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Abstract: Accurate and timely fault detection is crucial for ensuring the smooth operation and
longevity of rotating machinery. This study explores the effectiveness of image-based approaches
for machine fault diagnosis using data from a 6DOF IMU (Inertial Measurement Unit) sensor. Three
novel methods are proposed. The IMU6DoF-Time2GrayscaleGrid-CNN method converts the time
series sensor data into a single grayscale image, leveraging the efficiency of a grayscale representation
and the power of convolutional neural networks (CNNs) for feature extraction. The IMU6DoF-
Time2RGBbyType-CNN method utilizes RGB images. The IMU6DoF-Time2RGBbyAxis-CNN method
employs an RGB image where each channel corresponds to a specific axis (X, Y, Z) of the sensor
data. This axis-aligned representation potentially allows the CNN to learn the relationships between
movements along different axes. The performance of all three methods is evaluated through extensive
training and testing on a dataset containing various operational states (idle, normal, fault). All meth-
ods achieve high accuracy in classifying these states. While the grayscale method offers the fastest
training convergence, the RGB-based methods might provide additional insights. The interpretability
of the models is also explored using Grad-CAM visualizations. This research demonstrates the
potential of image-based approaches with CNNs for robust and interpretable machine fault diagnosis
using sensor data.

Keywords: machine fault diagnosis; vibrations of rotary machines; image-based diagnostics; 6DOF
IMU sensor; interpretability in machine learning

1. Introduction

Modern environments are teeming with complex electromechanical machinery, from
factories to cities to homes. These systems are crucial for our way of life, but require
effective maintenance to ensure their longevity and prevent unnecessary waste. Industrial
machinery, in particular, presents a unique challenge due to its intricate nature. Proactive
fault diagnosis strategies are essential to prevent production disruptions and equipment
damage, ultimately leading to cost savings and environmental benefits. Machine fault
diagnosis plays a pivotal role in ensuring the reliability and longevity of industrial ma-
chinery. Vibration analysis is a widely adopted technique for detecting faults in rotating
machinery due to its sensitivity to subtle changes in a machine’s condition. In recent years,
the application of deep learning techniques, particularly convolutional neural networks
(CNNs), has shown promising results in automating fault diagnosis processes. The field
of fault diagnosis is constantly evolving, with advancements in data sharing through the
Internet of Things (IoT) and machine learning paving the way for more sophisticated
solutions. This research explores the potential of image-based diagnostics using sensor data
and convolutional neural networks (CNNs) for robust and interpretable fault detection in
industrial machinery.

Effective fault diagnosis in electromechanical machines relies on selecting the ap-
propriate sensors and signals. The choice depends on the specific machine and the fault

Energies 2024, 17, 1998. https://doi.org/10.3390/en17091998 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17091998
https://doi.org/10.3390/en17091998
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2755-5503
https://doi.org/10.3390/en17091998
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17091998?type=check_update&version=2


Energies 2024, 17, 1998 2 of 25

characteristics it aims to detect. Common sensors are divided by the type of measurement:
(a) mechanical quantities like vibration (a popular choice due to its sensitivity to faults) [1–5],
displacement [6], torque [7,8], and angular velocity/position [9,10]; (b) electrical quantities
like current [11,12] and voltage [13,14], can reveal issues related to power delivery and
motor health; and (c) other signals like temperature (inner/outer) [15,16], sound [17–19],
and even chemical analysis [20,21] can be valuable for specific fault types. Beyond tradi-
tional sensors, recent research explores image-based diagnostics using cameras [22–25] and
signals converted into virtual images [12,26–30]. This versatility in sensor selection allows
for a comprehensive approach to machine health monitoring and fault detection.

This article focuses on the utilization of vibration analysis coupled with CNNs for
machine fault diagnosis. Specifically, it explores the transformation of vibration time
series data into grayscale and red, green, and blue channel (RGB) images to leverage
the power of image recognition algorithms. By converting time series data into image
formats, it aims to exploit the multiaxis information inherent in vibration signals, which
can enhance the discriminatory power of CNNs in fault detection. The use of CNNs for
image recognition offers several advantages, including the ability to automatically learn
hierarchical features from raw data and the robustness to variations in input signals. By
training CNNs on a dataset comprising both normal and faulty vibration patterns, the
model can learn to differentiate between different fault types and accurately classify unseen
data. Vibration signals contain valuable information about the condition of machinery,
reflecting changes in mechanical components such as bearings, gears, and shafts. Vibration
analysis involves the study of these signals to identify abnormal patterns indicative of
faults or anomalies. Traditional methods include Fourier transform-based techniques like
Short-Time Fourier Transform (STFT) [1] and Continuous Wavelet Transform (CWT) [31],
which provide insights into the frequency content of vibration signals.

The proposed methods of IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-
Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN draw inspiration from
successful applications of image conversion and convolutional neural networks (CNNs)
in fault diagnosis tasks. Prior research, particularly a study on six-switch and three-phase
(6S3P) topology inverter faults [12], demonstrated the effectiveness of converting phase
currents into RGB images for fault classification. This approach achieved superior accuracy
compared to traditional machine learning methods such as decision trees, naive Bayes, sup-
port vector machines (SVMs), k-nearest neighbors (KNNs) or even simpler neural networks.
In 6S3P inverter fault diagnosis research [12], each channel of the RGB image represented a
different phase of the inverter current. This approach serves as a foundation for this work,
but a key challenge arises when dealing with multiaxis data from a 6DOF IMU sensor.
Unlike single-dimensional currents, data from multiple axes (accelerometer, gyroscope)
need a well-defined conversion strategy for effective image representation. The existing
literature acknowledges a gap in knowledge regarding how to optimally convert multiaxis
data from IMU sensors into an image format suitable for CNN-based fault classification.
Although some studies such as the one by Zia Ullah et al. [26] explore signal-to-image
conversion, they often employ limited approaches. For instance, their work on Permanent
Magnet Synchronous Motor (PMSM) fault diagnosis utilizes a two-channel RGB image,
where blue represents one axis of the accelerometer, red represents the spectrum of the
stator current, and green remains unused for a three-class classification task (a healthy,
irreversible demagnetization fault, and a bearing fault). Similarly, Tingli Xie et al. [28]
addressed multisensory fusion and CNNs by converting only three chosen signals into an
RGB image. This approach was validated on various datasets, including one with three
classes (an inner ring fault, an outer ring fault, and a normal condition). Yuqing Zhou
et al. [29] investigated the diagnosis of rotating machinery using a three-channel RGB
image formed by merging the permutation entropy from sensor data. This approach aimed
to recognize one of five classes of tool wear (initial wear, slight wear, stable wear, serious
wear, and failure). Ming Xu et al. [30] proposed a method for diagnosing bearing failure by
converting the raw signals from three 1-axis accelerometers (located at the drive end, fan
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end, and base) into the R, G, and B channels of an RGB image. Converting high-dimensional
sensor data to RGB images with only three channels can lead to information loss. Important
details of the original signal might be discarded during the conversion process, potentially
impacting the accuracy of the fault classification. Existing methods like those of Zia Ullah
et al. [26] and Tingli Xie et al. [28] utilize two or three channels, failing to fully capture the
richness of the multi-dimensional data from a 6DOF IMU sensor. This limited approach
highlights the need for a more comprehensive strategy for handling multiaxis data from
IMU sensors. The IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-
CNN, and IMU6DoF-Time2RGBbyAxis-CNN methods address this gap by proposing a
novel approach for converting 6DOF IMU data into grayscale, RGB by sensor, and RGB by
axis alignment images that effectively capture the temporal characteristics of the vibration
signals across all axes. This method paves the way for leveraging the power of CNNs for
accurate fault classification in scenarios involving complex multidimensional sensor data.
Additional improvement is needed in the presentation of the interpretability of CNNs,
which is missing in the referred articles.

In this paper, a comprehensive investigation into the application of CNNs for machine
fault diagnosis through vibration analysis is presented. The performance of the proposed
method was evaluated on real-world datasets and compared with existing techniques to
demonstrate its effectiveness in detecting and classifying machine faults. Additionally,
the interpretability of the CNN model’s decision-making process is discussed, providing
insights into the detected fault patterns and contributing to the overall trustworthiness of
the diagnostic system. All three proposed methods (IMU6DoF-Time2GrayscaleGrid-CNN,
IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN) achieved high
accuracy in classifying different operational states (idle, normal, fault) using sensor data
converted into grayscale or RGB images. This suggests that image-based diagnostics
using CNNs can be a viable approach for machine fault diagnosis. The grayscale method
(IMU6DoF-Time2GrayscaleGrid-CNN) exhibited the fastest training convergence. This
means it required fewer training epochs to achieve a desired level of accuracy compared
to the RGB methods. The axis-aligned RGB method (IMU6DoF-Time2RGBbyAxis-CNN)
might offer a more intuitive interpretation of the features learned by the CNN for fault
detection. This is because each channel in the image directly corresponds to a specific
axis of the sensor data. These findings highlight the potential of the use of image-based
diagnostics with CNNs for machine fault diagnosis.

The manuscript is organized into distinct sections. In the Introduction, the research
objectives and the importance of fault diagnosis in electromechanical systems are out-lined.
The paper starts with a broader context in Section 2, discussing “Machine Fault Diagnosis
through Vibration Analysis” and highlighting the use of image conversion techniques
(grayscale and RGB) for analysis. Section 3 then focuses on practical implementation by
introducing a “Demonstrator of Machine Fault Diagnosis”. The core of the research is pre-
sented in Section 4, “Results of Time Series Conversion. . .”. This section dives deeper into
the different methods used: Section 4.1 details the IMU6DoF-Time2GrayscaleGrid-CNN
method, explaining its approach. Sections 4.2 and 4.3 follow the same structure, presenting
the IMU6DoF-Time2RGBbyType-CNN method and the IMU6DoF-Time2RGBbyAxis-CNN
method, respectively, with a focus on their specific functionalities. Section 5 provides a
discussion of the findings, comparing the different methods and their effectiveness. Finally,
Section 6 offers conclusions summarizing the key takeaways and potential future directions
of the research.

2. Machine Fault Diagnosis through Vibration Analysis with Time Series Conversion to
Greyscale and RGB Images

Machine fault diagnosis is a critical aspect of predictive maintenance in various in-
dustries. Vibration analysis has emerged as a prominent technique for detecting and
diagnosing faults in rotating machinery due to its sensitivity to changes in machine con-
ditions. Traditional methods often rely on a time-frequency analysis of vibration signals,
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requiring expert knowledge for the accurate selection of window length and window
shape. In response to these challenges, in this section was proposed a novel approach for
machine fault diagnosis using vibration analysis, coupled with time series conversion to
greyscale and RGB images. Time series data from sensors such as Inertial Measurement
Units (IMUs) play a crucial role in capturing the dynamics of machinery. By converting
time series data from IMUs, specifically six-degrees-of-freedom (6DOF) sensors, into a
spatial format, it enables the application of image processing methods for feature extraction
and analysis. The goal is to transform the temporal information contained in the time
series into a spatial representation that can be effectively analyzed using image processing
techniques. By leveraging image recognition techniques, particularly convolutional neural
networks (CNNs), this method aims to enhance fault detection accuracy while providing
interpretable insights into fault patterns.

IMUs provide measurements of acceleration and angular velocity along three orthogo-
nal axes, resulting in six channels of time series data. The proposed methods were verified
at the fan demonstrator described in the next section. Each frame of data consists of 256 sam-
ples, with a one-sample overlap between consecutive frames. The high-resolution nature
of IMU data allows for the detailed capture of machine vibrations and movements. The
16-by-16 sub-images (256 samples) are arranged in a grid pattern to form a larger greyscale
image with dimensions of 48 by 32 pixels. Each pixel in the greyscale image corresponds
to a specific sample in the original time series data, capturing the temporal evolution of
machine behavior. Figure 1 depicts a method for recognizing a grayscale image using
data from a 6DoF IMU sensor. The method, called IMU6DoF-Time2GrayscaleGrid-CNN,
converts time series data into a grayscale image for recognition by a convolutional neural
network (CNN). The procedure consists of these steps:

1. The system collects data from the gyroscope and accelerometer of the 6DoF IMU
sensor. Both sensors provide data in the time domain.

2. The time series data for each axis (X, Y, and Z) is divided into segments with 256 sam-
ples each. These segments are then reshaped into 16 × 16 matrices.

3. The reshaped 16 × 16 matrices from each axis (X, Y, and Z) are then combined to form
a single grayscale image of a 48 × 32 size.

4. The grayscale image is fed into a convolutional neural network for classification.
The CNN architecture consists of convolutional layers, batch normalization, ReLU
activation, fully connected layers, and a softmax layer for classification.
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Overall, the IMU6DoF-Time2GrayscaleGrid-CNN method transforms time series data
from a 6DoF IMU sensor into a suitable format for recognition by a CNN.

Grayscale images provide a compact and efficient way to represent the temporal
evolution of sensor data. This allows for faster processing and potentially lower compu-
tational demands compared to more complex representations. The proposed IMU6DoF-
Time2GrayscaleGrid-CNN method demonstrates a promising approach for machine fault
diagnosis by leveraging the strengths of both vibration analysis and image recognition
techniques. By converting vibration time series data into grayscale images, it allows CNNs
to effectively learn features and classify faults in rotating machinery. This chapter outlines
the theoretical foundation and practical implementation of this method, paving the way for
further research in predictive maintenance and industrial fault diagnosis.

Figure 2 shows the method named IMU6DoF-Time2RGBbyType-CNN for converting
time series data into an RGB image for image recognition. The method involves the
following steps:
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1. Acquire time series data of 256 × 6 samples from the IMU 6DoF sensor.
2. Reshape the time series data into a 2D image. For instance, a 256-sample time series

would be reshaped into a 16 × 16 image.
3. Three separate 2D images are then concatenated along the color channel to form a

single RGB image. In this way, each channel of the RGB image represents the data
from a single axis (X, Y, and Z) of the IMU sensor.

4. The resulting RGB image can then be used for image recognition tasks using a con-
volutional neural network (CNN). The architecture of the CNN is shown in Figure 2,
and consists of a convolutional layer, batch normalization, an ReLU layer, a fully
connected layer, a soft max layer, and a classification layer.

Figure 3 depicts a method named IMU6DoF-Time2RGBbyAxis-CNN for recognizing
images using data from a 6DoF IMU sensor. This method converts time series data into
RGB images for recognition by a convolutional neural network (CNN). A breakdown of
the process is illustrated in Figure 3:
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1. Data Acquisition. The system collects data from the gyroscope and accelerometer of
the 6DoF IMU sensor. Both provide data in the time domain.

2. Data Preprocessing. The time series data for each axis (X, Y, and Z) is segmented into
256 samples each. These segments are then reshaped into 16 × 16 matrices.

3. RGB Image Formation. The reshaped 16 × 16 matrices from each axis (X, Y, and Z)
are stacked together to form a single RGB image of a 48 × 16 × 3 size.

4. Image Recognition using CNN. The RGB image is fed into a convolutional neural
network for classification. The specific CNN architecture is provided in Figure 3; it
consists of convolutional layers, batch normalization, ReLU activation, fully connected
layers, and a softmax layer for classification.

Overall, the IMU6DoF-Time2RGBbyAxis-CNN method transforms time series data
from a 6DoF IMU sensor into a format suitable for recognition by a CNN.

3. Demonstrator of Machine Fault Diagnosis

This section focuses on demonstrating the feasibility of the proposed methods, IMU6DoF-
Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-
CNN, for image-based recognition using IMU data. A dedicated demonstrator, depicted in
Figure 4, was constructed to verify their effectiveness. This proof-of-concept setup consisted of
the following components: microcontroller STM32F746ZG at a NUCLEO board is responsible for
collecting data from the IMU sensor and transmitting it in a JSON (JavaScript Object Notation)
format via the MQTT (Message Queuing Telemetry Transport) protocol to the computational unit;
a MPU6050 sensor which is a 6DoF IMU sensor that captures motion data along the X, Y, and Z
axes; a computer fan acts as the target for vibration investigation; and a blue paper clip is attached
to the fan blade to create an imbalance, thereby inducing controlled vibrations during operation.
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Figure 4. Microcontroller-based demonstrator of machine fault diagnosis.

The demonstrator mimics a real-world scenario where an IMU sensor can be mounted
on a machine to capture vibration data for fault diagnosis. The controlled vibrations
generated by the imbalanced fan blade simulate potential machine faults that the proposed
methods can learn to identify. This experimental setup provides a practical validation
platform to assess the performance of the proposed CNN-based approaches for image
recognition from IMU data.

The proof of concept was verified in the demonstration with the Yate Loon Electronics
(Taiwan) fan model GP-D12SH-12(F) DC 12 V 0.3 A. Nominal velocity was 3000 RPM (revo-
lutions per minute), which is equivalent to 50 revolutions per second. The fan was supplied
with 5 V, which is related to around 21 revolutions per second. This highlights the method’s
potential to handle a range of operating conditions. The proposed method was investigated
for constant rotational speed applications, which are prevalent in many industrial settings.
Example applications include centrifugal pumps and blowers, machine tool spindles, con-
veyor belts, cooling fans in electronics, and duct fans in air conditioning. Furthermore,
the potential extends beyond applications with strictly constant speeds. With its ability
to handle variations in operating conditions, the IMU6DoF-Time2GrayscaleGrid-CNN,
IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN approaches
could be applicable to scenarios with controlled speed changes or slight fluctuations,
allowing their use in a wider range of industrial machinery.

IMU data was continuously acquired at a constant sampling rate of 200 Hz, corre-
sponding to a sampling interval of 5 milliseconds (ms). This resulted in a buffer containing
256 samples, representing a total acquisition time of 1.28 s. In other words, it took 1.28 s
to collect the 256 data points from the six-degrees-of-freedom (DOF) IMU sensor. The
collected measurement data is sent from the microcontroller client to an MQTT broker on
the laptop using the MQTT protocol. This communication flow is depicted in Figure 5.
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Aliasing can be a significant concern when dealing with vibration data analysis.
The key is the presence of built-in digital low-pass filters (DLPFs) within the MPU-6050
sensor. These filters play a crucial role in mitigating aliasing by attenuating high-frequency
components beyond the sensor’s Nyquist rate (half the sampling rate). The configurable
bandwidth settings (260 Hz, 184 Hz, 94 Hz, 44 Hz, etc.) in the sensor allows us to adjust the
DLPF cutoff frequency to suit the specific requirements of the application. The vibration
frequency range of interest was carefully considered for fan blade imbalance detection. To
ensure that the relevant vibration components were adequately captured without aliasing,
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the sampling rate was selected as at least twice the highest frequency of interest. The
built-in DLPFs of the MPU-6050 were used to attenuate high-frequency noise beyond the
desired bandwidth.

To evaluate the effectiveness of the proposed methods, data were collected for three
distinct operational classes: idle, normal operation, and fault. In the fault class, a paperclip
was attached to the fan blade to induce an imbalance and generate controlled vibrations,
simulating a potential machine fault scenario. Time series data for each class are presented
in Figure 6. Each segment of 256 IMU samples captured time series data for each of the
three axes (X, Y, and Z) of the accelerometer and gyroscope, resulting in a total of six data
streams per segment (256 × 6).
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gyroscope.

For each captured segment containing 256 time series samples from the three ac-
celerometer axes (X, Y, and Z) and the three gyroscope axes (X, Y, and Z), a separate
frequency domain representation was obtained using a technique like Fast Fourier Trans-
form (FFT). This transformation converts the time-based signal from each axis into its
constituent frequency components, allowing for an analysis of the dominant frequencies
present in the data. The single-segment time series data converted into frequency domains
for three axes of the accelerometer and gyroscope for each class are shown in Figure 7. The
idle class exhibits a dominant peak at 0 Hz, signifying the absence of significant vibration.
Normal operation is characterized by the presence of small vibrations spread across a
frequency range of 20 Hz to 90 Hz, potentially due to motor operation or environmen-
tal factors. In contrast, the fault condition is distinguished by a dominant frequency of
20 Hz appearing specifically in the X-axis of the accelerometer data and the Z-axis of the
gyroscope data. This targeted presence of a specific frequency suggests a characteristic
signature induced by the imbalanced fan blade attached in the fault scenario.
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4. Results of the Time Series’ Conversion to Greyscale and RGB Images and
Recognition via Convolutional Neural Networks

CNNs are powerful tools for image recognition. This section evaluates three
proposed methods for image-based recognition using data from a 6DoF IMU sen-
sor: IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and
IMU6DoF-Time2RGBbyAxis-CNN. The methods were described in Section 2. Each sub-
section presents a representative input image for each class (idle, normal operation, and
fault) to illustrate the processed data used by the corresponding CNN model. Additionally,
the training progress of the CNN, visualized as a curve depicting loss or accuracy over
training epochs, is provided to demonstrate the learning behavior of the model. Further-
more, confusion matrices for both the test and validation datasets are included to assess
the classification performance of each method. Finally, to gain insights into the decision-
making process of the CNNs, an interpretability analysis using techniques like Grad-CAM,
occlusion sensitivity, and LIME is presented in each subsection.

For each method, a total of 7680 images were generated, with each class (idle, normal
operation, and fault) equally represented by 2560 images. These images were then split
into training and test sets using an 80/20 ratio. This means 80% (2048 images per class)
were used to train the CNN models, while the remaining 20% (512 images per class) were
used for testing and evaluating their performance.

4.1. The IMU6DoF-Time2GrayscaleGrid-CNN Method

This method transforms the time series data from each axis (X, Y, and Z) into a
16 × 16 grid of grayscale values. These grids are then stacked to form a single grayscale
image for classification by a CNN. For the IMU6DoF-Time2GrayscaleGrid-CNN method,
representative grayscale images are presented for each class (idle, normal operation, and
fault) in Figure 8. These grayscale images visually depict how the time series data from
the 6DoF IMU sensor are transformed into a format suitable for classification by the CNN.
The images provide insights into the patterns and variations observed in the data across
different operational states.
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Figure 8. Greyscale images for each class of the IMU6DoF-Time2GrayscaleGrid-CNN method.

Figure 9 depicts the training progress of the convolutional neural network (CNN) used
in the IMU6DoF-Time2GrayscaleGrid-CNN method. The training lasted for 150 epochs,
which corresponds to a total of 7200 iterations. The learning rate was set to 0.001. The
graph shows two subplots, one representing the training loss and the other representing
the training accuracy. Ideally, the training loss should decrease over time as the CNN learns
to improve its performance on the training data. Conversely, the training accuracy should
increase as the model becomes better at correctly classifying the images. By analyzing this
graph, how effectively the CNN model was trained can be assessed. A good training curve
would show a steady decrease in loss and a corresponding increase in accuracy over the
course of the training epochs.
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Figure 10 depicts a confusion matrix, which is a table that visualizes the perfor-
mance of a classification model on a test dataset. In this case, the confusion matrix shows
the results of a CNN model trained to classify images generated using the IMU6DoF-
Time2GrayscaleGrid-CNN method. The left side of the matrix represents the actual class
labels for the test images (ground truth), while the bottom side represents the classes
predicted by the CNN model. Each row of the matrix corresponds to a true class (idle,
normal, fault), and each column represents a predicted class. The ideal scenario is to have
high values along the diagonal of the matrix, indicating that the model correctly classified
most of the images. Conversely, high values off the diagonal indicate classification errors.
By analyzing the distribution of values in the confusion matrix, you can gain insights
into the strengths and weaknesses of the CNN model. For instance, a high value in the
top-left corner (a fault class predicted as a fault) suggests good performance in identifying
fault images. However, a high value in the middle-right place (an idle class predicted
as normal) would indicate that the model sometimes confuses idle images with normal
operation images.
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testing—right).

Figure 11 showcases the interpretability analysis of the IMU6DoF-Time2GrayscaleGrid-
CNN method using various techniques. Each row corresponds to a class (fault, idle,
normal), and the columns present different methods for gaining insights into the CNN’s
decision-making process. The CNN input image column displays the grayscale image
generated from the IMU data for each class. These images serve as the input to the CNN
for classification. The Grad-CAM column likely shows the Grad-CAM visualizations for
each class. The Grad-CAM highlights the regions in the grayscale image that the CNN
focuses on when making its classification decision. By analyzing these visualizations, we
can understand which parts of the image are most influential for the CNN’s prediction. For
example, in the fault class, the Grad-CAM highlights specific areas corresponding to axis X
of the accelerometer (top-left corner of the image) and axis Z of the gyroscope (bottom-right
corner of the image) that correspond to the vibrations induced by the imbalanced fan
blade. The fault condition is distinguished by a dominant frequency of 20 Hz appearing
specifically in the X-axis of the accelerometer’s data and the Z-axis of the gyroscope’s
data, as shown in Figure 7. The occlusion sensitivity column depicts the results of the
occlusion sensitivity analysis. In this technique, different parts of the input image are
systematically masked or occluded, and the impact on the CNN’s prediction is observed. If
occluding a particular region significantly alters the prediction, it suggests that the CNN
relied heavily on that region for classification. By analyzing the occlusion sensitivity maps,
insights can be gained into which parts of the image are most informative for the CNN.
The occlusion sensitivity analysis in Figure 11 complements the information gleaned from
Grad-CAM visualizations. While the Grad-CAM highlights the areas of the grayscale
image that receive high activation from the CNN, occlusion sensitivity takes a more direct
approach. Occlusion sensitivity maps reinforce these findings. By progressively occluding
these highlighted regions and observing the changes in the CNN’s predictions for the fault
class, the analysis confirms their critical role. If occluding these specific areas significantly
reduces the model’s confidence in classifying an image as a “fault”, it demonstrates that the
CNN heavily relies on information from those regions to make that classification. In essence,
while the Grad-CAM points out the areas of interest, occlusion sensitivity quantifies their
importance in the CNN’s decision-making process. This combined analysis provides a
more comprehensive understanding of how the CNN leverages the grayscale image data
to identify fault conditions. The LIME column shows the LIME explanations for each
class. LIME generates a localized explanation for a single image prediction by introducing
interpretable features around the instance of interest. Here, these features might be related
to specific patterns or statistical properties within the grayscale image that influence
the CNN’s decision. Analyzing LIME explanations can be useful for understanding the
reasoning behind the CNN’s prediction for a particular image.
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progress of the CNN used in the IMU6DoF-Time2RGBbyType-CNN method can be visu-
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4.2. The IMU6DoF-Time2RGBbyType-CNN Method

This method, named IMU6DoF-Time2RGBbyType-CNN, directly converts the time
series data for each axis (X, Y, and Z) of the IMU sensor into separate channels of an
RGB image. This creates a single image where the red channel represents the X-axis
data, the green channel represents the Y-axis data, and the blue channel represents the
Z-axis data. The resulting RGB image is then fed into a convolutional neural network
(CNN) for classification. Figure 12 shows representative input images for each class (idle,
normal operation, and fault). As can be seen, the top half of the image corresponds to
the accelerometer data (red, green, blue channels for X, Y, and Z), while the bottom half
corresponds to the gyroscope data (again, red, green, and blue for X, Y, and Z).
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Similar to the IMU6DoF-Time2GrayscaleGrid-CNN method (Figure 9), the training
progress of the CNN used in the IMU6DoF-Time2RGBbyType-CNN method can be visual-
ized (Figure 13) using a graph that plots training loss and accuracy over epochs. The data
has been zoomed in to focus on the first 500 iterations for a clearer comparison between the
two methods. Figure 13 reveals interesting insights into the training behavior of the CNNs
for both approaches. It is evident that the IMU6DoF-Time2GrayscaleGrid-CNN method
achieves a training accuracy exceeding 95% faster than the IMU6DoF-Time2RGBbyType-
CNN method does. This observation suggests that the CNN trained on the simpler
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grayscale image representation might converge into a good solution more efficiently com-
pared to the model handling the RGB color image.
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Figure 13. The training progress of the CNN for the IMU6DoF-Time2RGBbyType-CNN method
compared with that of the IMU6DoF-Time2GrayscaleGrid-CNN method (training—left; validation—
right).

The performance of the IMU6DoF-Time2RGBbyType-CNN method can be further
evaluated using a confusion matrix, shown in Figure 14. Similar to the confusion matrix de-
scribed for the grayscale method (Section 4.1), this matrix is a table with rows representing
the true classes (idle, normal, fault) and columns representing the predicted classes. The
IMU6DoF-Time2RGBbyType-CNN and IMU6DoF-Time2GrayscaleGrid-CNN models have
similar accuracy around 100%.

Energies 2024, 17, x FOR PEER REVIEW 13 of 25 
 

 

CNN method achieves a training accuracy exceeding 95% faster than the IMU6DoF-
Time2RGBbyType-CNN method does. This observation suggests that the CNN trained 
on the simpler grayscale image representation might converge into a good solution more 
efficiently compared to the model handling the RGB color image. 

 
Figure 13. The training progress of the CNN for the IMU6DoF-Time2RGBbyType-CNN method com-
pared with that of the IMU6DoF-Time2GrayscaleGrid-CNN method (training—left; validation—right). 

The performance of the IMU6DoF-Time2RGBbyType-CNN method can be further 
evaluated using a confusion matrix, shown in Figure 14. Similar to the confusion matrix 
described for the grayscale method (Section 4.1), this matrix is a table with rows repre-
senting the true classes (idle, normal, fault) and columns representing the predicted clas-
ses. The IMU6DoF-Time2RGBbyType-CNN and IMU6DoF-Time2GrayscaleGrid-CNN 
models have similar accuracy around 100%. 

  
Figure 14. The matrix of confusion after training IMU6DoF-Time2RGBbyType-CNN (training—
left; testing—right). 

Convolutional neural networks (CNNs) are powerful tools for image recognition, but 
their inner workings can be difficult to interpret. This makes it challenging to understand 
how a CNN arrives at its classification decisions. In the provided Figure 15, the first col-
umn shows the input RGB image. Similar to Section 4.1, the rows correspond to the classes 
of fault, idle, and normal, respectively. Techniques like Grad-CAM, occlusion sensitivity, 
and LIME were used to aid in CNN interpretability. These methods provide visualizations 
that highlight the regions of the image that the CNN focuses on for classification. By ana-
lyzing these visualizations, researchers can gain insights into the decision-making process 
of the CNN and understand how it differentiates between different classes. Frequency 

Figure 14. The matrix of confusion after training IMU6DoF-Time2RGBbyType-CNN (training—left;
testing—right).

Convolutional neural networks (CNNs) are powerful tools for image recognition, but
their inner workings can be difficult to interpret. This makes it challenging to understand
how a CNN arrives at its classification decisions. In the provided Figure 15, the first column
shows the input RGB image. Similar to Section 4.1, the rows correspond to the classes of
fault, idle, and normal, respectively. Techniques like Grad-CAM, occlusion sensitivity, and
LIME were used to aid in CNN interpretability. These methods provide visualizations that
highlight the regions of the image that the CNN focuses on for classification. By analyzing
these visualizations, researchers can gain insights into the decision-making process of the
CNN and understand how it differentiates between different classes. Frequency domain
analysis (as shown in Figure 7) reveals a characteristic signature of the fault condition.
This signature is characterized by a dominant peak at 20 Hz, specifically present in the
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X-axis of the accelerometer data and the Z-axis of the gyroscope data. The Grad-CAM
and occlusion sensitivity analysis for the IMU6DoF-Time2RGBbyType-CNN method point
towards the gyroscope data as a dominant factor in distinguishing fault conditions. These
techniques highlight specific features or channels within the RGB image representation
that correspond to the gyroscope data (particularly the Z-axis), suggesting that the CNN
heavily relies on information from the gyroscope for accurate fault classification.
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4.3. The IMU6DoF-Time2RGBbyAxis-CNN Method

The method named IMU6DoF-Time2RGBbyAxis-CNN adopts a unique approach
to transform time series data from a 6DoF IMU sensor into a format suitable for image-
based recognition using a convolutional neural network (CNN). A crucial aspect of this
method is the alignment of data across axes. By segmenting and reshaping data windows
to be the same size for each axis (X, Y), the IMU6DoF-Time2RGBbyAxis-CNN model
ensures that corresponding time points from different axes are positioned together within
the RGB image. This alignment potentially allows the CNN to learn the relationships
between the movements along different axes, which might be beneficial for classification.
Representative input images for each class (idle, normal operation, and fault) generated
using this method can be seen in Figure 16. The figure clearly illustrates that the left of
the image contains the accelerometer X-axis and gyroscope X-axis data, the middle part
contains the accelerometer Y-axis and gyroscope Y-axis data, and the right part of the image
represents the accelerometer Z-axis and gyroscope Z-axis data; moreover, the blue channel
was set to zero.
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Similar to the IMU6DoF-Time2GrayscaleGrid-CNN method (Figure 9), the training
progress of the CNNs used in both IMU6DoF-Time2RGBbyType-CNN (Figure 13) and
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IMU6DoF-Time2RGBbyAxis-CNN can be visualized using graphs that plot training loss
and accuracy over epochs. The data in Figure 17 has been zoomed in to the first 500
iterations for a clearer comparison between the three methods. The training progress
reveals interesting insights. As observed previously, the IMU6DoF-Time2GrayscaleGrid-
CNN method achieves a training accuracy exceeding 95% faster than the IMU6DoF-
Time2RGBbyType-CNN method does. This suggests that the simpler grayscale image
representation might be easier for the CNN to learn from compared to the RGB-by-type
approach. The IMU6DoF-Time2RGBbyAxis-CNN method (which utilizes axis-aligned data
representations in the RGB image) is not trained as fast as the grayscale method; however,
it achieves faster convergence than the IMU6DoF-Time2RGBbyType-CNN method. This is
because the axis-aligned representation in RGB by axis inherently captures some relation-
ships between the axes (as data points from the same time window are positioned together),
potentially simplifying the learning process for the CNN compared to the more abstract
feature vector used in RGB by type.
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Similar to the evaluation methods used for the other CNN approaches, the perfor-
mance of the IMU6DoF-Time2RGBbyAxis-CNN method can be assessed using a con-
fusion matrix as shown in Figure 18. It is noteworthy that, as previously mentioned,
IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-
Time2RGBbyAxis-CNN each achieved a high accuracy of around 100%.

Understanding how the CNN in the IMU6DoF-Time2RGBbyAxis-CNN method makes
decisions is crucial for building trust and potentially improving the model. Techniques like
Grad-CAM can be applied to visualize the regions within the RGB image that the CNN
focuses on when classifying a specific operational state (idle, normal, fault), as shown in
Figure 19. Since the method uses an axis-aligned representation, these visualizations might
highlight specific areas within a channel that correspond to movements along a particular
axis. For example, at the fault class, Grad-CAM highlights in the red channel for X-axis
movements in the accelerometer data and movements in the green channel for the Z-axis in
the gyroscope data. This alignment can potentially offer more intuitive insights into the
features the CNN learns compared to other RGB representation methods, as the highlighted
regions directly relate to specific axes. In essence, by combining Grad-CAM visualizations
with occlusion sensitivity analysis, we can achieve a more comprehensive understanding
of how the IMU6DoF-Time2RGBbyAxis-CNN method leverages the axis-aligned data
representation in the RGB image. This combined analysis helps to see how the model
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effectively distinguishes between different operational states based on the sensor data from
the specific axes highlighted by Grad-CAM.
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5. Discussion

The comparison of the proposed methods was conducted in the high-performance
computing environment of a remote virtual machine provided by the Poznan University of
Technology. The system utilized VMware for virtualization and offered 16 GB of RAM for
efficient memory management. The processing power was provided by an AMD EPYC
7402 processor, with two cores and four threads specifically allocated for this task. It is
important to note that the CNN training was processed entirely on the CPU for a controlled
comparison. The software environment used for this research was MathWorks MATLAB
R2023a, which provided the necessary tools for data processing, image generation, CNN
implementation, and performance evaluation.

A paper clip attached to a fan blade can be a valid representation of a real fault for
proof-of-concept purposes, but with limitations. In this paragraph, we discuss the limi-
tations of this approach while exploring real-world examples of fan blade imbalance in
computer and duct fan applications. This approach induces an imbalance that manifests
itself as an increased vibration, mimicking the signature of a genuine fault. Vibration
sensors can then detect these changes, allowing the researcher to evaluate the ability of the
IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-
Time2RGBbyAxis-CNN methods to identify such imbalances through vibration analysis.
However, it is crucial to acknowledge the limitations of this method. A paper clip represents
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a highly specific type and degree of imbalance. Real-world fan blade failures can manifest
in numerous ways with varying severities. The paper clip might not adequately capture
the full spectrum of potential imbalances encountered in practical applications. Real-world
imbalances can arise from manufacturing defects (for example, uneven blade mass distribu-
tion), physical damage (for example, bent or cracked blades), or foreign object accumulation
on a blade. These factors can lead to imbalances that differ significantly from the simple
addition of mass introduced by a paper clip. The paper clip induces a moderate level of
imbalance. However, real-world faults can range from very slight imbalances, which might
not be readily detectable, to severe imbalances that cause significant vibration and rapid
equipment degradation. A computer fan experiencing blade imbalance typically exhibits
increased noise levels, vibrations detectable in the computer case, and potentially unstable
fan speeds. In severe cases, the imbalance can lead to premature fan failure or damage to the
mounting bracket. The computer fan imbalance can be caused by manufacturing defects,
physical damage to a blade (e.g., a bent tip), or the accumulation of dust on one side of the
blade, which can all contribute to imbalance in computer fans. Similarly to computer fans,
a duct fan with an imbalanced blade will experience increased vibrations and noise levels
within the duct system. This can disrupt airflow patterns, reduce efficiency, and potentially
damage the ductwork due to excessive vibrations. Similar to computer fans, imbalance can
be caused by manufacturing defects, physical damage (e.g., a bent or cracked blade), or
debris buildup on a blade, and these can all lead to imbalance in duct fans. Additionally,
the misalignment of the fan within the duct can also cause vibration issues. Introducing an
imbalance into a fan system using a paper clip attached to an blade is a appropriate method
for proof-of-concept studies at low technology readiness levels (TRLs) related to basic
research [32]. In this regard, each proposed method (IMU6DoF-Time2GrayscaleGrid-CNN,
IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN) itself is under
investigation, placing it at a relatively low TRL. While the methods are currently under de-
velopment (low TRLs), significant progress can be made to elevate their TRLs towards those
of real-world application (TRLs 7–9), which are equivalent to development work (product
development at business). The roadmap of technology readiness at TRL 7 assumes that
the demonstration of the system prototype in an operational environment was successful.
Next, the prototype testing is moved to a more realistic operational environment, involving
functional computer systems or dedicated fan test stands. The final level is TRL 9, which
means that the actual system was successfully tested in an operational environment. This
requires the final system to be deployed in real-world industrial settings for extended peri-
ods. This allows for real-world data collection and performance evaluation under practical
operating conditions. In addition, system performance is monitored and data are gathered
on its effectiveness in detecting fan blade imbalance and preventing equipment failures. By
progressing through this TRL roadmap, the proposed methods have the potential to reach
a high TRL level (TRLs 7–9) and become valuable tools for preventive maintenance and
improving equipment reliability in various industrial applications. This manuscript was
focused at a low TRL which allows for a positive verification of the proof of concept of the
proposed methods. The comparison of the training progress of the proposed methods is
illustrated in Table 1, highlighting the number of epochs required for each method to reach
a desired level of accuracy. Additionally, Table 2 provides insights into the image generation
efficiency of each method, which directly impacts the overall processing time for fault diag-
nosis. The reference methods (STFTx6-CNN [1] and CWTx6-CNN [31]) achieved perfect
validation accuracy (100%), and their training times of several minutes are significantly
faster compared to the those of the proposed methods, which had training speeds exceed-
ing 30 min (IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and
IMU6DoF-Time2RGBbyAxis-CNN). Additionally, the reference methods achieved over 90%
convergence after five iterations, whereas the proposed methods require 60 to 150 iterations
for similar accuracy. However, this trade-off comes with a substantial benefit in terms of
computational efficiency. The proposed methods offer significantly faster execution times,
processing a segment of 256 samples by 6 axes of sensors in less than half a millisecond.
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This is a considerable improvement compared to the reference methods, which require
around 9 milliseconds for STFT with 128 × 6 segments and a slow 29 milliseconds for CWT
with 96 × 6 segments. In real-world applications, especially those involving time-critical
fault detection, the faster processing speeds offered by the proposed methods become a
major advantage. While all methods achieve excellent classification accuracy, the ability
to perform computations in less than a millisecond makes the proposed methods more
suitable for online monitoring and real-time decision making. Future work can explore
techniques to further optimize the training process of the proposed methods while poten-
tially leveraging interpretability techniques like Grad-CAM to gain deeper insights into the
features learned by the CNNs for even more robust fault classification.

In real-world applications, it is essential to trust the model’s predictions. Interpretabil-
ity techniques can help us understand the reasoning behind the CNN’s decisions, fostering
confidence in its performance. Future research can explore advanced interpretability tech-
niques specifically designed for image-based CNNs used in sensor-based fault diagnosis.
Additionally, analytic analysis can be conducted to evaluate the effectiveness of these
techniques in conveying the model’s reasoning to domain experts.

Table 1. A comparison of the training progress of the proposed methods.

Method
Total Number
of Images for

Training
Training Time Training Iterations

Iteration with
Validation

Accuracy More
than 90%

Final Validation
Accuracy

Reference method
STFTx6-CNN 6450 images 1 m 59 s 50 5-th iteration 100%

Reference method
CWTx6-CNN 6528 images 3 m 4 s 51 5-th iteration 100%

Training CNN
recognition of

grayscale image
6144 images 33 m 54 s 7200 60-th iteration 99.93%

Training CNN
recognition of
RGB-by-type

image

6144 images 32 m 47 s 7200 150-th iteration 100%

Training CNN
recognition of RGB

with axis align
image

6144 images 34 m 33 s 7200 130-th iteration 100%

The vibration signals in Figure 6 appear to be visually distinct under certain operating
conditions; human interpretation can be subjective and may not capture the full spectrum
of informative features present in the data. The proposed methods leverage the power
of CNNs to address this challenge and achieve more robust and generalizable fault clas-
sification. CNNs excel at automatically extracting relevant features from complex data
patterns. By training the CNN on a diverse dataset of vibration signals representing various
severities and other potential faults, the model learns to identify these subtle features and
classify them accurately. Traditional machine learning approaches often require extensive
manual feature engineering. CNNs can learn features directly from the raw data, reducing
development time and potential human bias in feature selection. Furthermore, the previous
research stage under six-switch and three-phase (6S3P) topology inverter faults [12], shows
insights that phase currents can be converted into images for fault diagnosis and recognized
more accurately than other classifiers (e.g., decision trees, naive Bayes, SVMs (support vec-
tor machines), KNN (k-nearest neighbors) or narrow neural networks) despite the fact that
the phase currents were visually different. The insights from the previous research on 6S3P
inverter faults provide strong support for the proposed approach of leveraging CNNs for
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fan blade imbalance detection. By automatically extracting complex features from vibration
data, the IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN and
IMU6DoF-Time2RGBbyAxis-CNN methods have the potential to achieve superior fault
classification accuracy and robustness compared to simpler methods, even when some
level of visual distinction might be present in the raw data.

Table 2. The image generation efficiency comparison for fault diagnosis.

Time Measurement
Condition

Time Series
Segment Size

Total Number of
Images

Total Time in
Seconds for All

Iterations (Ceiling
Round)

Average Time of
Single

Iteration in
Milliseconds (Ceiling

Round)

Reference method
STFTx6-CNN 128 × 6 samples 8064 75.417 s 9.353 ms

Reference method
CWTx6-CNN 96 × 6 samples 8160 232.162 s 28.452 ms

Time series to grayscale
image generation

(IMU6DoF-
Time2GrayscaleGrid)

256 × 6 samples 7680 2.832 s 0.369 ms

Time series to RGB
image generation by

type
(IMU6DoF-

Time2RGBbyType)

256 × 6 samples 7680 2.544 s 0.332 ms

Time series to RGB
image generation by

axis
(IMU6DoF-

Time2RGBbyAxis)

256 × 6 samples 7680 2.711 s 0.353 ms

Time series to grayscale
image generation and
save file (IMU6DoF-

Time2GrayscaleGrid)

256 × 6 samples 7680 36.832 s 4.796 ms

Time series to
RGB-by-type image

generation and save file
(IMU6DoF-

Time2RGBbyType)

256 × 6 samples 7680 31.332 s 4.08 ms

Time series to
RGB-by-axis image

generation and save file
(IMU6DoF-

Time2RGBbyAxis)

256 × 6 samples 7680 29.491 s 3.841 ms

In the case of the IMU6DoF-Time2GrayscaleGrid-CNN method, Grad-CAM highlights
specific areas within the grayscale image corresponding to the fault class shown in Figure 11.
For instance, these highlighted regions could be located in the top-left corner (corresponding
to the X-axis of the accelerometer) and the bottom-right corner (corresponding to the Z-
axis of the gyroscope) of the image. This visual cue aligns with the knowledge that the
fault condition is characterized by a dominant frequency of 20 Hz in both the X-axis
accelerometer and Z-axis gyroscope data (as shown in Figure 7). By highlighting these
specific areas, Grad-CAM helps us to understand that the CNN focuses on data patterns
related to these axes when identifying the fault. The IMU6DoF-Time2RGBbyType-CNN
method does not provide a direct visual representation of the data like the other frequency
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domain methods (STFTx6-CNN and CWTx6-CNN); however, interpretability techniques
like Grad-CAM can still be applied to an input image as shown in Figure 15. By analyzing
the results of Grad-CAM, we can gain insights into which features within the image hold
the most significance for the CNN’s decision-making process. If the Grad-CAM analysis
consistently highlights an image area heavily influenced by the gyroscope data, particularly
the Z-axis, it might suggest that these movements play a key role in differentiating the
fault class from other operational states. The interpretability of this method allows us to
underline and select one dominant sensor for the future optimization of data acquisition
and data processing. The IMU6DoF-Time2RGBbyAxis-CNN method benefits from its axis-
aligned representation within the RGB image. In this case, Grad-CAM visualizations offer
intuitive interpretations, as shown in Figure 19. For example, for the fault class, Grad-CAM
highlights movements along the X-axis in the accelerometer data and movements along
the Z-axis in the gyroscope data. This direct mapping between data and axes in the image
makes the interpretation of Grad-CAM results more straightforward. Which axes are most
influential for the CNN’s decision in the fault class can be directly seen, aligning with the
understanding that the fault involves vibrations in both the X and Z directions.

The selection of the 200 Hz sampling frequency was arbitrary and should be chosen
appropriately for other applications in which the proposed method will be applied. The
system was preliminary investigated at 100 Hz, 200 Hz, 400 Hz, 500 Hz, and 2000 Hz
sampling frequencies and 200 Hz was selected, in which frequency components are rich.
In previous research investigations for mechanical vibrations in direct motor drives, up
to 10,000 Hz samplings of a, b, c currents with multiple mechanical resonances were
conducted [33–35]. However, the proof of concept which verifies if the idea is feasible does
not require a sufficiently high sampling frequency; therefore, 200 Hz was a wise selection.
The number of collected samples is several times smaller, allowing the proof of concept to be
carried out with less computational resources. The sampling period was selected to achieve
an image of the same size of 16 × 16 pixels, which is equivalent to 256 samples for the single
axis. The system was preliminary investigated for 11 × 11, 12 × 12 and 16 × 16 pixels. The
second condition was to achieve taking around one second to capture at least one period of
low-frequency components.

The proposed methods (IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-
CNN, and IMU6DoF-Time2RGBbyAxis-CNN) were validated using a modified demonstrator
(Figure 20) in a second scenario involving different fan velocities and a 12V DC supply. The
demonstrator in Figure 4 was extended with a P-channel MOSFET (metal oxide semiconductor
field effect transistor) to control the fan velocity in 10% increments from 10% to 100% of its
nominal speed. Additionally, a second paper clip was introduced to simulate a different fault
condition. The sampling frequency was set to 2000 Hz for this scenario. The partial images were
reshaped from 576 samples to a size of 24 × 24 pixels. These data were used to evaluate the
performance of the proposed methods. Label fault 1 (or fault) was defined as having one paper
clip attached and fault 2 (or fault2) represented having two paper clips attached. Images of the
IMU6DoF-Time2GrayscaleGrid-CNN method are shown in Figure 21, Figure 22 shows example
input images for the IMU6DoF-Time2RGBbyType-CNN method, and Figure 23 shows example
images for the IMU6DoF-Time2RGBbyAxis-CNN method. A total of 1230 images were generated
for each velocity level, resulting in a dataset of 36,900 images per method (1230 images/velocity
× 10 velocities × 3 class). This dataset was then divided, with 80% being allocated to train CNN
models and 20% being used for validation.
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The training process for the second scenario, involving different fan velocities, took be-
tween 233 min (approximately 3.9 h) and 265 min (slightly over 4.4 h). The training progress
curves (Figure 24) mirrored the observations from the first scenario. As previously noted,
the IMU6DoF-Time2GrayscaleGrid-CNN method achieved training accuracy faster than the
IMU6DoF-Time2RGBbyType-CNN method did. The confusion matrices for each method
after training are presented in Figures 25–27. The final validation accuracy ranged from
99.88% (Figures 25 and 27) to 99.97% (Figure 26), with the IMU6DoF-Time2RGBbyType-
CNN method achieving the highest accuracy. However, these differences are not statistically
significant. The results demonstrate that the proposed methods can achieve high accuracies
for fault classification even with more complex datasets. However, the complexity of the
data significantly impacts the training time. The first scenario, featuring a constant velocity,
allowed for faster training compared to the second scenario involving varying velocities.
In scenario two, training each method required approximately four hours (around 12 h
total—around half a day), which is considerably longer than the training time observed in
the first scenario with a constant velocity (around 30 min per method). This highlights the
potential benefit of utilizing simpler datasets during the initial proof-of-concept stage of
model development. This approach facilitates faster training and initial validation. Subse-
quently, the model can be validated on more complex datasets that incorporate real-world
variations, ensuring its robustness in practical applications.

Energies 2024, 17, x FOR PEER REVIEW 22 of 25 
 

 

additional complexity into the vibration signal. In future work at higher TRLs, it is 
planned to expand experiments beyond isolated fan setups. Future work will incorporate 
tests with fans mounted within enclosures that are representative of real-world applica-
tions and will be more related to the higher TRLs of a possible business product. This will 
allow researchers to analyze how enclosure effects influence the vibration signatures of 
imbalanced blades. 

 
Figure 24. The training progress of the CNN for the scenario with changes in fan velocity. 

 
Figure 25. The matrix of confusion after training IMU6DoF-Time2GrayscaleGrid-CNN for second 
scenario (training—left; testing—right). 

 
Figure 26. The matrix of confusion after training IMU6DoF-Time2RGBbyType-CNN for second sce-
nario (training—left; testing—right). 

Figure 24. The training progress of the CNN for the scenario with changes in fan velocity.

Energies 2024, 17, x FOR PEER REVIEW 22 of 25 
 

 

additional complexity into the vibration signal. In future work at higher TRLs, it is 

planned to expand experiments beyond isolated fan setups. Future work will incorporate 

tests with fans mounted within enclosures that are representative of real-world applica-

tions and will be more related to the higher TRLs of a possible business product. This will 

allow researchers to analyze how enclosure effects influence the vibration signatures of 

imbalanced blades. 

 

Figure 24. The training progress of the CNN for the scenario with changes in fan velocity. 

 

Figure 25. The matrix of confusion after training IMU6DoF-Time2GrayscaleGrid-CNN for second 

scenario (training—left; testing—right). 

 

Figure 26. The matrix of confusion after training IMU6DoF-Time2RGBbyType-CNN for second sce-

nario (training—left; testing—right). 

Figure 25. The matrix of confusion after training IMU6DoF-Time2GrayscaleGrid-CNN for second
scenario (training—left; testing—right).



Energies 2024, 17, 1998 23 of 25

Energies 2024, 17, x FOR PEER REVIEW 22 of 25 
 

 

additional complexity into the vibration signal. In future work at higher TRLs, it is 

planned to expand experiments beyond isolated fan setups. Future work will incorporate 

tests with fans mounted within enclosures that are representative of real-world applica-

tions and will be more related to the higher TRLs of a possible business product. This will 

allow researchers to analyze how enclosure effects influence the vibration signatures of 

imbalanced blades. 

 

Figure 24. The training progress of the CNN for the scenario with changes in fan velocity. 

 

Figure 25. The matrix of confusion after training IMU6DoF-Time2GrayscaleGrid-CNN for second 

scenario (training—left; testing—right). 

 

Figure 26. The matrix of confusion after training IMU6DoF-Time2RGBbyType-CNN for second sce-

nario (training—left; testing—right). 
Figure 26. The matrix of confusion after training IMU6DoF-Time2RGBbyType-CNN for second
scenario (training—left; testing—right).

Energies 2024, 17, x FOR PEER REVIEW 23 of 25 
 

 

 

Figure 27. The matrix of confusion after training IMU6DoF-Time2RGBbyAxis-CNN for second sce-

nario (training—left; testing—right). 

An important question is the economic viability of using the proposed methods for 

monitoring a low-cost fan such as the Yate Loon Electronics model, and it is crucial to 

clarify the context of research at this stage. The current work primarily focuses on estab-

lishing the proof of concept for the IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-

Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN methods in detecting 

fan blade imbalance. This initial development stage (at a low technology readiness level, 

TRL) prioritizes demonstrating the technical feasibility of the method. The Yate Loon fan 

serves as a readily available and well-defined test platform for this purpose. The point 

regarding economic feasibility becomes highly relevant when considering higher TRLs 

(TRLs 7–9). At these stages, the focus shifts towards developing a commercially viable 

product suitable for real-world applications. The economic viability depends on the target 

application. Although a low-cost fan like the Yate Loon model might not warrant such a 

system due to its low replacement cost, the method used could be highly cost-effective for 

high-value equipment where fan failure can lead to significant downtime and production 

losses. Examples include industrial fans in critical cooling systems, large server fans in 

data centers, or high-performance fans in wind turbines. As there is a trend towards 

higher TRLs, the technology can be designed to be scalable and adaptable. This could in-

volve developing modular sensor units or offering different levels of services depending 

on the specific needs and budget constraints of the customer. Although the economic fea-

sibility of the method for a low-cost fan such as the Yate Loon model might be limited at 

this stage, the core technology holds promise for providing a cost-effective solution for 

critical equipment in various industrial applications. As the move towards higher TRLs is 

made, economic considerations will become a central focus in developing a commercially 

viable product. 

6. Conclusions 

This investigation explored three image-based approaches for machine fault diagno-

sis using data from a 6DOF IMU sensor. All three methods achieved high accuracy in 

classifying operational states (idle, normal, fault). The IMU6DoF-Time2GrayscaleGrid-

CNN method, which converts time series data into a single grayscale image, demon-

strated the fastest training convergence. However, the methods utilizing RGB representa-

tions, like the IMU6DoF-Time2RGBbyType-CNN and IMU6DoF-Time2RGBbyAxis-CNN 

methods, might offer additional insights. While IMU6DoF-Time2RGBbyType-CNN uti-

lizes features extracted from the data, IMU6DoF-Time2RGBbyAxis-CNN leverages an 

axis-aligned representation within the RGB image. This alignment potentially allows the 

CNN in IMU6DoF-Time2RGBbyAxis-CNN to learn relationships between movements 

along different axes, which might be beneficial for classification. Additionally, the axis-

aligned representation in the Grad-CAM visualizations for IMU6DoF-Time2RGBbyAxis-

CNN could provide more intuitive explanations for the CNN’s decisions compared to 

Figure 27. The matrix of confusion after training IMU6DoF-Time2RGBbyAxis-CNN for second
scenario (training—left; testing—right).

The fan is often installed inside enclosures. There are potential impacts of enclo-
sures on vibration frequencies in research on fan blade imbalance detection using the
IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-
Time2RGBbyAxis-CNN methods. This raises an excellent point and vibration frequencies
can indeed be altered when a fan is installed inside an enclosure. The enclosure can act
as a resonator, amplifying certain vibration frequencies while damping others. This can
potentially change the dominant frequencies observed in the vibration data compared to
those of a freestanding fan. The mounting method and the rigidity of the enclosure can
influence how the vibrations of the fan are transmitted to the sensors. This can introduce
additional complexity into the vibration signal. In future work at higher TRLs, it is planned
to expand experiments beyond isolated fan setups. Future work will incorporate tests
with fans mounted within enclosures that are representative of real-world applications
and will be more related to the higher TRLs of a possible business product. This will
allow researchers to analyze how enclosure effects influence the vibration signatures of
imbalanced blades.

An important question is the economic viability of using the proposed methods
for monitoring a low-cost fan such as the Yate Loon Electronics model, and it is crucial
to clarify the context of research at this stage. The current work primarily focuses on
establishing the proof of concept for the IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-
Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN methods in detecting fan
blade imbalance. This initial development stage (at a low technology readiness level,
TRL) prioritizes demonstrating the technical feasibility of the method. The Yate Loon fan
serves as a readily available and well-defined test platform for this purpose. The point
regarding economic feasibility becomes highly relevant when considering higher TRLs
(TRLs 7–9). At these stages, the focus shifts towards developing a commercially viable
product suitable for real-world applications. The economic viability depends on the target



Energies 2024, 17, 1998 24 of 25

application. Although a low-cost fan like the Yate Loon model might not warrant such a
system due to its low replacement cost, the method used could be highly cost-effective for
high-value equipment where fan failure can lead to significant downtime and production
losses. Examples include industrial fans in critical cooling systems, large server fans in
data centers, or high-performance fans in wind turbines. As there is a trend towards higher
TRLs, the technology can be designed to be scalable and adaptable. This could involve
developing modular sensor units or offering different levels of services depending on the
specific needs and budget constraints of the customer. Although the economic feasibility of
the method for a low-cost fan such as the Yate Loon model might be limited at this stage, the
core technology holds promise for providing a cost-effective solution for critical equipment
in various industrial applications. As the move towards higher TRLs is made, economic
considerations will become a central focus in developing a commercially viable product.

6. Conclusions

This investigation explored three image-based approaches for machine fault diagnosis
using data from a 6DOF IMU sensor. All three methods achieved high accuracy in clas-
sifying operational states (idle, normal, fault). The IMU6DoF-Time2GrayscaleGrid-CNN
method, which converts time series data into a single grayscale image, demonstrated
the fastest training convergence. However, the methods utilizing RGB representations,
like the IMU6DoF-Time2RGBbyType-CNN and IMU6DoF-Time2RGBbyAxis-CNN meth-
ods, might offer additional insights. While IMU6DoF-Time2RGBbyType-CNN utilizes
features extracted from the data, IMU6DoF-Time2RGBbyAxis-CNN leverages an axis-
aligned representation within the RGB image. This alignment potentially allows the CNN
in IMU6DoF-Time2RGBbyAxis-CNN to learn relationships between movements along
different axes, which might be beneficial for classification. Additionally, the axis-aligned
representation in the Grad-CAM visualizations for IMU6DoF-Time2RGBbyAxis-CNN
could provide more intuitive explanations for the CNN’s decisions compared to other
methods. Further research can explore the effectiveness of these interpretability techniques
and potentially combine them with domain knowledge to refine the understanding of the
features learned by the CNNs for robust fault classification.
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