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Abstract: In China, a traditional perspective recommended that consuming seafood should be mixed
or matched with vinegar, because people thought this traditional Chinese eating habit could reduce
the risk of pathogenic microorganism infection, such as Vibrio parahaemolyticus induced diarrhea.
However, this empirical viewpoint has not yet been evaluated scientifically. This study conducted
a simplified quantitative microbiological risk assessment (QMRA) model, which was employed to
estimate the risk reduction of V. parahaemolyticus on ready-to-eat (RTE) shrimp by consuming with
vinegars (white vinegar, aromatic vinegar, or mature vinegar). Results showed the reduction of
V. parahaemolyticus density on RTE shrimp after consuming with white vinegar, aromatic vinegar
and mature vinegar was respectively 0.9953 log CFU/g (90% confidence interval 0.23 to 1.76), 0.7018
log CFU/g (90% confidence interval 0.3430 to 1.060) and 0.6538 log CFU/g (90% confidence interval
0.346 to 0.9620). The infection risk of V. parahaemolyticus per meal in this QMRA model was quantified
by a mean of 0.1250 with the standard deviation of 0.2437. After consuming with white vinegar,
aromatic vinegar, and mature vinegar, the mean infection risk of V. parahaemolyticus on shrimp
decreased to 0.0478, 0.0652, and 0.0686. The QMRA scenarios indicated significant reductions in
infection risk when eating RTE shrimp by the Chinese eating habit (consuming with vinegar). This
good eating habit should be recommended to promote the spread of around the world.

Keywords: Chinese eating habit; Vibrio parahaemolyticus; risk reduction assessment; ready-to-eat shrimp

1. Introduction

Vibrio parahaemolyticus, the leading foodborne pathogen in China, is frequently isolated
from a variety of seafood [1,2]. its salinity and fear of acid, in 3–5% salt water can multiply
rapidly, but in the pH below 6 acidic conditions is poor growth [3,4]. Acute gastroenteritis
brought on by a V. parahaemolyticus infection might present as diarrhea, headache, vomiting,
nausea, and abdominal cramps [5,6]. One of the most significant types of seafood, shrimp
is also in high demand on the global market. However, it is frequently linked to outbreaks
of V. parahaemolyticus, particularly during the warm seasons [7], which may be brought on
by a high incidence of the virus in shrimps. That presented possible threats to the public’s
health and seafood safety.

The most preferred method for reducing the risk of infection from V. parahaemolyticus
on shrimp was thermal processing. Additionally, customers are becoming more and more
enamored with cooked, ready-to-eat shrimp due to their convenience and flavor. However,
due to cross-contamination from subpar production methods and careless eating and
handling habits, ready-to-eat shrimp was also easily infected with V. parahaemolyticus [8].
In China, a traditional perspective recommended consuming fish combined with vinegar,
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since it was believed that this traditional Chinese eating habit might lower the risk of
infections from harmful microorganisms found in seafood. However, up to now, this
empirical viewpoint has not yet been proved scientifically. Quantitative microbiological
risk assessment (QMRA) was considered as a scientific and internationally accepted tool to
evaluate the infection risks of foodborne pathogens [9–11]. The QMRA model was widely
employed to estimate the infection probability of pathogenic bacteria in different foods,
such as Listeria monocytogenes in ready-to-eat food [12], Salmonella spp. in eggs [13], and V.
parahaemolyticus in seafood [14–18] etc. In addition, it is also a useful tool to quantify the
reduction in potential risks of pathogens by sterilization techniques. However, to the best
of our knowledge, this approach has not been used to assess the effect of an eating habit on
the microbiological infection risk.

Therefore, this study firstly conducted a simplified QMRA model to simulate the
circumstance of consuming seafood with vinegar, and attempted to calculate the reduction
in infection risk of V. parahaemolyticus in shrimp by this kind of Chinese eating habit.
The three most comment vinegars in China, white vinegar, aromatic vinegar, and mature
vinegar have been chosen in this study. A Monte Carlo simulation was applied to describe
the uncertainty and variability of the influence of consuming with vinegar on reduction of
V. parahaemolyticus concentration. This study aims to promote the adoption of this healthy
eating practice worldwide by providing scientific proof that this Chinese eating practice
does lower the risk of V. parahaemolyticus in shrimp.

2. Materials and Methods
2.1. Bacterial Strain and Culture Preparation

The pathogenic V. parahaemolyticus O3:K6 strain is a pandemic strain currently pre-
served at our laboratory at −80 ◦C in Tryptone soy broth (TSB, Beijing Land Bridge Tech-
nology Company Ltd., Beijing, PR China) containing 3% NaCl (pH 8.0) with addition of
25% (v/v) sterilized glycerol as a cryoprotector.

To prepare the inoculum culture, the stock V. parahaemolyticus culture was transferred
to TSB plus 3% NaCl and incubated at 37 ◦C for 18–20 h. After two passages, the suspension
from the last culture was centrifuged at 4000 rpm for 10 min at room temperature, the
supernatant was discarded and the absorbance was adjusted with fresh sterile Phosphate
Buffer Solution (PBS) and the absorbance was determined by colony counting until the
bacterial load was approximately 109 CFU/mL.

2.2. Preparation of Artificial Contaminated Shrimp Samples

Shrimp samples (10 ± 1 g per) were purchased from a local supermarket in Shanghai.
The shrimp samples were stored at −20 ◦C, and thawed at 4 ◦C overnight before treatment.

The shrimp samples were randomly selected and dipped into a V. parahaemolyticus
O3:K6 suspension containing ~109 CFU/mL with shaking for 20 min. The whole shrimp
samples were then air-dried in a biosafety hood for 20 min to allow for bacterial attach-
ment. This treatment insured a uniform distribution of V. parahaemolyticus on the shrimp
(~106 CFU/g).

2.3. Treatment of Shrimp Samples with Chinese Traditional Vinegar

Three Chinese traditional vinegars, white vinegar, aromatic vinegar, and mature
vinegar, were purchased from a local supermarket in Shanghai. The major components
were listed in Table 1. Each group of five inoculated shrimps was immersed in 500 mL of
each condiment for 5, 10, 15, 30, 60, 90 and 120 s, respectively. Inoculated samples treated
with sterile 0.85% saline solution were used as control.

After vinegar treatment, shrimp samples were placed in a sterile 400 mL filter stom-
acher bag (Beijing Land Bridge Technology Company Ltd., Beijing, PR China) with 100 mL
of sterile alkaline peptone water (APW, Beijing Land Bridge Technology Company Ltd., Bei-
jing, PR China) with 3% NaCl (pH 8.0), and then homogenized (BagMixer400, Interscience,
France) for 2 min. Subsequently, the homogenate was serially diluted with APW and
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plated onto thiosulfate–citrate–bile salts–sucrose (TCBS,) to enumerate V. parahaemolyticus
O3:K6 after incubation at 37 ◦C for 18–24 h. Three replicates at each sampling time
were performed.

Table 1. The major components of three vinegars.

Condiment Total Acid Content (g/100 mL) pH Active Compounds

White vinegar >6.00 2.59 ± 0.01 Polyphenols, organic acid
Aromatic vinegar ~5.75 3.82 ± 0.17 Polyphenols, organic acid
Mature vinegar >6.00 3.48 ± 0.19 Polyphenols, organic acid

2.4. Latin Hypercube Sampling

LHS is a statistical technique that was developed by McKay [19] et al. that offers the
benefits of efficient space filling and the capacity to match nonlinear connections. As a
result, in this investigation, sample points were created using LHS.

2.5. Risk Reduction Assessment

A simplified QMRA model was used in this study to evaluate the risk reduction of
V. parahaemolyticus on ready-to-eat shrimp by consuming three different vinegars. The
scope used in the QMRA model from market to table was shown in Figure 1, and the
variables and models were listed in Table 2.
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Figure 1. Diagram of the quantitative risk reduction assessment model for V. parahaemolyticus on
ready-to-eat shrimp. The figure shows stages and their inputs from market to table. The input
parameters of each stage are described in Table 2.

A uniform distribution was employed to describe the contamination of V. parahaemolyti-
cus on ready-to-eat shrimp. The minimum of uniform distribution was 0, since we assumed
there is no Vibrio on shrimp as the best circumstance. According to the previous researches,
the most probable density of V. parahaemolyticus on shrimp was about 9 log CFU/g [20,21].
Hence, the 9 log CFU/g was chosen as the maximum of uniform distribution.

According to the surveillance research of Shanghai Food and Drug Administration
(Shanghai FDA), the maximum of consumption of shrimp for one person per meal was
approximately 43.74, and the minimum and maximum consumption was 10.85 g [22].
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Hence, a normal distribution was used in this model for the possible shrimp consumption
as normal (10.85, 43.74).

Table 2. Description and distribution of variables and models for risk reduction assessment of
V. parahaemolyticus on ready-to-eat shrimp.

Variables Definition Unit Assumption/Formula/Distribution Source

C0 The contamination level of Vp
on shrimp log CFU/g Uniform(0, 9) Assumption

R1 Vp reduction on shrimp by
consuming with white vinegar log CFU/g Logistic(0.99525, 0.25934) Fitted by @Risk

R2
Vp reduction on shrimp by
consuming with
aromatic vinegar

log CFU/g Logistic(0.70173, 0.12168) Fitted by @Risk

R3 Vp reduction on shrimp by
consuming with mature vinegar log CFU/g Logistic(0.65378, 0.10464) Fitted by @Risk

C1
Final contamination level of Vp
on shrimp by consuming with
white vinegar

log CFU/g C0–R1 Calculated

C2
Final contamination level of Vp
on shrimp by consuming with
aromatic vinegar

log CFU/g C0–R2 Calculated

C3
Final contamination level of Vp
on shrimp by consuming with
mature vinegar

log CFU/g C0–R3 Calculated

S Consumption of shrimp
per meal g Normal (10.85, 43.74) Shanghai FDA

P Infection risk of Vp on shrimp 1 − [1 + (10C0 × S)/(27 × 1.31 × 106)]−0.6 Calculated

P1 Infection risk of Vp on shrimp by
consuming with white vinegar 1 − [1 + (10C1 × S)/(27 × 1.31 × 106)]−0.6 Calculated

P2
Infection risk of Vp on shrimp by
consuming with
aromatic vinegar

1 − [1 + (10C2 × S)/(27 × 1.31 × 106)]−0.6 Calculated

P3 Infection risk of Vp on shrimp by
consuming with mature vinegar 1 − [1 + (10C3 × S)/(27 × 1.31 × 106)]−0.6 Calculated

Note: a Vp = Vibrio parahaemolyticus; The distributions in Table 2 were performed according to Guide to Using
@RISK-Risk Analysis and Simulation Add-In for Microsoft® Excel Version 5.7, Palisade Corporation.

For appropriate assessment of the probability risk caused by a single cell of V. para-
haemolyticus, a dose–response model was employed to estimate the risk of foodborne illness
associated with shrimp consumption in the current research. Due to the lack of data in
the city, the dose–response model used in this work was the same beta-Poisson model
(Equation (1)) used by US FDA [17], including the distribution of uncertainty of parameters
alpha and beta.

P = 1 −
(

1 +
D
β

)−α

(1)

where P denotes the probability of illness for an individual exposed to a certain dose
(D cells); D is the number of V. parahaemolyticus consumed (CFU), α (0.60) and β (1.31 × 106)
are parameters of the dose–response.

The “Distribution Fitting” tool in @Risk software was employed to investigate the
optimal distribution to describe the reduction of V. parahaemolyticus contamination level
on ready-to-eat shrimp by three vinegars. In addition, the Chi-squared statistic, Anderson
darling statistic, and Kolmogorov–Smirnov statistic were used to evaluate the goodness-of-
fit of the distribution models.

2.6. Statistical Analyses

The statistical analyses were performed by using SPSS statistical package 17.0 (SPSS Inc.,
Chicago, IL, USA) with a significant level of 5% of probability. The model was developed by
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using a Microsoft® Excel 2010 spreadsheet (Microsoft Corporation, Redmond, WA, USA).
All simulations were run by using the Monte Carlo sampling method of input variables and
combining the values properly in order to generate the output variables. The simulations
were implemented by using the @Risk software. The distribution of uncertainty for the
probability of disease was determined by running 10,000 iterations.

3. Results
3.1. Reduction of V. parahaemolyticus on Shrimp by Three Vinegars

The bactericidal effects of three vinegars (white vinegar, aromatic vinegar, and mature
vinegar) on V. parahaemolyticus on ready-to-eat shrimp were experimented in the laboratory.
According to the Chinese eating habit, the treatment times of 5 s to 120 s was chosen to
investigate in this study, and the results of the effect of white vinegar, aromatic vinegar,
and mature vinegar on V. parahaemolyticus on ready-to-eat shrimp can be found in Table 3.

Table 3. Inhibitory effect of three vinegars to shrimp-derived V. parahaemolyticus.

Treatment Time
Chinese Traditional Vinegar (log CFU/g)

White Vinegar Aromatic Vinegar Mature Vinegar

5 s 0.27 ± 0.05 a 0.20 ± 0.22 ab 0.25 ± 0.15 a

10 s 0.74 ± 0.27 b 0.56 ± 0.40 ab 0.55 ± 0.23 ab

15 s 0.94 ± 0.23 b 0.69 ± 0.02 a 0.58 ± 0.18 b

30 s 0.97 ± 0.10 b 0.71 ± 0.16 ab 0.65 ± 0.11 ab

60 s 1.04 ± 0.09 b 0.77 ± 0.04 ab 0.75 ± 0.33 b

90 s 1.25 ± 0.44 b 0.81 ± 0.21 ab 0.81 ± 0.10 ab

120 s 1.97 ± 0.03 b 0.98 ± 0.29 b 0.84 ± 0.10 b

Mean values (p < 0.05). Values followed by different lowercase letters in the same row indicate significant
differences during treatment.

The distributions of decreased contamination of V. parahaemolyticus for vinegars were
fitted by @Risk software. The adequacy of the adjustment of data to a distribution of proba-
bility was evaluated by Chi-squared statistic, Anderson darling statistic, and Kolmogorov–
Smirnov statistic using @Risk software. Figure 2 shows the optimal distribution for de-
scription of the reduction of V. parahaemolyticus contamination level on shrimp by three
vinegars. The mean reduction of V. parahaemolyticus on ready-to-eat shrimp by consuming
with white vinegar was 0.9953 log CFU/g (90% confidence interval 0.23 to 1.76). The mean
reduction of V. parahaemolyticus on ready-to-eat shrimp by consuming with aromatic vine-
gar was 0.7018 log CFU/g (90% confidence interval 0.3430 to 1.060). The mean reduction of
V. parahaemolyticus on ready-to-eat shrimp by consuming with mature vinegar was 0.6538
log CFU/g (90% confidence interval 0.3460 to 0.9620).

3.2. Final Contamination Level of V. parahaemolyticus on Shrimp after Consuming with Vinegars

As shown in Figure 3, a uniform distribution was employed to describe the contami-
nation of V. parahaemolyticus on ready-to-eat shrimp. The uniform distribution showed the
mean contamination of V. parahaemolyticus on ready-to-eat shrimp assumed in this study
was 4.50 log CFU/g with the standard deviation of 2.5982.

According to fitting results of @Risk software, after consuming with white vinegar,
the mean contamination of V. parahaemolyticus on shrimp decreased as 3.5047 log CFU/g
with the standard deviation of 2.6322. After consuming with aromatic vinegar, the mean
contamination of V. parahaemolyticus on shrimp decreased as 3.7982 log CFU/g with the
standard deviation of 2.6079. After consuming with mature vinegar, the mean contami-
nation of V. parahaemolyticus on shrimp decreased as 3.8462 log CFU/g with the standard
deviation of 2.6053.
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Figure 2. The reduction of V. parahaemolyticus contamination level on ready−to−eat shrimp
by consuming with white vinegar (A), aromatic vinegar (B) and mature vinegar (C). Note:
Vp = Vibrio parahaemolyticus.

3.3. Estimated Infection Risk Reductions from the QMRA

The ingested dose of a single pathogenic organism was translated into the probability
of illness using the dose–response model. Latin Hypercube sampling method was run
for each simulated scenario to estimate the V. parahaemolyticus most probable final load
and the probable number of illnesses after the complete process. Histograms depicting
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distributions of risk was shown in Figure 4, and the distributions approached their upper
limit of one, and therefore had long right tails.
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without anything (Red Line), and with white vinegar (Blue Line), aromatic vinegar (Green Line) and
mature vinegar (Grey Line). Note: Vp = Vibrio parahaemolyticus.

The infection risk of V. parahaemolyticus per meal in this QMRA model was quantified
by a mean of 0.1250 with the standard deviation of 0.2437. However, after consuming
with white vinegar, the mean infection risk of V. parahaemolyticus on shrimp decreased as
0.0478 with the standard deviation of 0.1292. After consuming with aromatic vinegar, the
mean infection risk of V. parahaemolyticus on shrimp decreased as 0.0652 with the standard
deviation of 0.1550. After consuming with mature vinegar, the mean infection risk of
V. parahaemolyticus on shrimp decreased as 0.0686 with the standard deviation of 0.1600.
Particularly, consuming with white vinegar is the most effective scenario to reduce the
potential risk, where the proportion of risk reduction is high up to 61.76%.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 3. The final contamination level of V. parahaemolyticus on ready−to−eat shrimp by consuming 
without anything (Red Line), and with white vinegar (Blue Line), aromatic vinegar (Green Line) 
and mature vinegar (Grey Line). Note: Vp = Vibrio parahaemolyticus. 

According to fitting results of @Risk software, after consuming with white vinegar, 
the mean contamination of V. parahaemolyticus on shrimp decreased as 3.5047 log CFU/g 
with the standard deviation of 2.6322. After consuming with aromatic vinegar, the mean 
contamination of V. parahaemolyticus on shrimp decreased as 3.7982 log CFU/g with the 
standard deviation of 2.6079. After consuming with mature vinegar, the mean 
contamination of V. parahaemolyticus on shrimp decreased as 3.8462 log CFU/g with the 
standard deviation of 2.6053. 

3.3. Estimated Infection Risk Reductions from the QMRA 
The ingested dose of a single pathogenic organism was translated into the probability 

of illness using the dose–response model. Latin Hypercube sampling method was run for 
each simulated scenario to estimate the V. parahaemolyticus most probable final load and 
the probable number of illnesses after the complete process. Histograms depicting 
distributions of risk was shown in Figure 4, and the distributions approached their upper 
limit of one, and therefore had long right tails. 

(A) 

 
Figure 4. Cont.



Int. J. Environ. Res. Public Health 2023, 20, 317 8 of 11Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 8 of 11 
 

 

(B) 

 
(C) 

 
(D) 

 

Figure 4. The infection risk of Vibrio parahaemolyticus on ready−to−eat shrimp by consuming without 
anything (A), and with white vinegar (B), aromatic vinegar (C) and mature vinegar (D). 

The infection risk of V. parahaemolyticus per meal in this QMRA model was quantified 
by a mean of 0.1250 with the standard deviation of 0.2437. However, after consuming with 
white vinegar, the mean infection risk of V. parahaemolyticus on shrimp decreased as 0.0478 
with the standard deviation of 0.1292. After consuming with aromatic vinegar, the mean 
infection risk of V. parahaemolyticus on shrimp decreased as 0.0652 with the standard 
deviation of 0.1550. After consuming with mature vinegar, the mean infection risk of V. 
parahaemolyticus on shrimp decreased as 0.0686 with the standard deviation of 0.1600. 
Particularly, consuming with white vinegar is the most effective scenario to reduce the 
potential risk, where the proportion of risk reduction is high up to 61.76%. 

4. Discussion 
Today, the ready-to-eat seafood, such as ready-to-eat shrimp, fish steak, crab sticks, 

etc., become more and more popular by consumers since they are convenient and 

-0
.1 0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Figure 4. The infection risk of Vibrio parahaemolyticus on ready−to−eat shrimp by consuming without
anything (A), and with white vinegar (B), aromatic vinegar (C) and mature vinegar (D).

4. Discussion

Today, the ready-to-eat seafood, such as ready-to-eat shrimp, fish steak, crab sticks, etc.,
become more and more popular by consumers since they are convenient and delicious [23].
However, this type of food is thought to be extremely prone to microbial pathogen con-
tamination and might be dangerous to consumer health [24,25]. Human health is greatly
concerned about the incidence and presence of foodborne pathogens in food, which can
lead to illness outbreaks [26,27]. In shrimp that has been prepared for consumption, a
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number of foodborne viruses, most notably V. parahaemolyticus [28], may persist if no heat
treatment step or other curing action is taken. A traditional viewpoint in China advocated
pairing or mixing fish with vinegar to lower the danger of eating infectious microorganisms.
However, up to now, this empirical traditional Chinese eating habit has not yet been proved
scientifically. Therefore, this is the first study to evaluate the availability of a Chinese eating
habit to reduce the infection risk of human from ready-to-eat shrimp contaminated with V.
parahaemolyticus based on QMRA.

In China, the history of vinegar is well documented [29,30]. Vinegar serves as a
medicine as well as a condiment [31]. White vinegar, aromatic vinegar, and mature vinegar
were the three Chinese traditional vinegars used for this investigation. The treatment times
of 5, 10, 15, 30, 60, 90, and 120 s were chosen to correspond to the Chinese eating custom. The
“Distribution Fitting” feature in the @Risk program was used to match the best distribution
for characterizing the decrease in V. parahaemolyticus contamination level on shrimp caused
by the use of three vinegars. The findings indicated that the logistic distribution may well
reflect the trend of three vinegars in reducing the amount of V. parahaemolyticus on shrimp.
White vinegar, aromatic vinegar, and mature vinegar consumption resulted in a 0.9953 log
CFU/g, 0.7018, and 0.7018 log CFU/g mean decrease in V. parahaemolyticus on ready-to-eat
shrimp, respectively. This showed that this Chinese eating style can lower the amount of V.
parahaemolyticus on shrimp that are ready to eat, and pairing it with white vinegar would
have the biggest impact.

Within this QMRA model, the infection risk of V. parahaemolyticus per meal was
quantified by a mean of 0.1250 and a standard deviation of 0.2437. That is significantly
greater than what has been reported in previous studies, such as those on bloody clams
in Malaysia [32] and Thailand [14], and horse mackerel in Japan [15], where the estimated
risks were, respectively, 4.8 × 10−6, 5.6 × 10−4, and 5.6 × 10−6 to 1.4 × 10−4. This result
was obtained because the worst case scenario (9 log CFU/g) was taken into account in
this investigation. When researchers cannot precisely estimate the risk, they frequently
utilize the worst-case scenario in a QMRA model [33,34]. In this method, researchers
can constantly focus on the worst case scenario rather than having to think about the
effects of uncertainty. As we can see, even though the worst-case scenario (9 log CFU/g)
was chosen, the QMRA scenarios still showed that there were substantial decreases in
the risk of infection when ingesting shrimp that had been prepared with vinegar. More
precisely, the mean infection risk of V. parahaemolyticus on shrimp fell as 0.0478, 0.0652,
and 0.0686 following consumption with white vinegar, aromatic vinegar, and mature
vinegar, respectively.

Based on the above analysis, our study simulated the effects of vinegar on pathogenic
microorganisms in seafood through a simplified quantitative microbial risk assessment
model. Despite the lack of validation of epidemiological data of V. parahaemolyticus, compre-
hensive insights can be obtained that consuming with vinegar can reduce the infection risks
from shrimp derived V. parahaemolyticus. Similar results were found in some published lit-
eratures, e.g., consuming sashimi with mustard had an effectively antimicrobial effect [35].
This Japanese eating habit can also reduce the infection risk of foodborne disease. That
indicated a good eating habit will contribute the human health. In a summary, consuming
seafood mixed or matched with vinegar was proved as a good eating habit to reduce the
risk of bacterial infection, which should be suggested as a healthy dietary culture to spread
around the world.
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