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Abstract: The stability of a hybrid AC-DC microgrid depends mainly upon the bidirectional inter-
linking converter (BIC), which is responsible for power transfer, power balance, voltage solidity,
frequency and transients sanity. The varying generation from renewable resources, fluctuating loads,
and bidirectional power flow from the utility grid, charging station, super-capacitor, and batteries pro-
duce various stability issues on hybrid microgrids, like net active-reactive power flow on the AC-bus,
frequency oscillations, total harmonic distortion (THD), and voltage variations. Therefore, the control
of BIC between AC and DC buses in grid-connected hybrid microgrid power systems is of great
importance for the quality/smooth operation of power flow, power sharing and stability of the whole
power system. In literature, various control schemes are suggested, like conventional droop control,
communication-based control, model predictive control, etc., each addressing different stability issues
of hybrid AC-DC microgrids. However, model dependence, single-point-failure (SPF), communi-
cation vulnerability, complex computations, and complicated multilayer structures motivated the
authors to develop online adaptive neural network (NN) Q-learning-based full recurrent adaptive
neurofuzzy nonlinear control paradigms for BIC in a grid-connected hybrid AC-DC microgrid. The
proposed strategies successfully ensure the following: (i) frequency stabilization, (ii) THD reduction,
(iii) voltage normalization and (iv) negligible net active-reactive power flow on the AC-bus. Three
novel adaptive NN Q-learning-based full recurrent adaptive neurofuzzy nonlinear control paradigms
are proposed for PQ-control of BIC in a grid-connected hybrid AC-DC microgrid. The control schemes
are based on NN Q-learning and full recurrent adaptive neurofuzzy identifiers. Hybrid adaptive
full recurrent Legendre wavelet-based Neural Network Q-learning-based full recurrent adaptive
NeuroFuzzy control, Hybrid adaptive full recurrent Mexican hat wavelet-based Neural Network
Q-learning-based full recurrent adaptive NeuroFuzzy control, and Hybrid adaptive full recurrent
Morlet wavelet-based Neural Network Q-learning-based full recurrent adaptive NeuroFuzzy control
are modeled and tested for the control of BIC. The controllers differ from each other, based on variants
used in the antecedent part (Gaussian membership function and B-Spline membership function), and
consequent part (Legendre wavelet, Mexican hat wavelet, and Morlet wavelet) of the full recurrent
adaptive neurofuzzy identifiers. The performance of the proposed control schemes was validated for
various quality and stability parameters, using a simulation testbench in MATLAB/Simulink. The
simulation results were bench-marked against an aPID controller, and each proposed control scheme,
for a simulation time of a complete solar day.
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1. Introduction

Renewable resource-based distributed generators (DGs), like wind turbines (WTs),
photovoltaic (PV) generators, micro-turbines (MTs) etc., are in fashion nowadays to reduce
greenhouse emissions and to improve the efficiency of the electric power system. A large
power system is divided into many small microgrids by the integration of DGs, energy
storage system (ESS), and loads, and, thus, making it more controllable, flexible, and
effective [1–4].

The DC microgrid has no frequency issues, produces low power loss, due to the
absence of reactive power, and has simple dynamic variations and easy power conversions.
These advantages of the DC microgrid make it superior to the AC microgrid. However,
hybrid AC-DC microgrids are gaining huge attention, due to their capability of combining
the benefits of both AC and DC networks [1,2,5–8]. The AC and DC microgrids are
connected through a bidirectional AC-DC interlinking converter, thus, making a hybrid
AC-DC microgrid that is capable of utilizing the advantages of both sides and which can
entertain multiple types of loads. However, new technological challenges arise for the
smooth and reliable operations of hybrid AC-DC microgrids [1,2,9–13].

AC and DC subgrids are interconnected via bidirectional interlinking converters (BIC).
The BIC is responsible for smooth bidirectional power flow, power balance, microgrid stabil-
ity, voltage solidity, frequency and transients firmness. Failure in the right performance of
BIC leads to instability of the microgrid and causes power loss. The unpredictable nature of
renewable DGs, nonlinear uncertain loads, switching harmonics, and bidirectional power
flow between the utility grid and storage devices produces a variety of stability issues, like
net active-reactive power flow on the AC-bus, increased THD level, voltage fluctuation,
and frequency instability. Therefore, the key challenge in hybrid AC-DC microgrid is the
control problem [2,14–19].

Generally, the whole network and, particularly, the BIC requires intelligent adaptive
control to ensure the coordination of DC and AC subsystems and appropriate power
flow across the hybrid microgrid [1,2,20,21]. The problem is non-trivial and becomes more
difficult, due to the difference in response time of AC and DC networks. The faster response
of the DC network over the AC network, and interactions between corresponding sides,
may lead to destabilization of the power system [22,23]. Thus, the key issue in the hybrid
AC-DC microgrid is the control of BIC.

Several control schemes are reported in the literature for the control of BIC in a hybrid
AC-DC microgrid. Reference [24] presented coordination control and dual closed-loop
control for the interlinking converter. However, the study lacked real time simulation
results and presented two cases with specific variation in the generation and loads. Ref-
erence [2] designed a uniform control scheme for the bidirectional interlinking converter
for economical and resilient objectives of hybrid AC-DC microgrids. However, the study
lacked a real time simulation testbed and was studied for specific power flow cases. Ref-
erence [25] presented the voltage regulation of the DC-bus by designing a model-based
controller for the bi-directional interlinking converter. However, the study required proper
modeling of the system and the PID control used might not work for large complex power
systems. Reference [26] presented the application of a passivity framework to AC-DC grids.
However, a lossless line was assumed in the study and no real time simulation results were
presented. Reference [27] presented virtual inertia support for BIC in the hybrid AC-DC
microgrid. However, use of PI control and only the regulation of active power reduced
its impact for large power systems with various operating points. Many other articles are
found in the literature but the lack of real time systems and a small number of DGs reduce
their productivity.
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This article presents three novel control schemes for a bidirectional interlinking con-
verter for a hybrid AC-DC microgrid. The control schemes are hybrid adaptive NN
Q-learning-based full recurrent adaptive NeuroFuzzy (FRNF) control schemes. The dif-
ference in the three proposed control schemes is based on the different variants in the
antecedent and consequent parts of adaptive NeuroFuzzy architecture. The variants in the
antecedent part are Gaussian membership function and B-Spline membership function,
while the variants used in the consequent part are Mexican hat wavelet, Legendre wavelet,
and Morlet wavelet. The real time simulation testbed consisted of multiple DGs and an
utility grid connected to DC- and AC-buses via converters and transformers. The real time
solar and wind profiles, along with maximum power point tracking, used in this article
were obtained from our previously published articles [28–32]. The use of multiple DGs,
real time solar and wind profiles, and one day complete simulation are the key features of
this study. The performance of the proposed control scheme was verified through various
quality and stability parameters, using MATLAB/SIMULINK software, 2015a. The various
results obtained from the simulation were compared with an aPID controller and against
each other. Table 1 gives the features and contribution of the proposed solution, compared
to previously reported work.

The article is divided into sections for understanding. Section 2 describes the testbed,
Sections 4–13 discusses the detailed modeling of the proposed control schemes, Section 14
discusses the various results of the simulation, Section 15 concludes the article, and Section 16
shows suggested future work.

Remark

This work is the extension of the authors’ previous work reported in [28–32], which
focused on maximum power point tracking of the variable speed wind energy conver-
sion system, PV-farm, swift response of solid oxide fuel cell, and charging/discharging
scheduling of the plug in hybrid vehicles (PHEVs) in a grid-connected hybrid AC-DC
microgrid. The voltage, frequency and THD regulations were considered in the above
studies. However, the control of the interlinking converter in this study regulates the
concerns (voltage, frequency, THD) at a higher efficiency level. Hence, the new control
typologies were developed to increase the stability and reliability of the hybrid microgrid.
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Table 1. Main contributions, features and limitations of the existing and proposed work.

Ref. No. Year Frequency Regulation Voltage Regulation THD Reduction Limitations/Features

[33] 2016 7 3 3 +
Independent of communication and model parameters. However, general hybrid
AC-DC model is assumed with negligence of frequency regulation.

[34] 2017 7 3 7 +
Applicable only on low voltage hybrid grid. Frequency regulation and THD
reduction are neglected.

[35] 2018 7 3 7 +
Leader follower consensus and particle swarm optimization are prone to SPF 1.
Only voltage regulation is considered.

[36] 2019 7 7 7 +
Synchronization control increases the risk of SPF.
Only voltage regulation is considered.

[37] 2020 3 3 7 + Hierarchical control strategy has drawback of SPF. THD reduction is neglected.

[18] 2021 7 3 3 +
Model predictive control algorithm requires model and parameters. It is complex
and consumes more time. Moreover, frequency regulation is neglected.

[38] 2021 7 7 3 +
Plug-in-hybrid vehicles and other renewable resources are not taken into account.
THD reduction is neglected.

[39] 2021 7 3 7 +
PI controller cannot operate under highly nonlinear conditions and prone to SPF.
Only voltage regulation is considered.

[40] 2022 3 3 7 +
Coordinated control scheme requires communication network.
THD regulation is neglected.

[41] 2022 7 3 3 +

Multiple control schemes are integrated. SPF of any control scheme results in power
instability that may lead to blackout. Only wind power, PV and BSS are considered.
Frequency regulation is neglected.

Proposed 2022 3 3 3 +

Model free control strategy is used. No communication required.
Advantages of Q-learning and full recurrent neurfuzzy are combined to avoid SPF.
Complete microgrid with multiple DGs is considered. Real time solar irradiance,
temperature and wind speed is used. Optimal active-reactive power flow,
voltage-frequency regulation, and THD reduction are considered.

1 SPF = Single-Point-Failure.
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2. System Overview and Model Description

Figure 1 sketches the proposed microgrid. It consists of AC and DC-buses which
are connected to each other via a main interlinking inverter. The DC-bus has multiple
renewable energy resources connected to it through various AC-DC converters. The 165 F
super-capacitor bank, 260 kW Photovoltaic (PV) array, 260 kW solid oxide fuel cell (SOFC),
150 kW electrolyzer, 200 Ah batteries, and 100 kW wind turbine (WT) are connected
to the DC-bus through AC-DC and DC-DC converters. The AC-bus is connected with
200 kVA micro-turbine, 11 kV grid, bidirectional smart charging station (CS), and the AC-
load through transformers, as well as AC-DC and AC-DC-AC converters. The DC-bus
is interlinked with the AC-bus through the main inverter. The technical details of the
proposed microgrid and its components are given in Appendix A [28–32].

Figure 1. General sketch of the proposed microgrid.

Modeling and Description of Interlinking Inverter

AC and DC sub-grids are linked with each other via an interlinking power converter in
the smart microgrid hybrid power system (SMG-HPS). The role of the interlinking converter
is important in terms of bidirectional power transfer and stability of the whole SMG-HPS.
The uncertain load and generation conditions enforces the interlinking converter to operate
in various modes. If no power transfer takes place to either side, the operational mode is
known as stop mode. If power transfers from the DC subgrid side to the AC subgrid side,
the operational mode is known as inverter mode. If power transfers from the AC subgrid
side to the DC subgrid side, the operational mode is known as rectifier mode.

Smooth power transfer between AC and DC subgrids is guaranteed by the interlinking
converter. During grid-connected mode, the power balance is ensured by the utility
grid, while the DC-bus voltage stability is ensured by an interlinking converter. The
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increasing use of electronic devices in the power sector, at the household and industrial
levels, dramatically increases the complexity of the power system and reduces efficiency.
The increase in THD level, and fluctuations in the frequency and voltage profiles, reduce
the life of many electric components, as well as decrease the reliability and quality of power.

The specifications of interlining inverter used in this research work are given in
Table A9, Appendix A.9.

The interlinking or main inverter acts as a bridge between AC and DC sub-grids. It
controls the active and reactive power and, thus, ensures the voltage stability. The terminal
voltages of this voltage source converter are as follows:

van = L11
dia

dt
+ R11ia + van−AC (1)

vbn = L11
dib
dt

+ R11ib + vbn−AC (2)

vcn = L11
dic

dt
+ R11ic + vcn−AC (3)

where, inductance and resistance are shown by L11 and R11, respectively. The dq-reference
frame is calculated by using Park’s transformation as follows:

did
dt

= ωiq −
R11id
L11

+
1

L11
(vd − v∗d) (4)

diq

dt
= ωid −

R11iq
L11

+
1

L11
(vq − v∗q) (5)

Voltages in the dq-reference frame are calculated using the following equations:

vd = L11
did
dt
−ωL11iq + v∗d + R11id (6)

vq = L11
diq
dt
−ωL11id + v∗q + R11iq (7)

In the dq-reference frame the power is calculated using the following relation:

Pdq =
3
2
(vdid + vqiq) (8)

3. Supervisory Control of Microgrid and Operation Strategy

The principal purpose of supervisory control is to provide continuous and reliable
power to all the connected loads. The loads used in this research work are residential load
(PL) and CS load (PCS). The significant power is transmitted to these main loads. However,
the excess power during off-peak hours is transmitted to BSS and SC for storing purposes
and later use. The electrolyzer also acts as a load and obtains power from the DC-bus
of SMG-HPS. The supervisory control enforces the use of renewable energy to entertain
loads and store electrical power in various storing devices. However, in the case of a deficit
power, the extra power is obtained from BSS, SC, and CS (PHEVs).

The modes of operation of supervisory control depend on the balance of available and
required power.

3.1. Modes of Operation of Supervisory Control System

The modes are based on the deficit and excess power. The description of the modes
used in this research work is given under.

3.1.1. Mode of Power Deficit

The operational modes of supervisory control systems with deficit power are de-
scribed below.



Energies 2023, 16, 1902 7 of 40

Mode 1: WT, PV and BSS Fulfill the Load Demand

In this mode, only RES WT, PV, and BSS provide power to fulfil the load demand. The
WT and PV provide their maximum output powers while BSS power is restricted to up to
20% of the state-of-charge (SOC). The mathematical representation of this mode is:

PLoad ≥ Pren + PBSS (9)

where, PLoad = PCS + PL = VL× IL is the load demand, Pren = PWT + PPV is the cumulative
renewable power, and PBSS is the BSS power for SOCBSS ≥ 20%. The BSS discharges in this
mode of operation.

Mode 2: WT, PV, BSS and SC Fulfill the Load Demand

If the load demand is higher than the power produced in mode 1, then deficit power is
obtained from SC to fulfil the load demand. The mathematical representation of this mode is:

PLoad ≥ Pren + PBSS + PSC (10)

where PSC is the power obtained by SC for SOCSC ≥ 20%. All other sources are kept OFF
and power is obtained only through RES, BSS, and SC during this mode of operation.

Mode 3: WT, PV, BSS, SC and SOFC Fulfill the Load Demand

If the power demand of load is not fulfilled from RES and the discharging of BSS
and SC, then the deficit power is obtained from SOFC to satisfy the load demand. The
SOFC tracks a power reference that depends on the deficit power. The mathematical
representation of this mode is:

PLoad ≥ Pren + PBSS + PSC + PSOFC (11)

where PSOFC is the power obtained from SOFC.

Mode 4: WT, PV, BSS, SC, SOFC and Grid Fulfill the Load Demand

If the power required by the load increases from mode 3, then the extra power deficit is
obtained from the utility grid to satisfy the load requirements. The mathematical expression
for this mode is:

PLoad ≥ Pren + PBSS + PSC + PSOFC + PGrid (12)

where PGrid is the power obtained from the utility grid.

Mode 5: WT, PV, BSS, SC, SOFC, Grid and MT Fulfill the Load Demand

If the power delivered from mode 4 cannot satisfy the load demands during peak
hours, then the deficit power is obtained from the MT. The mathematical relation for this
mode is:

PLoad ≥ Pren + PBSS + PSC + PSOFC + PGrid + PMT (13)

where PMT is the power obtained from MT to satisfy the load demand.

3.1.2. Modes of Excess Power

The modes of supervisory control systems with excess power are described below.
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Mode 6: Excess Power Given to Electrolyzer

If the power obtained from RES and BSS is more than the power required by the load,
then the extra energy is absorbed by the electrolyzer. This mode can be mathematically
represented as:

PLoad ≤ Pren + PBSS (14)

Pexcess = PLoad − Pren − PBSS (15)

Pelect = Pexcess (16)

where, Pexcess is the extra amount of power, Pelect is the electrolyzer power. The BSS is in
discharge mode.

Mode 7: Excess Power Given to SC and Electrolyzer

If the power generated from RES and BSS is greater than the load demand, while SOC
of SC is less than 90%, then the excess energy is utilized to charge SC. In the case of more
surplus power, the electrolyzer is entertained as well. The mathematical representation of
this mode is:

PLoad ≤ Pren + PBSS (17)

Pexcess = PLoad − Pren − PBSS (18)

PSC = Pexcess (19)

Pelect = Pexcess − PSC (20)

where PSC shows the power absorbed by SC in charging mode. In this mode, RES and BSS
are providing power, while load, SC and electrolyzer are absorbing power.

Mode 8: Excess Power Given to SC, Grid, and Electrolyzer

In this mode of operation, the power generated from the RES is greater than the load
demand. Therefore, the excess energy is given to SC for its charging. If SMG-HPS still has
surplus power generated from RES then the excess energy is delivered to the utility grid
during its peak hours and the remaining surplus power is given to the electrolyzer for the
production of hydrogen gas. The mathematical expression for this mode is:

PLoad ≤ Pren + PBSS (21)

Pexcess = PLoad − Pren − PBSS (22)

PSC = Pexcess (23)

PGrid = Pexcess − PSC (24)

Pelect = Pexcess − PSC − PGrid (25)

where PGrid shows the power absorbed by the utility grid during peak hours.

Mode 9: Excess Power Given to SC, Grid, and Electrolyzer, while BSS Is Disconnected

This mode of operation is similar to mode 8. However, in this mode, the BSS is
disconnected, i.e., PBAT = 0. The excess power generated from RES is delivered to SC for
charging, for the utility grid during peak hours, and for the electrolyzer for production of
hydrogen gas, respectively. The mathematical expression is:

PLoad ≤ Pren (26)

Pexcess = PLoad − Pren (27)

PSC = Pexcess (28)

PGrid = Pexcess − PSC (29)

Pelect = Pexcess − PSC − PGrid (30)



Energies 2023, 16, 1902 9 of 40

The supervisory control flow chart is given in Figure 2.

Figure 2. Flow chart for supervisory control system. * shows the new/required power.

4. Description and Modeling of Proposed Control Schemes

This section discusses the mathematical modeling of, and describes, the three proposed
hybrid adaptive NN Q-learning0based full recurrent adaptive NeuroFuzzy (NNQLNF)
control schemes. The proposed control schemes consist of two parts: NeuroFuzzy parame-
ter tuning (NFPT) and optimal action-value function Q∗(x, u) estimator network (QEN).
Q∗(x, u) is estimated using a backpropagation (BP) neural network (NN). The NeuroFuzzy
systems used are discussed in Sections 6 and 7. The NeuroFuzzy parameters are updated
using Q∗(x, u). The action exploration modifier (AEM) guarantees the trail of all possi-
ble actions. The NNQLNF control technique does not depend on prior information for
future driving conditions, due to online adaptation of the learning algorithm and fuzzy
parameters, which make it a prominent and advantageous control paradigm.

5. Neural Network Q-Learning-Based Full Recurrent Adaptive NeuroFuzzy Control

In control problems, Q-learning and actor-critic learning are two major types of rein-
forcement learning. The actor-critic learning estimates the state value function and chooses
an optimal action for every state. However, in Q-learning, the system approximates the
action-value function for all action-state sets and chooses the optimal control technique
based on this [42,43].

The schematic of NNQLNF is given in Figure 3. It consists of two parts: the QEN
network, that estimates Q∗(x, u), and the FRNF architecture, that tunes the parameters.
The QEN comprises a BP NN for estimation purpose, while the FRNF is an intelligent
identifier discussed in Sections 6 and 7. Three different FRNF architectures are used as
FPT, and, thus, three distinct hybrid adaptive FQL embedded FRNF control paradigms are
derived, which are used in this research work.
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5.1. Back Propagation NN for Estimating Q∗(x, u)

If the initial state is x and initial action is u, then the expected discounted sum of
rewards gives the action-value function Q(x, u), as given below [42]:

Q(x, u) = E(
∞
Σ

k=1
γkrt+k+a|xt = x, ut = u) (31)

where, E is the expected value function, and u is the action value. The optimal action-value
Q∗(x, u) is given as:

Q∗(x, u) = E(r(xt+1) + γ max
u′

Q∗(xt+1, u′)|xt = x, ut = u) (32)

QEN approximates/predicts the ideal action-value function Q∗(x, u) related to differ-
ent inputs and control output states. The approximation property of BP NN is used for the
estimation of Q∗(x, u).

The internal architecture of QEN is given in Figure 4. The network consists of a three-
layer structure: input node, hidden node, and output node. The inputs are state variable
and control action. However, the output is the required QEN i.e., Q(x, u).

The Q(x, u) can be represented mathematically as:

Q(x, u) = f (V) (33)

where, V gives the weighted sum input of the output node and is given as:

V =
10
Σ

k=1
w(40+k) × yk (34)

where, w(40+k) represents the weight between hidden and output node and yk is the output
of hidden layer and is given as:

yk = f (ak) (35)

where, ak gives the added input of kth hidden node and is given as:

ak =
4
Σ

i=1
xi × w(i−1,j) (36)

where, w(i−1,j) shows the weight between input and hidden node, x = xi represents the
QEN’s input, and f shows the activation function of the node. The sigmoid function is
used as the activation function of the node and is given as:

f (x) =
1

1 + exp−x (37)

Generalized policy iteration is used for tuning the parameters of QEN. The optimal
action-value function is approximated by reducing temporal difference (TD) error, δt
continuously with the help of NN. The TD error is given as follows:

δt = rt+1 + γ max
u′

Q∗(xt+1, u′)−Q(xt, ut) (38)

The cost function is the mean square error and is given as:

E =
1
2

δ2
t (39)
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Figure 3. Neuro Network Q-learning-based full recurrent adaptive NeuroFuzzy internal architecture.
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Figure 4. QEN internal architecture.

The gradient descent method is used for fast convergence. The rule for weight update
is given as:

w(t + 1) = w(t)− ζ
∂E
∂w

(40)

∂E
∂w

= σt
∂δt

∂w
= −δt

∂Q(xt, ut)

∂w
(41)

∂Q(xt ,ut)
∂w can be obtained by using chain rule for w(40+k) and w(i−1,j) as shown below:

∂Q(xt, ut)

∂w(40+k)
=

∂Q(xt, ut)

∂V
× ∂V

∂w(40+k)

= f ′(V)× y(k) (42)

= yk ×Q(xt, ut)× (1−Q(xt, ut))

k = 1, . . . , 10 (43)
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∂Q(xt, ut)

∂w(i−1,j)
=

∂Q(xt, ut)

∂V
× ∂V

∂yj
×

∂yj

∂aj
×

∂aj

∂w(i−1,j)
(44)

= f ′(V)× yj × w(40+j)

× f ′(aj)× ui (45)

= w(40+j) × ui ×Q(xt, ut)×
[1−Q(xt, ut)]× yj × [1− yj] (46)

i = 1, . . . , 4 j = 1, . . . , 10

∂Q(xt ,ut)
∂u can also be obtained using chain rule as given below:

∂Q(xt, ut)

∂u
=

∂Q(xt, ut)

∂V
× (47)

10
Σ

j=1

(
∂V
∂yj
×

∂yj

∂wj
×

∂wj

∂u

)

= f ′(V)×
10
Σ

j=1

(
w(1)

j f ′(wi)× w(2)
j,4

)
(48)

= Q(xt, ut)× (1−Q(xt, ut))×
10
Σ

j=1

(
w(1)

i × w(2)
i,4 × yj × [1− yj]

)
(49)

Also;

∂Q(xt, ut)

∂u
=

∂Q(xt, ut)

∂V
× (50)

10
Σ

j=1

(
∂V
∂yj
×

∂yj

∂aj
×

∂aj

∂u

)

= f ′(V)×
10
Σ

j=1

(
w(40+j) f ′(a5) (51)

×w(30+j)

)
= Q(xt, ut)× (1−Q(xt, ut))×

10
Σ

j=1

(
w(40+j) × w(30+j) × (52)

yj × [1− yj]

)
It must be noted that the control output of FRNF is an input to the NN too.

6. Full Recurrent Adpative NeuroFuzzy Architectures

A variety of FRNF identifiers are used in order to identify the nonlinear f̂ (x) and ĝ(x)
functions for different sub-systems in SMG-HPS. The seven-layered FRNF system uses
NeuroFuzzy concept for estimation.

Fuzzy logic uses IF-THEN rules for approximation of unknown functions using
standard fuzzy model. The unknown functions, f̂ (x) and ĝ(x), can be identified by the
standard fuzzy model using a set of rules:

Rm: IF x1 is Aj
1 . . . and xn is Aj

n THEN y is β
j
l
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Let fuzzy logic controller have q inputs, ρ1, ρ2, . . . , ρq. The output of NeuroFuzzy
system is given as:

Υ =
∑m

l=1 ∏
q
j=1 µFl

j
(ρj)βl

∑m
l=1 ∏

q
j=1 µFl

j
(ρj)

(53)

where µFl
j

is the membership function, ρj and βl are adjustable parameters. It is the point

in R (set of rules) at which µβ j achieves its maximum value. m is the number of fuzzy rules

used to construct the identifier, Fl
j is the jth fuzzy set corresponding to the lth fuzzy rule,

and βl is centroid of the lth fuzzy set corresponding to identifier output, f̂ (x) and ĝ(x).
Equation (53) can be written for f̂ (x) and ĝ(x) using fuzzy-basis function vector ξ(x), as:

f̂(x) = ξT
f ξ(x) (54)

and

ĝ(x) = ξT
g ξ(x) (55)

where

β f = [β f 1 β f 2 . . . β f m]
T (56)

and

βg = [βg1 βg2 . . . βgm]
T (57)

and ξ(x) is given as

ξ = [ξ1 ξ2 . . . ξm]
T =

[ ∏
q
j=1 µF1

j
(ρj)

∑m
l=1 ∏

q
j=1 µFl

j
(ρj)

. . .
∏

q
j=1 µFl

j
(ρj)

∑m
l=1 ∏

q
j=1 µFl

j
(ρj)

]
(58)

Several mathematical relations and functions are available for designing a fast and
robust NeuroFuzzy identifier. The following variants were used to design antecedent and
the consequent part of the fuzzy logic system for this research work.

6.1. Variants of Antecedent Part

The transformation of continuous input variables into linguistic variables is fuzzifica-
tion. A membership function is always required for the transformation. The importance of
the membership function is based on its shape, that translates complete information of the
plant (uncertainties and nonlinearities) in a fuzzy inference system.

6.1.1. Gaussian Membership Function

The Gaussian membership function has the following properties:

• local and nonlinear nature
• smooth output

Gradient-based techniques are highly suitable for use, due to the continuous differen-
tiable nature of the Gaussian membership function. It is expressed as:

µr
j (xi) = exp

[
−
( xi(k)+mij

σij

)2
]

(59)
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where mij and σij are the mean and variance of the ith input and jth membership function.

6.1.2. B-Spline Membership Function

The B-Spline membership function (locally controllable membership function formed
by polynomial pieces) is used as a variant of the antecedent part. The B-Spline membership
function is defined as [44]:

$ij(xi) = O(2)
i =

n
Σ

k=0
Υk∆k,p(xi) 1 ≤ p ≤ n. (60)

where, $ij represents the degree of B-Spline membership function, Υk is the control point
with k = 0, 1, 2, 3, . . . , n with n + 1 total control points. p is the order of B-Spline basis
function. ∆k,p(xi) = ∆

(
xi\℘1,℘2, . . . ,℘n+p

)
is the kth B-Spline basis function and is given

by the following Cox-de Boor recursion formula [44]:

∆k,p(xi) =


1 if p = 1 x ∈ [℘i ℘i+1[(

x−℘i
℘i+p−1−℘i

)
∆i,p−1 +

(
℘i+p−x

℘i+p−℘i+1

)
∆i+1,p−1 if p > 1, x ∈

[
℘i ℘i+p

[
0 if p = 1 x /∈ [℘i ℘i+1[

(61)

where, ℘ = [℘1,℘2, . . . ,℘n+p] ∈ R is the knot vector such that ℘i+1 − ℘i ≥ 0.
This research work employed a second-order B-Spline membership function with nine

control points and thirteen-knot vectors.

6.2. Variants of Consequent Part

The consequent part generates weights based on different mathematical functions,
like the Fourier series function, wavelet networks, and polynomial NN. The operation of
the consequent part takes place in parallel to the antecedent part and produces the final
output of the identifier at the defuzzification layer. The variants of the consequent part
used in this research work are given below.

6.2.1. Fuzzy Wavelet Neural Networks (NNs)

For a better estimation of nonlinear functions, wavelet NNs were proposed as a
substitute to feedforward NNs. Due to numerous neurons, NNs may get struck in the
local minima, that results in slower convergence of the network. To get rid of this, wavelet
functions can be used in the structure. Wavelets are waves having a limited duration and
zero mean value. The localization characteristics of wavelets, and the fast learning abilities
of NNs, result in better outcomes for complex nonlinear system modeling. The schematic
diagram of wavelet NN is given in Figure 5.

Figure 5. Wavelet Neural Network.
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Following are the wavelet activation functions used in this research work.

• Mexican hat wavelet (MHW) is a negative normalized, non-orthogonal second deriva-
tive of Gaussian function. MHW function is expressed as;

Ψi(xi) =
∣∣dij
∣∣− 1

2 ψ(zi) (62)

where, Ψi(xi) is the family of wavelets obtained by single ψ(xi) function,

zij =
xi(k)+Hij Fij−tij

dij
, Hij represents the output of the consequent part, Fij is adap-

tive recurrent feedback weight, tij is the translation, and dij 6= 0, for i = 1, 2, . . . , n is
dilation respectively.

• Morlet wavelet (Mor-W) is given as [44]:

Ψij(zij) = exp
[
−0.5(zij)

2cos(5zij)
]

(63)

where;

zij =
xi(k) + HijFij − tij

dij
(64)

where Hij represents the output of the consequent part, Fij is adaptive recurrent
feedback weight, tij is the translation, and dij is dilation of Mor-W.

• Legendre wavelets (Leg-W) are also known as spherical harmonic wavelets. They are
based on Legendre polynomial, compactly supported, and orthonormal wavelets.
They can be expressed as [45]:

Ψk
pq(x) =


2p+1
√

2k + 1×
Lk(2px− q− 0.5),
0,

∀ q
2p ≤ x ≤ q+1

2p

otherwise

(65)

where, p = 1, 2, . . . , m and q = 0, 1, . . . , 2p − 1 shows decomposition level and integer
translation, respectively. Lk shows the Legendre polynomial as given in (66), with k
being the degree of the polynomial [45].

Lp(x) =
1

2pn!
dn

dxn

(
x2 − 1

)p
(66)

where, p ≥ 0, x ∈ [−1 1]. The first four Legendre polynomials for p = 0, . . . , 3 used in
this work are given below [45]:

Lo(x) = 1,

L1(x) = x,

L2(x) = 0.5
(

3x2 − 1
)

,

L3(x) = 0.5
(

5x3 − 3x
)

. (67)

Six Leg-W basis functions were used in this research work for p = 1 and q = 0, . . . , 2
defined on [0 1].

7. Proposed Full Recurrent Adaptive NeuroFuzzy Identifier

The full recurrent adaptive NeuroFuzzy (FRNF) has seven layers as shown in Figure 6.
The antecedent part consists of the first three layers, whereas the remaining four layers are
consequent part layers. The n number of input signals in the first layer is equivalent to the
m number of nodes and these nodes are used for input distribution.
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Figure 6. Architecture of Full Recurrent Adaptive NeuroFuzzy System.

Let Ik
i and Ok

i represents input and output of the ith node in the kth layer. The operation
function of nodes and the signal propagation in each layer of FRNF is given below.

Layer 1

The input is received at this layer and is passed to the next layer. The temporal
relationship in the network is shown by the feedback connection of this layer.

The output is: O(1)
i = xi.



Energies 2023, 16, 1902 18 of 40

Layer 2

One of the variants described in Section 6.1 is used as the membership function in this
layer. This layer estimates the membership degree and fuzzy sets.

The output of this layer, in the case of the B-Spline membership function, is:

O(2)
i = $ij(k) + υ$ij(k− 1) (68)

where, $ represents one of the variants given in (60), υ is the closed-loop adjustable feedback
gain of the antecedent part in case of B-Spline membership function.

The output of this layer in the case of Gaussian membership function is:

O(2)
i = exp

−
 xi(k) + O(2)

i (k− 1)θij + mij

σij

2
 (69)

where, Oi represents the output of the ith node, superscript (2) indicates layer number, ij
subscript shows the jth term of the ith input, xi is the input, and θij is the recurrent weight,
σij and mij are the variance and mean of the ith input and jth membership function. It must
be noted that the recurrent weight of the Gaussian membership function in antecedent part
is adaptive.

Layer 3

In the rule layer, the product of the membership function is calculated. The number of
rules in this layer determines the number of nodes.

The output, in the case of B-Spline membership function, is:

O(3)
i =

n

∏
i=1

O(2)
i (70)

For the Gaussian membership function, the output of this layer is:

O(3)
i =

n

∏
i=1

exp

−
 xi + O(2)

i (k− 1)θij −mij

σij

2
 (71)

Layer 4

This layer approximates the weighted firing strength and shows the THEN-part of
fuzzy rules. The inputs to this layer are the error signal and own weighted feedback signal.

The output of this layer for Leg-W given in Section 6.2 is:

O(4)
i = Hi(k) + δi Hi(k− 1) (72)

where, for Leg-W using (65), Hi =
N
Σ

p=1

2p−1
Σ

q=0

K
Σ

k=0
wk

nmΨk
pq, wnm represents Leg-W coefficients.

The feedback weight is a closed-loop fixed gain for this layer.
In the case of MHW and Mor-W, the output of this layer is:

O(4)
i = wi

n
Σ

i=1
Ψk

ij(Zij) (73)

where, wi is the weight and Ψk
ij(Zij) is given in Equations (62) and (63) for MHW and

Mor-W, respectively.
It must be kept in mind that the feedback gain for MHW and Mor-W is adaptive, while

the feedback gain for all other variants used is conventional feedback adjustable fixed gain.
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Layer 5

In the first defuzzification layer, the sum of products of antecedent and consequent
parts of (70) and (72) is calculated.

The output is:

O(5)
i =

n
Σ

i=1
O(4)

i O(3)
i (74)

Layer 6

In the second defuzzification layer, the sum of all the rules from (70) is calculated.
The output is:

O(6)
i =

n
Σ

i=1
O(3)

i (75)

Layer 7

The required nonlinear functions are approximated in the output layer.
The output is:

û f = O(7)
f = f̂ (x) =

O(5)
f i

O(6)
f i

(76)

ûg = O(7)
g = ĝ(x) =

O(5)
gi

O(6)
gi

(77)

7.1. Optimization Algorithm

The training of FRNF is for the adjustment of input-output pairs or a given function
by fine-tuning network parameters. Mean square error is used as the cost function for the
training purpose, given as [46–51];

E =
1
2
(ŷ− y)2, (78)

where E is the identification error, ŷ is the approximated output of the subsystem, and y
is the actual output of the subsystem, respectively. The gradient descent method is used
for fast cost function reduction and convergence [46–51] . The general equation is given
as follows:

Ω(k + 1) = Ω(k)− γgk (79)

where, gk is the gradient of cost function at kth iteration, γ > 0 is the learning rate and k is
the iteration index.

8. Full Recurrent Adaptive NeuroFuzzy Identifiers

The parameters of FRNF were tuned, based on the estimation of Q(x, u), as discussed
in Section 5.1. The optimization of FRNF output was achieved by updating the param-
eters of FRNF and maximizing the action-value function Q(x, u) w.r.t. control output u.
The parameters of FRNF were tuned using the gradient descent method, described in
Section 7.1. The following three different combinations of FRNF algorithms were used in
this research work for tuning of parameters.
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8.1. FRNF-HBs-LegW Identifier

In this FRNF the identifier was the B-Spline membership function, described in
Section 6.1.2, while the consequent part was the Legendre wavelet given in Section 6.2.1.
The proposed identifier was a seven-layered scheme, discussed in Section 7. The schematic
diagram of the identifier is shown in Figure 7. Both the antecedent and consequent parts
were conventional recurrent.

The update equations of all the parameters of the antecedent part and the consequent
part, according to (79), used the following chain rules:

∂E
∂ζij

=
∂E
∂ξi

∂ξi
∂ςi

∂ςi
∂ζij

(80)

where, ζij shows the variants of B-Spline membership function defined in (60). The update
equations for B-Spline membership function in antecedent part is:

µij(p + 1) = µij(p) + γ eq
ξ j (βi − ûu)

µij
n
Σ

j=1
ξ j

(81)

where, û is the output of identifier given in Equation (76), eq = (e ∂y
∂ζ ), ξ j is output of

Equation (70), β is output of Equation (72), update parameters are rules and weights [µ].
The chain rule for consequent part is given below:

∂E

∂ϑ
(p)
ij

= ψ
(p)
ij

ξ j(xi)
n
Σ

j=1
ξ j(xi)

(82)

where ψi represents Leg-W as given in (65) and ϑ shows the Leg-W variants. The update
equations are:

ϑ
p
ij(p + 1) = ϑ

p
ij(p) + γ eq

ξ j
n
Σ

j=1
ξ j

× ψ
(p)
ij (83)

where, eq = (e ∂y
∂ϑ ), ξ j is output of Equation (70), and update parameters are polynomials of

Leg-P [ϑ
p
ij] given in Equation (67).

8.2. FRNF-MHW Identifier

In this FRNF, the identifier is given in Equation (76), the antecedent part in this
control scheme is the Gaussian membership function, described in Section 6.1.1, while the
consequent part is the MHW described in Section 6.2.1. The FRNF-MHW identifier has
a seven-layered architecture, given in Section 7. The schematic diagram of identifier is
shown in Figure 8. The recurrent part in this identifier is adaptive for both antecedent and
consequent parts.
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Figure 7. B-Spline membership function and Legendre wavelet.
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The update equations of all the parameters of the antecedent part, according to (79),
uses the following chain rules:

∂E
∂ζi

=
∂E
∂ξi

∂ξi
∂µi

∂µi
∂ζi

(84)

where, ζi shows the variant like mean, variance and feedback weight of Gaussian member-
ship function.

mi(k + 1) = mi(k) + γeq

[
(βi − u)ξi

n
Σ

j=1
ξi

]
×

[
xi(k) + µi(k− 1)θi −mi

(σi)2

]
(85)

σi(k + 1) = σi(k) + γeq

[
(βi − u)ξi

n
Σ

j=1
ξi

]
×

[
(xi(k) + µi(k− 1)θi −mi)

(σi)3

]
(86)

θi(k + 1) = θi(k)− γeq

[
(βi − u)ξi

n
Σ

j=1
ξi

]
×

[
xi(k) + µi(k− 1)θi −mi

(σi)2

]
(87)

where, û is the output of identifier, eq = (e ∂y
∂ζ ), ξ j is output of Equation (70), β is output of

Equation (72), update parameters are mean, variance, and feedback weight [m σ θ].
The chain rule for the consequent part is given below:

∂E
∂ϑi

=
∂E
∂ξi

∂ξi
∂βi

∂βi
∂Ψi

∂Ψi
∂zi

∂zi
∂ϑi

(88)

where here Ψi represents MHW given in Equation (62), zi defined below is an intermedi-
ate state variable and ϑ shows the variants of MHW like, translation, dilation, feedback
weight etc.

zi =

(
xi(k) + HiFi − ti

di

)
(89)

ti(k + 1) = ti(k)− γeq

(
ξiwi
n
Σ

j=1
ξi

)
×

[
e−0.5(zi)

2

[
0.5
zi
− 3.5zi + (zi)

3
]

|di|3/2

]
(90)
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di(k + 1) = di(k)− γeq

(
ξiwi
n
Σ

j=1
ξi

)
×

[
e−0.5(zi)

2

[
0.5− 3.5z2

i + (zi)
4
]

|di|3/2

]
(91)

Fi(k + 1) = Fi(k) + γeq

(
ξiwi
n
Σ

j=1
ξi

)
×

[
e−0.5(zi)

2

[
0.5
zi
− 3.5zi + (zi)

3
]

|di|3/2

]
Hi (92)

where, eq = (e ∂y
∂ϑ ), ξ j is output of Equation (70), and update parameters are translation,

dilation, and feedback weight [t d F].
The weight of the consequent part is updated according to the following chain rule:

∂E
∂wi

=
∂E
∂ξi

∂ξi
∂βi

∂βi
∂wi

(93)

where wi represents the weight of the consequent layer.

wi(k + 1) = wi(k) + γeq

(
ξi

n
Σ

j=1
ξi

)[
ψi+1 + ψi

]
(94)

where, ψ shows the MHW given in Equation (62).

8.3. FRNF-Mor-W Identifier

In this FRNF, the identifier is given in Equation (76), the antecedent part in this
control scheme is the Gaussian membership function, described in Section 6.1.1, while the
consequent part is the Morlet wavelet given in Section 6.2.1. The FRNF-Mor-W identifier
has a seven-layered architecture, given in Section 7. The schematic diagram of the identifier
is shown in Figure 9. The recurrent part in this identifier is adaptive for both antecedent
and consequent parts.

The update equations of all the parameters of the antecedent part, according to (79),
use the following chain rules:

∂E
∂ζi

=
∂E
∂ξi

∂ξi
∂µi

∂µi
∂ζi

(95)

where, ζi shows the variant like mean, variance and feedback weight of Gaussian member-
ship function.

mi(k + 1) = mi(k) + γeq

[
(βi − û)ξi

n
Σ

j=1
ξi

]
×

[
xi(k) + µi(k− 1)θi −mi

(σi)2

]
(96)
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Figure 8. Gaussian membership function with Mexican hat wavelet.
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σi(k + 1) = σi(k) + γeq

[
(βi − u)ξi

n
Σ

j=1
ξi

]
×

[
(xi(k) + µi(k− 1)θi −mi)

(σi)3

]
(97)

θi(k + 1) = θi(k)− γeq

[
(βi − u)ξi

n
Σ

j=1
ξi

]
×

[
xi(k) + µi(k− 1)θi −mi

(σi)2

]
(98)

where, û is the output of identifier given in Equation (76), eq = (e ∂y
∂ζ ), ξ j is output of

Equation (70), β is output of Equation (72), update parameters are mean, variance, and
feedback weight [m σ θ].

The chain rule for the consequent part is given below:

∂E
∂ϑi

=
∂E
∂ξi

∂ξi
∂ςi

∂ςi
∂Ψi

∂Ψi
∂ϑi

(99)

where Ψi represents Mor-W as given in (63) and ϑ shows the variants of Mor-W-like
translation, and dilation as given in (63). The update equations are:

tij(p + 1) = tij(p) + γeqf (100)

dij(p + 1) = dij(p) + γeqfzij (101)

wij(p + 1) = wij(p) + γ eq
ξ j

n
Σ

j=1
ξ j

(102)

where, eq = (e ∂y
∂ϑ ), ξ j is output of Equation (70), f =

ξ jw
(5)
j

n
Σ

j=1
ξ j

×

(
cos(5zij)e

−0.5z2
ij zij+5sin(5zij)e

−0.5z2
ij
)

d(5)ij

,

and update parameters are rules, translation, dilation, and weight [µ t d w].
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Figure 9. Gaussian membership function with Morlet wavelet.
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9. Exploration Policy and Action Modifier

If all the actions from all the states are tried, then Q(x, u) converges to Q∗(x, u), with
a probability of 1 [52]. In this research work, an exploration policy was implemented that
guaranteed the trail of all possible actions for the control output û given by the FRNF. The
AEM generated a control output uc. The uc was the sum of a disturbed action ud and û.
The standard deviation of ud was σQ(t), which was recommended by FRNF and its normal
distribution was zero. The problem of exploration was solved by this AEM in reinforcement
learning [42].

uc = û + ud ud ∼ N(0, σQ(t)) (103)

where,

σQ(t) =
k

[1 + 2exp(maxQ(x, a))]
(104)

where, k is a variable that shrinks or expands ud.

10. Proposed Hybrid Adaptive Neural Network Q-Learning-Based Full Recurrent
Adaptive NeuroFuzzy Control Paradigms

Using different combinations of the FRNF identifier algorithms, discussed in Section 8,
the following three hybrid adaptive Q-learning control paradigms were proposed:

• Hybrid adaptive full recurrent Legendre wavelet-based Neural Network Q-learning
control
In this control scheme, the NNQLNF was embedded with an FRNF-Leg wavelet
identifier, discussed in Sections 5.1 and 8.1.

• Hybrid adaptive full recurrent Mexican hat wavelet-based Neural Network Q-learning
control
In this control scheme, the NNQLNF was embedded with the FRNF-MHW identifier,
discussed in Sections 5.1 and 8.2.

• Hybrid adaptive full recurrent molet wavelet-based Neural Network Q-learning-based
control
In this control scheme, the NNQLNF was embedded with the FRNF-Mor-W identifier,
discussed in Sections 5.1 and 8.3.

11. Implementation Procedure of Hybrid Adaptive NNQLNF Control Paradigms

The following steps took place for the implementation of the proposed hybrid adaptive
NNQLNF control paradigms [42].

• In the first step, the initialization of Q(xt, ut), the parameters of FRNF and the weights
w1 − w40, w41 − w50 of QEN took place.

• Control output ut was obtained from the FRNF identifier.
• ut was then processed by AEM, according to Equation (103).
• uc was the actual control output fed to the system.
• The estimated Q(xt+1, ut+1) was obtained from QEN, depending on control action,

previous and current states.
• The performance of controller r, Q(xt, ut) and Q(xt+1, ut+1), given in Equation (38),

were used to estimate the TD error from Equation (38).
• QEN was updated, based on Equations (43) and (46).
• Parameters of FRNF were updated.
• Q(xt, ut) was updated to Q(xt+1, ut+1).
• If the parameters of QEN and FRNF were not updated for a specific interval of time,

then the learning procedure terminated; otherwise, the algorithm was repeated from
step 2 again.
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12. PQ Control of Interlinking Inverter Using Hybrid Adaptive NN Based Q-Learning
Full Recurrent Adaptive NeuroFuzzy Control Paradigms

This section focuses on the PQ control of the interlinking inverter of SMG-HPS using
the adaptive hybrid NNQLNF control paradigms, discussed in Section 5. The main aim of
this research was to minimize the THD, frequency, and voltage fluctuations, which arise
due to the use of multiple renewable energy sources and non-renewable energy sources
along with converters and nonlinear loads. The objective was achieved by PQ control
using the three proposed adaptive hybrid NNQLNF-based control schemes on interlinking
inverters. The results were compared with an aPID control scheme.

13. Formulation of Control Problem

The active and reactive powers were obtained from the AC-bus. The difference
between actual and reference power generated the error signal, e, which was used for
tuning the parameters of the proposed control schemes.

ep = Pre f − PAC (105)

eq = Qre f −QAC (106)

where, ep is the real power error, Pre f is the real reference power, PAC is the real AC bus
power, eq is the reactive power error, Qre f is the reactive reference power and QAC is the
reactive AC-bus power.

The error signals were input to the proposed control schemes. The control output
obtained from Equation (103) of both real and reactive power was transformed from dqo
to abc and was fed to the PWM generator. The control objective was achieved by the
convergence of the following signals:

lim
t→+∞

{
PAC(t)→ Pre f (t)
QAC(t)→ Qre f (t)

(107)

The proposed control schemes achieved the objective and, thus, produced minimum
THD and negligible fluctuations in frequency and voltage profiles.

14. Results and Discussion

The SMG-HPS testbed was prepared and simulated in Matlab/Simulink R2015a. The
technical details of of SMG-HPS are discussed in Section 2. The real-time environmental
data (wind speed, ambient temperature, and solar irradiance) were obtained from the
Pakistan Meteorological Department (PMD) for a complete solar day at the Islamabad
station. The case study taken was the Defense Housing Authority (DHA), Islamabad,
Pakistan. The irradiation varied with the appearance of the sun. The average irradiation
level during day time was about 1000 W/m2, while the average temperature level was
20 ◦C, having a maximum peak of about 42.6 ◦C during the day time. Figure 10 shows the
irradiance profile on the left y-axis and the temperature profile on the right y-axis, while
Figure 11 shows the wind speed profile used for this case study.

In this study, three intelligent hybrid adaptive NNQLNF control schemes were imple-
mented on an interlinking converter in the proposed SMG-HPS. The performances of all
the control schemes were compared with an aPID control scheme. Based on the simulation
results, the best performing controller was identified.
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Figure 10. Solar Irradiance Level (W/m2) (left), Ambient Temperature Level (◦C) (right).

Figure 11. Wind speed (m/s).

For stability of the power system, the net power on the AC-bus should be equal to
zero. Figure 12 shows the net active power profiles of the AC-bus for three NNQLNF-based
controllers and an aPID control scheme. It was clear from the results that the net power,
due to the aPID was of higher magnitude, as compared to the proposed control schemes.
The negligible variations in the net real power on the AC-bus was due to the use of power
electronic devices, converters, and nonlinear loads. However, the least magnitude was
observed for the hybrid adaptive FRNF-MHW-based NNQLNF control scheme.

Figure 13 shows the net reactive power profile of the AC-bus for the proposed control
schemes, compared with the aPID. The plots show the variation due to the aPID was
of greater magnitude, as compared to the proposed control schemes. The variation in
net reactive power of the AC-bus due to the proposed control schemes was of negligible
magnitude. Little variation in the results was due to the use of multiple RESs that produced
varying outputs, depending on weather conditions. Other factors of the variations in net
active and reactive power profiles were due to the use of power electronic converters, CS,
and nonlinear loads.
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Figure 12. ∆PAC evolution.

Figure 13. ∆QAC evolution.

For the stability of the power system and life of various loads, the frequency of
the AC-bus must remain close to 50 Hz. Figure 14 shows the frequency of the AC-bus
maintained by the interlinking converter during various modes of operation in SMG-HPS.
The results revealed that the frequency of the AC-bus for an aPID control scheme had greater
variations, which could lead to instability of the power system. The larger magnitude of the
frequency at the AC-bus reduced the life of power electronic devices and other sensitive
loads. The frequency variations were responsible for imperfect charging/discharging of
power storage devices, and, thus reduced their efficiency as well. It must be noted that the
frequency maintained by using the proposed intelligent NNQLNF-based control schemes
for interlinking converters was nearly 50 Hz all the time. However, negligible variations
found in the simulation results were because of continuous switching of power between
AC sub-grid and DC sub-grid. Other factors included the use of weather-dependent RES,
power electronic converters, and nonlinear loads.
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Figure 14. AC bus frequency evolution.

Table 2 shows the average values of ∆PAC-bus and ∆QAC-bus variations.

Table 2. Average values of ∆PAC−bus and ∆QAC−bus variations for all controllers.

Control Scheme PAC−bus QAC−bus
(µWatts) (µVARs)

aPID 1.0700 0.191100
FRNF-Leg wavelet based NNQLNF control 0.008600 0.008863

FRNF-Mor-W based NNQLNF control 0.008642 0.008794
FRNF-MHW based NNQLNF control 0.008472 0.008698

Figure 15 shows the %age change in load current frequency by various control schemes.
The results revealed the performance of the proposed control schemes as being superior
over the aPID control scheme. The negligible variation in the results for the proposed control
schemes was due to sudden load changes, inverters, regulators, and charging/discharging
operation of multiple devices. The variations were also because of power transfer to the
utility grid during peak hours and bidirectional power transfer between the charging station
and micro-grid. However, the results obtained from the proposed hybrid adaptive FRNF-
MHW-based NNQLNF control scheme were more satisfactory and reliable, compared to
the other control schemes.

Figure 16 shows the RMS voltage profiles for the various control schemes. The results
showed that the RMS voltage for the aPID control scheme was not stable for any specific
time interval and was continuously varying. This reduced the life of power electronic
devices and other machines connected to the SMG-HPS. However, the RMS voltage for
the proposed control schemes showed stable magnitude, compared with an aPID control
scheme. The variations were because of switching of power between the AC sub-grid and
the DC sub-grid, along with the varying output power of RES due to weather conditions.

Figure 17 shows the comparison of the percentage change in THD for the load current.
The %∆THD in load current due to the proposed control schemes was of lower magni-
tude, as compared to an aPID control scheme. The %∆THD complied with IEEE standard
1547 [53]. However, the least magnitude was observed for the proposed adaptive FRNF-
MHW-based NNQLNF control scheme, which proved its performance over other
control schemes.
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Figure 15. %∆f in load current evolution.

Figure 16. Vrms load evolution.

Figure 17. %∆THD in load current evolution.
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Table 3 shows the average values of %∆fLoad and %∆THDLoad in load current.

Table 3. Average values of %∆fLoad and %∆THDLoad variation in load current for all controllers.

Control Scheme %∆fLoad %∆THDLoad

aPID 0.0025480 1.29900
FRNF-Leg wavelet based NNQLNF control 0.0006112 0.06519

FRNF-Mor-W based NNQLNF control 0.0006130 0.06551
FRNF-MHW based NNQLNF control 0.0005992 0.06423

Figure 18 shows the maximum output power obtained for the best performing con-
troller given in the previously published article [28], with the same SMG-HPS. The in-
terlinking converter in the research work referred to above was controlled by an aPID
controller. However, in this research work, the maximum power output of PV array was
obtained with different proposed controllers for the interlinking inverter. It is clear from the
figure that the overall maximum power was obtained for the proposed controllers of the
interlinking inverter. However, the maximum power was seen for he proposed adaptive
FRNF-MHW-based NNQLNF control scheme, which proved its performance over other
control schemes.

Figure 18. Maximum power point tracking of PV array evolution.

Figure 19 shows the maximum output power obtained for the best performing con-
troller given in a previously published article [29], with the same SMG-HPS. The interlink-
ing converter in the research work referred to above was controlled by an aPID controller.
However, in this research work the maximum power output of the wind turbine was
obtained with different proposed controllers for the interlinking inverter. It is clear from
the figure that the overall maximum power was obtained for the proposed controllers of
the interlinking inverter. However, the maximum power was observed for the proposed
adaptive FRNF-MHW-based NNQLNF control scheme, which proved its performance over
other control schemes.

Figure 19. Maximum power point tracking of wind turbine evolution.
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Figure 20 shows a spider chart for comparable parameters of interlinking converter
controllers. The values were scaled (∆PAC by 100, ∆QAC by 20, %∆f by 10, and %∆THD
by 15) to have a clear picture. The observations and analysis revealed that the hybrid
adaptive FRNF-MHW-based NNQLNF control scheme provided superior performance
over all other control schemes.

Figure 20. Spider chart of comparable parameters for interlinking converter controllers.

15. Conclusions

In this article, mathematical modeling of the proposed hybrid adaptive FRNF, based
on an NN Q-learning control scheme, was discussed in detail. The proposed control
schemes used BP NN, FRNF, and AEM for estimation of theoptimal action-value function,
parameters update and action exploration modifier. An intelligent supervisory control
system was also described in detail with nine modes of operation. The supervisory control
was responsible for optimal power flow and ensured the power balance between generation
and load.

This research work also focused on three adaptive FRNF-based NN Q-Learning control
schemes for the control of a bidirectional interlinking converter between bybrid AC and
DC sub-grids in the proposed SMG-HPS. The results were compared with an aPID control
scheme. The use of intelligent controllers ensured the following: (i) power system stability,
(ii) power quality, and (iii) reliability. These benefits were due to reducing the following:
(a) %age ∆THD and (b) %age ∆f in the load current for various modes of the power system
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operation. The proposed control schemes improved stability by reducing net real and
reactive powers on the AC-buses. However, the overall best performance was observed for
the proposed adaptive FRNF-MHW-based NN Q-Learning control scheme.

16. Future Work

Intelligent adaptive supervisory control based on NN/Fuzzy logic, advanced control
schemes to schedule BSS/PHEV charging/discharging for profit gain, inclusion of priority-
based sensitive loads, like data centers/hospitals, are some interesting and recommended
future work.
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BP Back propagation
BIC Bidirectional interlinking converter
BSS Battery storage system
CS Charging station
DG Distributed generator
ESS Energy storage system
FPT Fuzzy parameter tuning
FQL Fuzzy Q-learning
FRNF Full recurrent adaptive Neurofuzzy
Leg-W Legendre wavelet
MHW Mexican hat wavelet
Mor-W Morlet wavelet
MT Micro-turbine
NFPT Neurofuzzy parameter tuning
NN Neural network
NNQLNF Neural network Q-learning based full recurrent adaptive Neurofuzzy
PHEV Plug-in-hybrid-vehicle
PQ P shows real power and Q shows reactive power
PV Photovoltaic
QEN estimator network
RES Renewable energy resource
SC Supercapacitor
SMG-HPS Smart microgrid hybrid power system
SOFC Solid oxide fuel cell
SOC State of charge
SPF Single point failure
TD Temporal difference
THD Total harmonic distortion
WT Wind Turbine
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Appendix A. Entire System Parameters

Appendix A.1. Parameters of VS-WECS

Table A1 below gives the parameters of VS-WECS (wind turbine) used for this re-
search work:

Table A1. Parameters of VS-WECS.

Type nED-100

Base wind speed 10 m/s
Rotor speed 3367 rpm
Drive train 2-mass model
Pitch angle 0◦

Rated power 100 kW

Appendix A.2. Parameters of SOFC

Table A2 below gives the parameters of SOFC used for this research work.

Table A2. Parameters of SOFC.

Type Bloom Energy USA ES-5700

Number of cells in seires 768
SOFC stack 4 kW
SOFC array 5× 10 = 50

SOFC array power rating 50 × 4 kW = 200 kW

Appendix A.3. Parameters of PV

Table A3 below gives the parameters of PV subsystem used for this research work.

Table A3. Parameters of PV-farm.

Type SunPower SPR-305-WHT

Module unit 305 W @ 1 kW/m2, 25 ◦C
Number of series string/module 13

Number of parallel string/module 66
Power rating 305× 13× 66 ≈ 262 kW

Appendix A.4. Parameters of Charging Station

Table A4 below gives the parameters of PHEVs and BSS installed at CS used in this
research work.

Table A4. Ratings of PHEV’s batteries.

Vehicle Company Battery Type Battery Capacity Rated Voltage
(kWh) (V)

Nissan Li-ion 24.0 360
Renault Li-ion 22.0 300

Mitsubishi Li-ion 16.0 20
Toyota Li-ion 6.7 300
Honda Li-ion 4.4 201

Appendix A.5. Modeling and Parameters of Battery

BSS is an integral part of an SMG-HPS and provides high energy density. It stores
electrical power from SMG-HPS during off-peak hours, and, thus, helps in the utilization
of RESs at their maximum. The stored electrical energy is returned to the SMG-HPS during
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peak hours; thus, making it more flexible and reliable. The important parameters of a
BSS are the state of charge (SOC) and the battery voltage. The battery voltage is given as
under [54–57].

Vbat = Voc − ri · Ibat (A1)

where Vbat, Voc, ri, and Ibat are the terminal voltage, open-circuit voltage, internal resistance
and output current of the battery respectively. The output current Ibat of the battery can be
estimated as:

Ibat =
Voc −

√
V2

oc − 4 · ri · P
2ri

(A2)

The following equation shows the Coulomb counting method for the estimation of
SOC of a battery:

SOCbat = SOCini
bat −

∫
η · Ibat

q
dt (A3)

where SOCbat, SOCini
bat, η, and q represents battery SOC, battery initial SOC, charge/discharge

mode and battery capacity (ampere-hour) respectively.
Table A5 below gives the parameters of batteries used in this research work:

Table A5. Parameters of batteries.

Type CINCO FM/BB12100T

Capacity 200 Ah
Voltage/string 12 V

Number of parallel strings 3
Number of series strings 34

Rated voltage 12 × 34 ≈ 400 V

Appendix A.6. Parameters of Electrolyzer

Table A6 below gives the parameters of electrolyzer used in this research work.

Table A6. Parameters of electrolyzer.

Type QualeanQL-85000

Rated power 150 kW
Rated voltage 380 V

Number of cells in the stack 30
Number of electrolyzers 6

Appendix A.7. Parameters of Microturbine

Table A7 below gives the parameters of the microturbine used in this research work:

Table A7. Parameters of microturbine.

Type Ingersoll Rand MT250

Rated power 200 kVA, 160 kW
Rated voltage 440 V

Rated frequency 50

Appendix A.8. Parameters of Utility Grid

Table A8 below gives the parameters of UG used in this research work.
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Table A8. Parameters of UG.

Parameter Rating

Phase Voltage 11 kV
Frequency 50 Hz

Rated power 10 MVA

Appendix A.9. Parameters of Interlinking Inverter

Table A9 below gives the parameters of interlinking inverter used in this research work:

Table A9. Parameters of Interlinking Inverter.

Type Zhejiang, China CHZIRI-2VF

Rated power 400 kW
Rated voltage 200/540 V

Inductance L-filter 2.1 µH

Appendix A.10. Adaptive PID Control System

The aPID control law, used for various comparisons and control in this research work,
is given below:

uaPID(j) = KP−aPID(j)e(j) + (A4)

KI−aPID(j)
∫
(e(j))dt + KD−aPID(j)

d(e(j))
dt

where, KPaPID, KI−aPID, and KD−aPID are proportional, integral, and derivative constants.
e(j) is the error signal used as cost function. The update equations are:

KP−aPID(j + 1) = KP−aPID(j) + αe2(j) (A5)

KI−aPID(j + 1) = KI−aPID(j) + αe(j)
∫

e(j)dt (A6)

KD−aPID(j + 1) = KD−aPID(j) + αe(j)
d(e(j))

dt
(A7)
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