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Abstract: Foundational and state-of-the-art anomaly-detection methods through power system state
estimation are reviewed. Traditional components for bad data detection, such as chi-square testing,
residual-based methods, and hypothesis testing, are discussed to explain the motivations for recent
anomaly-detection methods given the increasing complexity of power grids, energy management
systems, and cyber-threats. In particular, state estimation anomaly detection based on data-driven
quickest-change detection and artificial intelligence are discussed, and directions for research are
suggested with particular emphasis on considerations of the future smart grid.

Keywords: anomaly detection; cyber-security; false data injection; hypothesis testing; machine
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1. Introduction

Since its introduction by Schweppe in the late 1960s [1,2], power system state es-
timation has proved an integral component of Energy Management Systems (EMSs).
Schweppe’s proposed nonlinear static state estimation (SSE) provides estimates of the
actual network status, which could then be leveraged for subsequent analysis, including
contingency evaluation and power flow studies [3]. Soon after, strategies for mitigating
erroneous measurement data [4,5] were developed to ensure the fidelity of the power
system state estimates. SSE and dynamic state estimation (DSE) both share a rich history of
research [6–8]; however, SSE has seen more real-world implementation. Nevertheless, DSE
shows great promise in having an enhancing role in legacy SSE-based EMS [9], especially
with the increased adoption of synchrophasor measurements [10], and thus, anomaly-
detection methods using both approaches are surveyed.

Numerous sources of state estimation error have been identified and formulated
in the literature, including measurement, parameter, and topology discrepancies with
respect to the system model. More recently, with the integration of EMS into sophisticated
computer networks, the potential for cyber-security vulnerabilities became apparent. What
new considerations must be made when bad data are malicious? Stealthy false data
injection attacks [11], for example, were formulated as an exercise in fooling legacy bad-
data-detection schemes. That said, attacks on cyber-physical systems have yielded very
real consequences, including equipment damage and rolling blackouts [12]. Anomaly-
detection techniques that can properly handle these manufactured instances of bad data,
and thus improve bad data processing in state estimation generally, are surveyed in this
review. This review also hopes to highlight some considerations for future approaches
to anomaly detection in state estimation, including implementation-based research in the
face of increasingly dynamic load and generation profiles, the complexity of distributed
cyber-physical infrastructure, and pushes for combined SSE and DSE approaches for higher-
fidelity EMS information to improve control, efficiency, and stability in the future smart
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grid. Because the field of anomaly detection covers a wide range of approaches, this survey
limits its scope to power system state estimation, which is a central component of EMS and
is expected to remain as such well into the future [9].

Articles selected for this review were chosen based on their impact on the power
state estimation anomaly detection field. For earlier foundational works, the authors
sought to include papers with lasting influence and citation impact for bad data detection
generally. Particular emphasis was placed on real-world implementation in modern EMSs.
More recent works required consideration of cyber-attacks and/or error types designed
to circumvent the approaches of older works. Because many of these approaches have
yet to be implemented in EMSs, selected papers required notable metrics of improvement
compared to legacy detection methods.

The contributions of this work include:

• Providing a history of legacy bad data detection and error types in power system state
estimation and the connection to newer detection approaches and cyber-attack types.

• Surveying various sources of state estimation cyber-threats and the challenges they
pose to anomaly detection schemes.

• An overview of newer approaches for anomaly detection based on quickest-change
detection and AI.

• Considerations for future research, including the incorporation of dynamic load
profiles, autocorrelated data, and asynchronous measurements.

This review is organized as follows. Section 2 provides a brief theory of static and
dynamic state estimation generally and the components used for bad data detection. Section 3
describes the theory and physical meaning behind three main types of error in state estimation:
measurement, parameter, and topology. Section 4 outlines the traditional methodologies
developed for bad data detection and identification, which often serve as a basis for many
modern approaches. Section 5 discusses malicious data attacks designed specifically to
circumvent traditional bad data detection. Section 6 describes more modern approaches
that aim to overcome these pitfalls. Section 7 provides a summary and considerations for
future work.

2. Power System State Estimation
2.1. Static State Estimation

One of the most used models to perform power system SE is the Weighted Least
Squares (WLS) estimator [7]. A power system with n buses and d measurements can be
modeled through a set of nonlinear algebraic equations in the measurement model:

z = h(x) + e (1)

where z ∈ R1×d is the measurement vector, x ∈ R1×N the state variables vector, h : R1×N →
R1×d is a continuous nonlinear differentiable function, and e ∈ R1×d is the measurement
error vector. Each measurement error ei is assumed to follow a zero mean Gaussian
distribution. N = 2n − 1 is the number of unknown state variables, i.e., the complex
voltages at each bus.

In the traditional WLS approach, the state vector estimate in (1) is determined by
minimizing the weighted norm of the residual [13], represented with the cost function J(x):

J(x) = ‖z− h(x)‖2
W = [z− h(x)]TW[z− h(x)] (2)

where W = R−1 is the inverse covariance matrix of the measurements, otherwise known
as the weight matrix.

Linearizing the measurement model (1) yields

∆z = H∆x + e (3)
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where H = ∂h
∂x is the Jacobian matrix of h at the current state estimate. The estimate of the

linearized state vector is then given by

∆x̂ = (HTWH)−1HTW∆z. (4)

The estimated value of the measurement vector mismatch ∆z is given by

∆ẑ = H∆x̂ = P∆z. (5)

where P = H(HTWH)−1HTW denotes the linear projection or “hat” matrix. The idempo-
tent matrix P also has the following properties [7]:

PH = H (6a)

(I− P)H = 0. (6b)

These properties facilitate an expression for the measurement residuals [8]:

r = ∆z− ∆ẑ (7a)

= (I− P)∆z (7b)

= (I− P)(H∆x + e) (7c)

= (I− P)e [Using Equation (6b)] (7d)

= Se (7e)

where S is known as the residual sensitivity matrix, which was first recognized in [5] for
representing the sensitivity of the measurement residual to the measurement error during
bad data processing. Also useful is the residual covariance matrix Ω [7]:

[r] = [Se] = 0 (8a)

Cov[r] =
[
rrT
]
= S

[
eeT

]
ST (8b)

= SR = Ω. (8c)

The residual covariance matrix is used for the detection and identification of bad data,
as well as providing insight into the degree of interaction; these concepts will be elaborated
upon further in Section 3.

2.2. Dynamic State Estimation

SSE does not consider any history of the measurement vector z, but instead provides
a snapshot of the system. This “memoryless” assumption of SSE proved sufficient for
real-time monitoring in early EMS. For one, power networks were not as regimented at
the distribution level, with far fewer microgrids, distributed energy resources, and net
load dynamics compared to today’s systems. Secondly, the measurement data fed to
the state estimator almost always came from measurement devices with slow sampling
rates, such as the 2–4 s range of SCADA. One might argue, then, that the true bottleneck
for capturing dynamic behavior in state estimation was slow metering rates. That said,
Schweppe’s formulation arrived just shortly after the introduction of the Kalman filter
in 1961 [14], which inspired power researchers to seek formulations beyond the still-
developing SSE. The practical hangup of slow meter sampling rates would be relieved
somewhat with the introduction of synchronized phasor measurements in the 1980s [10].
Phasor Measurement Units (PMUs) provide higher sampling rates compared to SCADA
but also GPS coordination to avoid the uncertainty associated with asynchronicity.

Like SSE, dynamic state estimation (DSE) encompasses a wide range of methods. Early
DSE formulations considered the same set of measurements and state variables as those
used in SSE: active and/or reactive power flow and injections and complex bus voltages.
Other approaches seek to better capture load dynamics by considering generator rotor
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angle and speed as differential-algebraic state variables [9,15,16]; however, this review
will primarily consider DSE-based anomaly-detection implementations that use algebraic
state variables.

DSE can be accomplished by modeling the power system as a discrete-time dynamic
system. The Kalman filter is used [17] to estimate the state variables at time k through
prediction and measurement update steps upon each iteration:

Predict:

x̂k|k−1 = Ak x̂k−1|k−1 (9)

Fk|k−1 = AkFk−1|k−1AT
k + Qk. (10)

Update:

Kk = Fk|k−1HT
k

(
HkFk|k−1HT

k + Rk

)−1
(11)

x̂k|k = x̂k|k−1 + Kk

(
zk −Hk x̂k|k−1

)
(12)

Fk|k = Fk|k−1 −KkHkFk|k−1 (13)

where, at time k, Ak is the state transition matrix, Kk is the Kalman gain matrix, and Hk
is the measurement matrix. Fk|k and Fk|k−1 denote the state covariance matrix estimates
based on measurements up to times k and k− 1. Qk and Rk are the process and observation
noise covariance matrices, respectively.

The authors of the first Kalman filter power system DSE approach [18] hinted at its
compatibility with anomaly-detection methods, which, at the time, were being studied
for SSE. Early work soon after [19,20] formulated bad data detection by analyzing the
innovation process:

vk = yk − h(x̂k|k−1). (14)

Additional approaches for bad data processing in DSE include asymmetry analysis
based on the skewness of the normalized estimation error [17,21]. DSE anomaly detection
research remains an active field [16,22], especially since dynamic load and generation
profiles are commonplace in microgrid systems with distributed energy resources (DERs).

3. Bad Data Types and Considerations

Bad data can be classified as either single or multiple. For single bad data, one
measurement in the system is corrupted with a large error. Multiple bad data describe
more than one measurement being in error and can be further classified by the degree of
interaction and conformity [7]. Multiple bad data are said to interact when the residuals
are highly correlated, whereas conformity describes the degree to which gross errors
are “masked” in the residual (i.e., nonconforming errors present as highly normalized
residuals) [8]. Another illustration of how error is not always fully reflected in the residual
is the concept of leverage points [23–26], which can hinder the effectiveness of the largest
residual methods. Leverage points arise as a consequence of system topology, parameter
values, and measurement placement and are usually caused by the following: (i) injection
and flow measurements near branches with a small X/R ratio; (ii) injection measurements
near buses with a large number of incident branches; and (iii) a measurement with a large
weight [6,27]. Even a single leverage point can compromise bad data detectability.

Gross errors that exist beyond the acceptable noise limit of the state estimation model
can be categorized into three types: measurement, parameter, and topology. Each of these
errors suggests a discrepancy between the measurement data and model and are described
further in the following.
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3.1. Measurement Error

Measurement error is inevitable given the limitations of metering equipment accuracy.
Meters can fail or degrade, introducing bias and compromising both accuracy and Gaussian
error assumption: empirical studies of synchrophasor errors have yielded heavy-tailed
error distributions such as Cauchy, Student’s t, logistic, and Laplace [28,29]. Further, the
communications infrastructure itself may contribute to measurement error in the case of
failure or interference [7]. Particularly egregious measurement errors that suggest physically
impossible grid conditions, such as negative bus voltage magnitudes or magnitudes several
times larger or shorter than nominal values, are filtered through pre-processing [8], but more
“agreeable” measurement errors can nevertheless affect the accuracy of state estimates.

3.2. Parameter Error

Parameter errors suggest discrepancies between measurement data and the system
model. While Schweppe in his original formulation [1] did recognize the impact of er-
roneous model parameters, such errors were not considered in the network model. For
example, a parameter error might arise when the variability in a line-impedance value due
to extreme weather conditions is not taken into account. The mismatch between the mea-
surement data and the line impedance database value, which is used in the Y-admittance
matrix for power flow calculations, would be reflected in the state estimation result.

A simple alteration of (1) yields an augmented model [30] and linearization:

zi = hi(x, p0) + ei ≈ hi(x, p) +
∂hi
∂p

∆p + ei (15)

where p is the true parameter value, p0 is the erroneous parameter value, and ∆p = p0 − p
is the parameter error.

Stuart and Herget [31] investigated the impact of parameter errors on SSE by simulat-
ing erroneous values for line impedance, measurement error variance, and transformer tap
settings. Of particular note was an observed relationship between the severity of error and
lightly loaded lines.

Parameter errors can be thought of as a special case of multiple bad data in which
only the measurements pertaining to the erroneous model parameter are in error. As such,
studies have been performed with the goal of differentiating between the two. In [32],
it was shown through analysis of the state estimation error distribution that parameter
errors are reflected only in the measurement functions with erroneous parameter values.
Parameter estimation itself has been treated as a process separate from state estimation. A
practical implementation of this was first developed in [33], in which a sensitivity-based
WLS estimation approach is used to both identify and estimate parameter error.

3.3. Topology Error

Like parameter errors, topology errors suggest discrepancies in the measurement
model. System topology describes the bus-branch network configuration at the time of state
estimation. Topology processing, which precedes state estimation, normally determines
the correct status of manual switching and the circuit-breaking apparatus. A topological
discrepancy, such as a branch outage unaccounted for by the topology processor, would
be reflected in the Jacobian measurement matrix H, which requires accurate bus-branch
connection logic for the calculation of power flow. Topology errors can significantly
compromise state estimation accuracy through multiple conforming bad data [7]. Early
work showed that such topology errors can be reflected in the state estimation error [34,35]
and that normalized residual methods could be used for detection. Other approaches
suggest incorporating the statuses of switching devices themselves as additional state
variables [36], aiding in the identification of topology errors as such.
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4. Bad Data Detection

To preserve the accuracy of state variable estimates, bad data must be detected,
identified, and either eliminated or corrected. Whether the source of the bad data is
measurement-, parameter-, or topology-based, detection is the first step. The classical
components of bad data detection can be broadly categorized into three main branches
and are often used in conjunction with one another: chi-square χ2 testing, residual-based
methods, and hypothesis testing.

4.1. Chi-Squared χ2 Test

For a set of d random variables {Xi, i = 1, 2, . . . , d} with unit Gaussian distribution
Xi ∼ N (0, 1), a new random variable with χ2 distribution is defined as Y = ∑d

i=1 X2
i [6].

This follows the form of the cost function defined in (2) and can be written as the perfor-
mance index [8]

J(x̂) =
d

∑
i=1

(
zi − hi(x̂)

σi

)2

(16)

assuming that the measurement errors are independent and distributed ei ∼ N (0, σ2). J(x̂)
then follows a χ2 distribution with d− N degrees of freedom, where d is the number of
measurements and N is the number of unknown state variables.

A critical value C = χ2
(d−N),p can then be obtained based on the degrees of freedom

d − N and the desired detection confidence with probability p = 1 − α, where α is a
constraint on false probability. If J(x̂) ≥ C, then bad data are suspected; otherwise, the
measurements are assumed to be free of bad data. χ2 testing has proved valuable for the
detection of bad data even in the early history of SSE [5], where it was quickly realized that
χ2 and normalized residual methods can outperform one another generally, but that χ2

often proved better for multiple bad data.

4.2. Residual-Based Methods

The χ2 test soon became commonplace for the detection of bad data detection in
WLS SSE for a specified constraint on false probability α, after which residual analysis
could be performed for the identification of the measurement(s) in error [37]. However,
in the case of single bad data in larger networks, the analysis of both the weighted and
normalized residuals also proved viable for detection due to a more pronounced response
in the presence of gross errors when compared to χ2 testing. The use of normalized
residuals for bad data detection was introduced in [5]. Using the residual covariance matrix
Ωii = diag(Ω), the normalized residuals can be defined

rN
i =

|ri|√
Ωii

(17)

It was shown in [5] that, after bad data had been detected through means such as the
χ2 test, a list of the normalized residuals in descending order could be obtained. The largest
normalized residual could be used to identify the measurement in error, after which the
measurement was removed and the state estimation re-run. If bad data were still detected,
the procedure would repeat until all erroneous measurements were eliminated. Further
techniques were developed to correct measurements contaminated with bad data, rather
than eliminating them [8]. Correction keeps the measurement structure intact, which is
especially important in cases of limited redundancy.

Both the detection and identification of bad data can be achieved without χ2 testing
by comparing the largest normalized residual to a statistical threshold depending on the
desired sensitivity [7]. The case studies in [5] demonstrated that, in the case of multiple bad
data, either interacting or noninteracting, no consensus could be developed as to whether
χ2 testing or the largest normalized residual test proved superior for bad data detection. A
geometric interpretation of the normalized residuals was developed in [38], significantly
improving the generalizability of multiple interacting bad data detection. The residual
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difference between estimated and actual measurements continues to be a vital component
in state estimation anomaly detection, including in newer formulations to be expanded
upon in Section 6.

4.3. Hypothesis Testing

Hypothesis testing is a statistical method for deciding between accepting a null hy-
pothesis H0 or an alternative hypothesis H1 based on available observations. In power
system state estimation, the hypotheses are formulated as follows:

H0: zi is a valid measurement.
H1: zi is a measurement in error.

The first work to use hypothesis testing identification (HTI) for bad data in power sys-
tem state estimation [39] developed regions of acceptance between H0 and H1 by comparing
the estimation error to a threshold dependent on the measurement standard deviation
and a pre-selected constraint on false probability α. New results of this HTI method were
presented in [40], where the optimality of the linear estimator is established along with a
decision strategy based on a constraint for missed detection β. In [41], the authors bridge
the gaps between theory and practice by implementing the HTI on eight test systems, show-
casing its strengths in detecting multiple interacting bad data. For bad data identification,
HTI methods show significant advantages over methods based on normalized residuals,
which may be strongly correlated [7]. HTI techniques also demonstrated potential for
discerning error type, such as in topology error identification [42,43].

5. When Bad Data Become Malicious

The introduction of the concept of false data injection attacks (FDIAs) [11] helped to
highlight the limitations of classical bad-data-detection methods. What if bad data are
malicious and/or statistically derived to avoid conventional detection? The basic idea of
FDIAs is that an attacker can design an injection of multiple interacting bad data, which
is then applied to the measurement vector z. Consider the representation za = z + a,
where a = (a1, a2, . . . , am)T is a vector of malicious data. The attacker’s goal is to design
a to alter the state estimates, which EMSs use to make operating decisions, but without
triggering bad data detection. Ramifications of undetected attacks include compromised
system stability [12] and negative economic impact [44]. The success of such attacks is
largely dependent on the information available to the attacker, such as the number of
meters compromised, state estimates, system topology, and Jacobian structure, to name
a few.

Denial-of-service (DoS) attacks are another source of mismatch between the measure-
ment data fed to the state estimator and the true power system state. Causes for DoS attacks
are numerous [45], including communication channel jamming, packet flooding, and com-
promising of metering devices such as SCADA and PMUs so that data are not updated
for that region of the power grid. For state estimation, DoS attacks are typically modeled
as a set of measurements that are no longer available, which can negatively impact state
variable accuracy. If stealthiness is desired, care would need to be taken on the attacker’s
part so as not to render the system unobservable. FDIAs can also be designed to create a
topology error attack [46–48], in which a conventionally nondetectable mismatch between
measurement data and topology processing can lead to compromised system stability and
cost-effective operation.

The authors of [49] present FDIA strategies from the attacker and defender perspec-
tives. For the attacker, it is typically assumed that there is a cost associated with the
information obtained. With this in mind, an algorithm is presented to find the minimal set
of measuring devices required to manufacture an unobservable attack. In [50], a compara-
tive analysis of the FDIA impact between so-called DC and AC SSE is conducted. DC SSE
considers active power measurements only, with bus voltage angles as the state variables.
In contrast, the complete AC SSE considers both active and reactive power measurements,
with bus voltage magnitudes and angles as the state variables. Such a study was important



Energies 2023, 16, 6678 8 of 15

due to the DC model warranting far more attention in the FDIA research space at the time,
despite the full nonlinear AC model finding use in real-world EMS applications [51,52].

Impacts of FDIAs on Kalman filter DSE approaches were studied in [53], where it was
found that the unscented Kalman filter (UKF) [54] yielded better performance compared
to the extended Kalman filter (EKF) [55] and the enhanced EKF [56]. Further, an online
nonparametric cumulative sum (CUSUM) approach was proposed to detect anomalies
based on distribution changes in the state estimation error. This is related to quickest-
change detection approaches, which will be elaborated upon further in Section 6.1. A
Kalman filter state estimation approach was proposed in [57], where a Euclidean detector
was used to overcome the shortcomings of the χ2 test for detecting statistically derived
FDIAs as well as DoS attacks.

The FDIA formulation highlighted a need for improved bad data detection. The
classification of bad data as such would also need improvement. Common confusion matrix
metrics like false negatives and false positives become harder to minimize when stealth
FDIAs can closely resemble power system events like transients, switching, and sudden
load changes. Further, with the increasing push towards the cyber-physical operation of
the smart grid [58], many new points of entry for cyber-attack became apparent, such as
Internet of Things (IoT) infrastructure [59], communication channels [60], and distributed
computing [61]. The intersection of model-based and data-driven solutions should grow
to better handle the bad data detection limitations posed by FDIAs. With state estimation
anticipated to remain a vital component of EMSs, new formulations based on quickest-
change detection and AI should be developed for improved anomaly detection.

6. Recent Approaches
6.1. Quickest-Change Detection

Quickest-change detection (QCD) is concerned with detecting a possible change in the
distribution of a monitored observation sequence [62], which is indicative of an anomaly
in a stochastic environment. The general goal of QCD theory is to design algorithms to
detect these changes with the smallest detection delay possible, subject to a constraint on
false alarms.

Three main ingredients are needed in the QCD problem [63]: an observed stochastic
process {Xn, n = 1, 2, . . .}, a change time τa at which the statistical properties of the
process undergo change, and a decision maker that declares a change time τs based on
observations of the stochastic process. A false alarm is defined as an instance of the decision
maker declaring a change before the change occurs: I{τs < τa}. The constraint on false
alarm follows from the Neyman–Pearson hypothesis testing formulation [64], which is
foundational to the QCD problem.

The Neyman–Pearson Lemma [65] establishes the optimal test for binary hypothesis
testing, involving the null (H0) and alternate (H1) hypotheses. For a single observation X:

H0: X has pdf p.
H1: X has pdf q.

Then, comparing the likelihood ratio q(X)/p(X) to a threshold value is the most power-
ful test in terms of deciding which hypothesis is true while minimizing missed detection
subject to a constraint on false alarms [66]. The likelihood ratio plays a fundamental role
in recursive sequential-change-detection algorithms such as Page’s CUSUM [67] and the
Shiryaev–Roberts procedure [68], each of which enjoys optimality properties in terms of
minimizing false alarm and detection delay (τs − τa)+ max(0, τs − τa). These properties
are given proper discussion in [62].

QCD approaches have shown great promise for power system anomaly detection
applications, such as line outage detection and identification [69–71]. QCD has further
application in detecting changes in the state estimation error, which has been proposed
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for fault and FDIA detection. The first QCD approach for state estimation FDIA detection
implemented an adaptive approach using the CUSUM statistic:

Sn = max{0, Sn−1 + L(Zn)} , n ≥ 1 , with S0 = 0. (18)

where {Zn, n = 1, 2, . . .} is the observed stochastic process and L is the log-likelihood
ratio. Sample plots of a subtle change in a Gaussian observation process, along with the
corresponding CUSUM statistic, are included in Figure 1.
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Figure 1. Example of a small mean shift observation sequence with the corresponding CUSUM
evolution.

Because the exact form of the post-change distribution q is not known, the authors
in [72,73] used a Rao test-based approximation [74] of the generalized likelihood ratio
test for CUSUM-based FDIA detection. A low-complexity Orthogonal Matching Pursuit
CUSUM (OMP-CUSUM) approach in [75] accounts for the unknown change distribution
by maximizing the cumulative log-likelihood ratio to detect FDIAs that are sparse (i.e., only
a small number of meters are assumed accessible to the attacker).

Both centralized and distributed CUSUM-based approaches for FDIA detection are
proposed in [76], replacing the unknown parameters of the post-change distribution with
their maximum likelihood estimates (MLEs). For the centralized case, the observed stochas-
tic process of interest is the projection of the measurement vector on the orthogonal Jacobian
space component R⊥(H). This is expressed as ỹn , Pnyn, where P is the previously de-
fined linear projection matrix. The distributed case partitions the power system into areas
and estimates the state variables through the alternating direction method of multipliers
(ADMM) [77], where each area i has its own observed process {ỹi

n, n = 1, 2, . . .}. These
approaches outperformed the adaptive-CUSUM approach in [72,73], due in part to the
improved detection of FDIAs with negative and larger elements of the attack vector a.
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The work in [78] incorporates a Kalman filter approach and separately evaluates
DoS attacks and FDIAs. Better detection performance was observed for stealth FDIAs in
particular, in which perfect system topology knowledge allows an attacker to inject false
data along the column space of H. Four Kalman filtering techniques in [53] were evaluated
using nonparametric CUSUM, in which both pre- and post-change distributions p and q are
unknown. Hybrid FDIA/jamming attacks are assessed for the Kalman filter CUSUM-based
detector in [79]. The distinction between persistent and non-persistent attacks was made
as well. Most CUSUM-based detectors assume persistence in the change in the observed
stochastic process, and so an intermittent attack series could be designed to increase the
detection delay. Thus, the Generalized Shewhart Test, which can detect significant increases
in L, is presented as a countermeasure against stealthy, non-persistent FDIAs. A relaxed
generalized CUSUM (RGCUSUM) algorithm is presented in [80] for FDIA detection. A
relaxation on maximizing the post-change likelihood over the unknown parameters yielded
a more computationally efficient algorithm than its generalized CUSUM counterpart. A
normalized Rao CUSUM-based detector with a time-varying dynamic model was employed
in [81] to better distinguish between FDIA and sudden load changes.

The work in [82] also assesses the Shiryaev–Roberts (SR) procedure, along with
CUSUM for change detection. In contrast to CUSUM, the optimality of the SR proce-
dure pertains to detecting τ at a distant time horizon [83,84]. The SR procedure is defined
recursively as

Tn = exp
(

L(Zn)
)
[Tn−1 + 1] , n ≥ 1 , with T0 = 0. (19)

Further, the modified CUSUM and SR procedure algorithms [85] are employed in
the same work as evaluation benchmarks for a so-called DeepQCD algorithm for online
cyber-attack detection, which uses deep recurrent neural networks to detect changes in
transient cases and with autocorrelated observations.

6.2. AI Approaches

FDIA detection can be framed as a binary classification problem in which the mea-
surement vector z is determined to be either normal (negative class) or anomalous (pos-
itive class). One of the first to use semi-supervised and supervised learning for FDIA
detection [86] explored perceptron, support vector machine (SVM), k-nearest neighbors
(k-NN), and sparse logistic regression algorithms for supervised learning. Semi-supervised
learning, in which unlabelled test data are incorporated in training, was explored with
semi-supervised SVMs. Many valuable takeaways were garnered from this work, includ-
ing considerations of power system size and and computational complexity; however,
stealthy FDIAs were not considered. An Extended Nearest Neighbors (ENN) algorithm
was proposed in [87] to better handle the imbalanced data problem (i.e., cases in which the
number of negative class samples greatly exceeds or is significantly less than the number
of positive class samples). Classification performance was then compared to SVM and
k-NN algorithms. The work in [88] used a method based on the margin-setting algorithm,
typically used in image processing applications, in which hypersphere decision boundaries
were formed through labeled PMU time-series data. The MSA approach yielded supe-
rior classification performance compared to standard artificial neural networks (ANNs)
and SVM.

Unsupervised principal component analysis (PCA) showed utility in the construction
of stealthy and blind FDIAs, as well as in developing robust detection methods [89,90]. PCA
is again employed in [91] as a preprocessing step to project higher-dimensional correlated
measurement data to a lower dimension, removing the correlation between data and
magnifying the distance between normal and anomalous measurements. For performance
comparison, the authors implemented a supervised distributed ADMM-based SVM, which
could only outperform the PCA-based anomaly detection when the training set was large.
Mahalanobis distance-based ensemble detection methods demonstrated success for FDIA
detection in [92–95], including in high-fidelity real-time simulation.
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Reinforcement learning (RL)-based QCD approaches are explored in [82,96]. The
QCD problem can be formulated as a case of optimal stopping, in which a decision to
exercise must be made to minimize cost [97,98]. In QCD, this is understood as declaring
a stop time τs at a cost relative to the actual stop time τa. For the Markov Decision
Process (MDP) component of RL, one can either seek to maximize reward or minimize
cost [99]. Two components for the cost are constructed [97]: one for continuing (associated
with missed detection) and one for stopping (associated with false alarm). The authors
in [96] use a model-free state–action–reward–state–action (SARSA) approach to learn
the expected future cost for each state–action pair in a Q-table. The authors opt for a
quantization scheme for learning when faced with the continuous observation space.
Because the actual change time τa is a hidden state, a partially observable Markov decision
process (POMDP) formulation is used. This RL approach significantly outperformed the
Euclidean [57] and cosine-similarity metric [100]-based detectors in terms of minimizing
the mean probability of false alarm and detection delay for various cyber-attack types,
including hybridFDI/jamming, DoS, and network topology attacks.

Neural network and deep learning approaches also show promise for malicious and
standard bad data detection. A Deep-Belief-Network-based classifier is proposed in [101]
using Conditional Gaussian–Bernoulli Restricted Boltzmann Machines in the hopes of re-
vealing higher-dimensional temporal features of stealthy FDIAs. The temporal correlation
between measurements with the state estimator is analyzed through Recurrent Neural
Networks (RNNs) for FDIA detection in [102]. A nonlinear autoregressive exogenous
(NARX) model configuration for ANNs is explored in [103] for stealthy optimized FDIA
detection. The authors in [104] consider a limited set of target labels for attacked measure-
ment data, an example of semi-supervised learning. Autoencoders, used for dimensionality
reduction and feature extraction, are integrated into a generative adversarial network. The
framework compensates for the limited labeled data set by using two neural networks: one
generative, responsible for creating fake samples, and the other discriminative, responsible
for distinguishing between real and generated samples.

7. Conclusions and Suggestions for Future Work

A survey of legacy bad-data-detection procedures has been presented along with
limitations with respect to malicious bad data. Cyber-attack formulations such as FDIA
highlight the need for better data detection by pointing out the theoretical manipulation of
grid-operating procedures by bad actors. Even if one argues that the FDIA formulation
is more of a theoretical exercise than a practical concern, it still points to shortcomings in
legacy bad data detection. Standard bad data and physical line faults under the leverage
point conditions discussed earlier are difficult to detect for similar reasons as statistically
derived stealth FDIAs. Newer methods such as QCD and AI seek to overcome legacy
bad-data-detection techniques by leveraging features such as measurement data temporal
patterns and probability density changes in the state estimation error.

Increased access to real state estimation measurement data would aid greatly in
accessing the practicality of QCD and AI anomaly-detection formulations. For example, a
QCD formulation assuming independent and identically distributed (i.i.d.) observations
may be compromised under dynamic load and generation profiles, in which case the
measurement data exhibit complicating factors like autocorrelation, as investigated in [82].
The robustness of newer anomaly detection strategies to asynchronous measurement data
should also be investigated. Until synchronized measurement data for state estimation
become standard, uncertainty quantification of this type should considered so as not to
be considered a false-positive source of anomalous behavior. The availability of time-
series data such as SCADA and/or PMU measurements for multi-bus systems would aid
state estimation researchers in quantifying uncertainty and measurement correlation. It
is also recommended that future work incorporate dynamic load and generation profiles
to better reflect the future directions of the modern smart grid. This was a motivation in
the work [81], which highlighted the importance of discerning anomalies from dynamic
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behavior such as large load shifts. Such conditions are expected to increase with more DER
penetration in the future smart grid and should be included when evaluating detection and
identification metrics.
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