speed profile because the engine is too weak or because of
the eco-driver mode measures, the speed profile is automatically adjusted and the cycle is
extended to cover the same distance. The simulation runs were performed individually
for each combination of vehicle size and propulsion technology. Table 5 also shows the
change in average speed and 95th percentile v*apos when the cycles were simulated with
the medium diesel vehicle and the eco-model.

Table 5. Characteristics of the cycles used for the simulation including changes to the
eco-driving style.

Cycle Short-Distance
Urban Cycle

Avg. Urban
Cycle

Avg. Rural
Cycle

Avg. Motorway
Cycle

Duration [s] 400 2814 4947 7877
Length [km] 3 19 94 260

Avg. v [km/h] 25 25 68 119
Max. v [km/h] 47 81 92 167

Gradient included Yes No No No
95% perc. V*apos [m2/s2] 9.1 13.9 16.4 21.3

Duration when eco-driven [s] 1 400 2827 5012 8584
Avg. v when eco-driven [km/h] 1 25 25 68 109

95th perc. v*apos when eco-driven [m2/s2] 1 9.1 11.8 10.7 8.8
1 Exemplary change in trip data when driving with a medium diesel vehicle and the eco-model.

An ambient temperature of 10.5 ◦C was defined for all simulations, representing the
annual average for Germany in 2022 [41].

3. Results

Calculations were performed for all combinations of vehicle category and drive tech-
nology including emissions from non-exhaust and exhaust sources including cold starts.
Influences on emissions behavior from fuel-efficient tires and eco-driving are also portrayed.
However, for clarity and space reasons, only selected results are compared. The results
shown were always simulated with the 1/3 mix of the HBEFA average cycles. Exceptions
are the cold start simulation results, where the types of cycles are listed separately.

3.1. CO2 Emissions with Effects of Vehicle Size and Driver Actions

In this comparison, the vehicle production, well-to-tank (WtT) and Tank-to-Wheel
(TtW) CO2 emissions for the vehicle sizes small, medium, and SUV were compared and
the effect of eco-driving with and without fuel-efficient tires is shown and can be seen
in Figure 11. As described in Section 2.3, CO2eq emissions from vehicle production are
attributed to a service life mileage of 225,000 km. The TtW emissions include emissions
at operating temperature. The influence of the HVAC power demand at an ambient
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temperature of 10.5 ◦C was taken into account. The WtT emissions from electricity and
fuel production are based on a forecast for the year 2030. The electricity used is an EU mix.
With electricity from coal or purely renewable energy sources, the results are significantly
different. Also, GHG emissions from battery production are related to the year 2030 in
China, but can be much lower for individual companies and may further decrease in the
future; see Section 2.3.
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Since only the drivetrain is exchanged in this study when comparing the drive tech-
nologies, diesel vehicles have a clear advantage over gasoline vehicles. In reality, however,
diesel vehicles are, on average, heavier and more powerful than petrol vehicles, which
reduces this advantage when looking at the average new vehicle fleet. The results of vehicle
production, WtT, and TtW emissions of the medium vehicle are consistent with the results
of current studies [42–44]

The influence of the larger vehicle classes on the CO2 emissions is a result of the
increased vehicle mass, of higher driving resistances, and of the higher rated engine power,
which leads to more frequent driving in low-load areas with low fuel efficiency. The
CO2 savings of diesel compared to petrol are still evident. With the electricity mix used,
the electric vehicle has only approximately half the CO2 emissions of its conventional
counterparts. The influence of vehicle size follows the same trend. The effect of eco-driving
style and fuel-efficient tires is shown for medium cars, while the effects for small cars and
SUVs follow the same trend.

For the comparison of eco-driving measures, only TtW and WtT emissions were
considered. By using an eco-driving style, CO2 emissions can be reduced by 8% (BEV), by
14% (petrol), and by 15% (diesel car). The potential savings calculated here are comparable
to the results determined in [45,46]. A literature review in [47] found savings potentials of
14% for eco-driving using advanced driver assistant systems in conventional cars with a
standard deviation of 6%.

BEVs show less reduction potential through eco-driving measures, as most of the
braking energy that is lost for vehicles with combustion engines can be recuperated. To-
gether with the use of fuel-efficient tires, the savings potentials are 17%/20%/20%. The
results from [47] show 3–5% energy savings for the use of fuel-saving tires, but the basis for
comparison (tire mix) is different here.
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The CO2 emissions of the medium car types are reduced by eco-driving and the best
available tire technologies to the corresponding level of the small car types with a normal
driving style and average tires.

3.2. Particle Number Emissions with Effects of Vehicle Size and Driver Actions

In this comparison, the PN23 emissions from the tailpipe and non-exhaust were
compared including the influence of the vehicle size and vehicle technology. In addition,
the effect of eco-driving with and without fuel-efficient tires is shown for the medium car.
Those results can be seen in Figure 12.
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The results of the exhaust PN23 simulation show that diesel vehicles have a clear
advantage over petrol vehicles. The influence of vehicle size is also evident in the exhaust
PN23 emissions of conventional vehicles, especially with petrol engines. This is due to the
low rated engine power of the small vehicle, which results in higher shares of full load
driving (more particles per kWh in the high-load area). These results are comparable with
those from other fleet measurements. A study showed an average of 1 × 1011 #/km for
petrol vehicles in the Euro 6d emissions class in RDE measurements and an average of
3 × 1010 #/km for diesel vehicles [48].

In [49], one Euro 6c petrol vehicle with GPF showed warm PN emissions of
2.9 × 1011 #/km, which is within the spread of the Euro 6d and d-Temp cars tested for
HBEFA showing a 90th percentile of 2.5 × 1012 #/km and a 10th percentile of
2.2 × 109 #/km for all real-world tests.

Non-exhaust PN23 emissions increase slightly with vehicle size, and weight differences
due to the engine technology within a vehicle size are also noticeable. It is noticeable that
the non-exhaust particle emissions are higher than the tailpipe emissions, especially for
diesel vehicles (exception: small car). Battery electric vehicles have lower emissions than
their conventional counterparts, as deceleration can be largely achieved by recuperation
instead of mechanical braking. However, a large part of the non-exhaust emissions comes
from the tires, which are slightly higher for BEVs due to the higher vehicle mass.

Refs. [28,50] give on average 6 × 1010 PN23 emissions for tire wear. Ref. [6] reports
on average 1.1 × 1010 #/km PN23 emissions for the brake wear of vehicles. The sum
corresponds with the 6.3 × 1010 #/km PN23 emissions calculated here for the sum of tire
and brake wear for the medium car.

The eco-driving behavior has a strong influence on the exhaust emissions of con-
ventional vehicles. The exhaust PN23 emissions of the medium car can be reduced by
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approximately 40% (petrol) and 23% (diesel). The influence on the non-exhaust emissions of
conventional vehicles is visible by a reduction of 17% (petrol) and 12% (diesel), respectively,
as mechanical braking power demand can be reduced. For BEVs, the effect is only small
(only 1%).

The combined use of fuel-efficient tires and the eco-driving style further increases
the reduction of exhaust PN23 emissions to 47% (petrol)/28% (diesel). Although the
cold start has a considerable effect on PN23 emissions, all gasoline and diesel cars are
within the Not-to-Exceed limit (NTE) of 9 × 1011 #/km in the urban part, as well as on the
entire route.

3.3. CO2 Emissions with Effects of Cold Start and Trip Distance

This comparison shows the WtW CO2 emissions taking into account the cold start
extra emissions for the medium car such as gasoline, diesel, and BEV, and can be seen in
Figure 13. As the distance driven is essential for the cold start effect, the short city cycle
(3 km), average urban cycle (19 km), average 1/3 mix, and the highway cycle
were compared.
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For this calculation, the ambient temperature in Germany of 10.5 ◦C was used [34]. The
HVAC power demand for this 10.5 ◦C ambient temperature and related solar radiation is
included in the hot emissions. The cold start temperature used here causes significant extra
emissions during initial engine heat-up for conventional vehicles, while for battery electric
vehicles, it is just approximately 5 to 10 ◦C below the target temperature to which the
battery is typically heated. This means that, at lower temperatures, the cold start effect of
electric vehicles increases proportionally to the temperature difference, while conventional
vehicles only emit slightly more.

Due to the significantly lower engine efficiency at low loads, conventional vehicles
have higher hot emissions in the city than in the average mix. The electric vehicle has the
lowest “hot” energy consumption in the city since the driving resistances are lower at lower
speeds and the efficiency of the electric motor drops towards the high rotational speeds
needed, e.g., in motorway driving.

The cold start effect increases the emissions of all technologies by the following values
for the 3 km urban trip: 22% (BEV)/5% (petrol)/11% (diesel). Diesel vehicles have higher
CO2 cold start emissions because of the higher energy demand for heating up the EAS.
This is due to the lower exhaust gas temperature level and the lower heat release from
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HCs and CO oxidation in the catalyst compared to the petrol engines. It should be noted
that the cold start is not yet completed at the end of the 3km trip for both electric and
conventional vehicles. This means that a cold start effect occurs again, albeit weakened,
during a subsequent ride.

If we compare the results for the urban cycle (19 km), we obtain results of a similar
order of magnitude to [51]. There, in the UDDS cycle at 20 ◦C, a “cold start penalty” of
6–12% is described for vehicles with ICEs and 6% for battery electric vehicles from 2013.
This study also recognizes that the additional energy consumption of BEVs increases much
more with decreasing temperature than for vehicles with ICEs.

For the average trip, the greatest cold start effects can be observed with electric vehicles,
with the cold start increasing emissions by 3.8% (BEV)/1.0% (petrol)/2.4% (diesel) for the
average trip.

3.4. NOx Emissions with Effects of Cold Start and Trip Distance

This comparison shows the NOx emissions including the cold start extra emissions for
the generic medium car, results are shown in Figure 14. The comparison includes the same
trips as used for the CO2 comparison in Section 3.3. The other size classes follow the same
trend. The eco-driving style leads to slightly higher savings than for CO2 (see Figure 11),
but follows a similar trend over the distance of a trip. For these two reasons, only the effect
of the cold start is shown here, which is considerably higher than the driver influence.
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Both diesel and petrol have the lowest hot NOx emissions in the urban part, petrol
cars being always slightly better than diesel cars (just under a factor of two). These results
are comparable to those from other fleet measurements. A study showed an average of
13 mg/km for petrol vehicles in the Euro 6d pollutant class in RDE measurements and an
average of 24 mg/km for diesel vehicles [48]. Another study showed NOx emissions of
21 mg/km for a Euro 6c petrol vehicle under hot operating conditions [49].

The additional cold start emissions in g/start are similar for all trips; the extra emis-
sions per km trip distance consequently are highest for the 3 km urban trip. In this situation,
the tailpipe emissions per km increase by 600% (petrol)/1300% (diesel) compared to hot
driving conditions. The cold start extra emissions are higher for diesel vehicles, as the heat-
up of the SCR takes longer than the closed coupled three-way catalyst in petrol vehicles.
The cold start effect of NOx is completed for both technologies during this distance. For
the average trip, cold start increases NOx emissions by 34% (petrol)/100% (diesel). The
additional cold start for gasoline vehicles emissions are slightly higher than stated in [52],
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where approximately 200 mg/start NOx was measured for China 6 vehicles at an average
ambient temperature of 30 ◦C.

Although the cold start has a considerable effect on NOx emissions, both technologies
are within the NTE limit of 85.5 mg/km (petrol)/114.4 mg/km (diesel) in the 19 km urban
part and would also meet the limit for a 16 km trip, which is the minimum test distance
for RDEs.

4. Summary and Conclusions

The work presented here intended to provide a holistic comparison of the effects of
vehicle choice and driving behavior on vehicle emissions. These comparisons include the
influences of the following:

• Vehicle size (small car, medium car, SUV);
• Vehicle technology (diesel, petrol, BEV);
• Hot tailpipe emissions of CO2, NOx, and PN23 and energy consumption of BEVs;
• Upstream CO2 emissions from fuel and electricity production;
• Driving behavior and tire selection;
• Additional emissions due to cold start effects;
• PN23 emissions due to tire and brake wear.

To enable this comparison, the simulation tool PHEM was used. PHEM calculates
engine, braking, and wheel power and rotational speeds from the equations of longitudinal
dynamics. Based on these data, sub-models calculate the exhaust, brake, and tire wear
emissions and energy consumption. The model was used to simulate generic vehicles in
three size classes, namely petrol, diesel, and battery electric vehicles in different traffic
situations and with different driving styles.

An increasing vehicle size proved to lead to significantly higher non-exhaust emissions
and energy consumption due to the increasing vehicle mass and driving resistance. For
example, WtW CO2 emissions from conventional vehicles double between small cars and
SUVs, while the increase for BEVs is somewhat smaller, but also significant.

Also, the choice of vehicle technology has a significant influence on emissions. Elec-
tric vehicles, for example, have a higher mass mainly due to the battery, which means
more energy is required to move them. This leads to higher tire-wear emissions, while
electric braking significantly reduces brake wear particles. While electric vehicles do not
generate any exhaust gases from fuel combustion, the upstream CO2 emissions from ve-
hicle and electricity production in Europe as expected in the year 2030 correspond on
average to approximately half of the CO2 emissions of ICE vehicles, including vehicle and
fuel production.

The eco-driver model in PHEM enables a virtual conversion of a given driving cycle
in order to assess savings potentials through driving style changes. If the production
emissions are left aside, the average energy savings potential including the use of fuel-
efficient tires for a conventional medium segment car is about 20%; for electric vehicles, the
potential is 17%. The effect on PN23 emissions is strong for conventional vehicles, as the
sum of exhaust and non-exhaust particles can be reduced by eco-driving by approximately
20% (diesel) and 35% (petrol), respectively. For battery electric vehicles, the reduction
of non-exhaust particles is lower because electric braking does not produce brake wear
emissions unless the maximum brake power of the motor is exceeded. Thus, look-ahead
braking, which is an important element of the eco-drive style, does not influence brake
abrasion greatly in normal driving situations.

For vehicles with ICEs, the cold start model calculates the additional emissions of
the engine due to cold start effects as a function of the start temperature. For battery
electric vehicles, the heating of the battery towards a 15◦ to 20 ◦C target temperature
needs significant electric energy. For conventional cars, higher energy is needed after cold
starts due to the higher friction of cold components and also due to the need for heating
the exhaust aftertreatment system to reach the light-off temperatures quickly. For short
distances (here, three km) with the average temperature of Germany, the cold start effect
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increases the CO2 emissions of conventional vehicles on average by approximately 5%
to 10%, while the energy consumption of battery electric vehicles increases by more than
20%. In the average driving mix (1/3 mix), the cold start increases the consumption of
conventional vehicles by approximately 1.5%, while the energy consumption of BEVs
increases by approximately 4%. For NOx, the cold start effect is considerable especially for
very short distances. For diesel vehicles, NOx emissions increase in the three km trip by a
factor of more than 10 and, for petrol vehicles, approximately by a factor of seven, since all
additional emissions are projected to a very short distance. As soon as the distance driven
is increased, this effect of cold start emissions on the average g/km emissions results drops.
For average driving behavior (1/3 mix), the cold start doubles the NOx emissions for diesel
and increases them by 1/3 for petrol.

The non-exhaust particle emissions from tire and brake abrasion are strongly influ-
enced by the vehicle mass, the presence of an electric motor for regenerative braking, as
well as by the driving behavior. The non-exhaust PN23 emissions are approximately on
the same level as the exhaust emissions. BEVs have lower non-exhaust than conventional
vehicles, since recuperation during deceleration prevents brake abrasion. This outweighs
the higher tire wear due to the higher vehicle mass. Hybrid vehicles, which have not
been simulated in this paper, consequently, have a high reduction potential for brake wear
emissions compared to the conventional ICE cars analyzed here.
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Glossary of Terms

approx. approximately
BEV battery electric vehicle
CO carbon monoxide
CO2 carbon dioxide
CO2eq carbon dioxide equivalent
COPERT Computer Programme to calculate Emissions from Road Transport
CSEE cold start extra emissions
DIN Deutsches Institut für Normung e. V.
DWD Deutscher Wetterdienst
EAS exhaust gas aftertreatment
EEA European Environment Agency
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EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt
ERMES European Research for Mobile Emission Sources
EU European Union
EUCAR European Council for Automotive R&D
Exh. exhaust
GHG greenhouse gas
HBEFA Handbook Emission Factors for Road Transport
HCs hydrocarbons
HDV heavy-duty vehicle
HSDAC Heinz Steven Data Analysis and Consulting
HVAC heating, ventilation, and air conditioning
ICE internal combustion engine
ITnA Institute for Thermodynamics and Sustainable Propulsion Systems
IUFC Inrets Urbain Fluide Court
JEC JRC-Eucar-Concawe collaboration
JRC Joint Research Centre
LCA life cycle assessment
LDV Light-duty vehicles
LONGRUN Development of efficient and environmentally friendly LONG distance poweRtrain

for heavy dUty trucks aNd coaches
MEET Methodologies for Estimating air pollutant Emissions from Transport
NEPs non-exhaust particle emissions
NH3 Ammonia
NOx nitrogen oxide
NTE Not-To-Exceed
PHEM Passenger car and Heavy-duty Emission Model
PM particle mass
PM10 particle mass smaller than 10 µm
PN particle number
PN23 particle number with a cut-off point at 23 nm
PN10 particle number with a cut-off point at 10 nm
Qcum_loss cumulated heat loss
Qloss heat loss
RDEs Real Driving Emissions
RRC rolling resistance coefficient
SCR selective catalytic reduction
SUV sports utility vehicle
T temperature
TREMOD Transport Emission Model
TtW Tank-to-Wheel
TUG Graz University of Technology
UBA Umweltbundesamt
uCARe You Can Always Reduce Emissions because you care
W Watts
WLTP Worldwide Harmonized Light-Duty Vehicles Test Procedure
WtT well-to-tank
WtW Well-to-Wheel
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