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Abstract: Potentilla nepalensis belongs to the Rosaceae family and has numerous therapeutic ap-
plications as potent plant-based medicine. Forty phytoconstituents (PCs) from the root and stem
through n-hexane (NR and NS) and methanolic (MR and MS) extracts were identified in earlier
studies. However, the PCs affecting human genes and their roles in the body have not previously
been disclosed. In this study, we employed network pharmacology, molecular docking, molecular
dynamics simulations (MDSs), and MMGBSA methodologies. The SMILES format of PCs from
the PubChem was used as input to DIGEP-Pred, with 764 identified as the inducing genes. Their
enrichment studies have shown inducing genes’ gene ontology descriptions, involved pathways,
associated diseases, and drugs. PPI networks constructed in String DB and network topological
analyzing parameters performed in Cytoscape v3.10 revealed three therapeutic targets: TP53 from
MS-, NR-, and NS-induced genes; HSPCB and Nf-kB1 from MR-induced genes. From 40 PCs, two
PCs, 1b (MR) and 2a (MS), showed better binding scores (kcal/mol) with p53 protein of −8.6 and
−8.0, and three PCs, 3a, (NR) 4a, and 4c (NS), with HSP protein of −9.6, −8.7, and −8.2. MDS and
MMGBSA revealed these complexes are stable without higher deviations with better free energy
values. Therapeutic targets identified in this study have a prominent role in numerous cancers. Thus,
further investigations such as in vivo and in vitro studies should be carried out to find the molecular
functions and interlaying mechanism of the identified therapeutic targets on numerous cancer cell
lines in considering the PCs of P. nepalensis.

Keywords: TP53; HSPCB; Nf-kB1; Potentilla nepalensis; network pharmacology; computational
studies; therapeutic targets

1. Introduction

Traditional medicine has significantly contributed to modern pharmaceuticals by pro-
viding valuable leads for the creation of effective drugs to eradicate diseases, indicating the
potential of natural products in the realm of drug development [1]. Furthermore, phyto-
constituents (PCs) derived from natural sources offer the greater advantage of accessibility
and fewer or no side effects when compared to synthetic drugs. The integration of natural
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medicinal resources into drug discovery holds promise in addressing the eradication of
antibiotic resistance [2].

Potentilla nepalensis, also known as the Nepal cinquefoil, belongs to the Rosaceae
family and is native to the Himalayan regions of Nepal and Tibet, finding its habitat in
alpine and subalpine environments. Despite being admired for its captivating flowers
and often cultivated as an ornamental plant, P. nepalensis is esteemed for its medicinal
value. The plant’s therapeutic potential is closely linked to its abundance of secondary
metabolite contents, including high amounts of phenols, flavonoids, and terpenoid-derived
compounds, which are crucial for its therapeutic nature [3].

P. nepalensis has been traditionally employed for its medicinal properties in various
contexts. It has found use in wound healing and addressing skin-related disease conditions,
in addition to aiding digestion and promoting gastrointestinal well-being. Its potential
as an anticarcinogenic agent has also been recognized [4], and its antioxidant activity
contributes to safeguarding cells from oxidative stress. Moreover, the plant possesses
anti-inflammatory and analgesic properties, rendering it effective in alleviating pain and
mitigating inflammation [3]. Within Tibetan traditional medicine, some species of the
Potentilla genus, including P. nepalensis, have been utilized to treat ailments such as asthma,
headache, dysentery, and the common cold. Root extracts of P. nepalensis have exhibited
promising anti-cancer [5] as well as anti-microbial activity [6].

In the present study, we examine the exploration of n-hexane and methanolic ex-
tracts obtained from both the root and stem parts of the P. nepalensis using the Gas
Chromatography–Mass Spectrophotometry (GC-MS) method determined in previous re-
search [7]. Our investigation aims to expose the extracts’ impact on human genes through
an integrated approach of network pharmacology, molecular docking, and dynamic simu-
lation methodologies.

This study encompasses several sequential steps. Firstly, we retrieved the pertinent
information regarding the phytoconstituents (PCs) from the PubChem database. These
PCs were scrutinized to identify respective inducing genes exhibiting significant pharma-
cological activity greater than 0.8. Subsequently, we generated protein–protein interaction
networks for each extract using String DB. Our focus was then directed towards identifying
the most important gene within these networks. Moreover, we performed molecular dock-
ing using Autodock Vina software. To facilitate this, we retrieved key proteins identified
within the networks from the Protein Data Bank (PDB). Then, molecular dynamics simula-
tions (MDSs) and Molecular Mechanics with Generalized Born and Surface Area solvation
(MMGBSA) free energy calculations of the complexes that exhibited better binding affinity
values were calculated. The detailed information on the methodology employed in this
research work is presented pictorially in Figure 1.
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Figure 1. Flow chart of the strategical methodologies used in this study.

2. Results
2.1. Retrieving the Compounds

The n-hexane and methanolic extracts obtained from the root and stem sections of P.
nepalensis, utilizing the Gas Chromatography–Mass Spectrophotometry (GC-MS) method,
were previously detailed in our study. The findings from this earlier research revealed a total
of forty compounds, with ten compounds identified in each extract from both plant parts. The
compounds in our study were identified with details such as their SMILES format, PubChem
IDs, and 2D structures retrieved from the PubChem database. We classified these compounds
into four categories based on the extraction method used for different parts of the plant. For
instance, compounds labeled as 1a–1j originate from the n-hexane root extract, 2a–2j from the
methanolic stem extract, 3a–3j from the n-hexane root extract, and 4a–4j from the methanolic
shoot extract of P. nepalensis, as presented in Tables S1–S4.
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2.2. Inducing Genes of the PCs

A comprehensive assessment of gene induction revealed a total of 764 genes that were
induced. The derived root part methanolic (MR) extract led to the induction of 149 genes.
Similarly, the shoot methanolic (MS) extract resulted in the induction of 217 genes. Further-
more, the n-hexane extract obtained from the root (NR) triggered the induction of 277 genes.
Lastly, the n-hexane extract from the stem (NS) extract induced 121 genes. These findings
were comprehensive understandings of gene induction associated with PCs of P. nepalensis.

2.3. Enrichment Analysis

For precision and relevance, we selected the top ten descriptive terms from the compre-
hensive gene ontology study results. This curation focused on terms with high accuracy, as
they efficiently predict gene attributes (refer to File S1). The descriptors were then outlined,
offering insights into the genes associated with attribute description among the maximally
enriched set.

The biological process (BP) indicates which gene product is involved in biological
work [8]. From the extracts, a maximum number of genes’ biological processes were
predominantly around two BPs: nucleic-acid-templated transcription positive and DNA-
templated transcription regulation in Table 1, Figures S1A–S4A. The MS extract exhibited a
pronounced involvement in these two BPs.

Molecular function (MF) refers to gene product activity [8]. A converged MF emerged
within the induced genes from the MR and NR extracts. Especially, protein homodimeriza-
tion and protein serine/threonine activity were common denominators, effectively linked
between these extracts. Expanding on this, MS and NS showed similar attributes in their
induced genes. In addition, MF was enriched with MR-NR- and MS-NS-extract-induced
genes. DNA binding in NR, DNA-binding transcription activator activity, phosphatase
activity, and oxidoreductase activity in NS-induced genes were additional MF results in
Table 1, Figures S1B–S4B. This interconnectedness suggests the potential areas of research
focus within the study.

Cellular components (CCs) represent the location of the gene in the cell [8]. The com-
monality shared between the MR- and NR-extract-induced genes is reflected in their location
within the intracellular membrane-bounded organelle and nucleus. Moreover, the MR extract
demonstrates an additional secretory granule lumen. Moving to the MS-extract-induced genes,
these are mostly found in the nucleus and azurophil granule lumen. As for NS extract, the
induced genes exhibit a more diverse localization in the intracellular organelle, endoplasmic
reticulum, and secretory granule lumens in Table 1, Figures S1C–S4C.

The genes targeted by the MR extract are involved in several significant pathways, such
as Vegfa-Vegfr 2 signaling, leptin signaling, micro-RNAs in cardiomyocyte hypertrophy,
and B-cell receptor signaling pathways. Nuclear receptors meta-pathway and Vitamin-
D receptor pathways were common in the MS and NR targeted genes and additionally
the Osteoblast differentiation pathway from the MS-extract-induced genes. Distinctly,
the NS-extract-induced genes contribute to the drug addiction pathways and melanoma
pyrimidine metabolism pathway in Table 1, Figures S1D–S4D.

Upon scrutinizing the diseases associated with the genes induced by all extracts, a notable
involvement in cancer-related diseases was found, especially in the context of neoplasm
metastasis. This underscores the significance of these genes in the context of cancer progression
and dissemination. This is effectively summarized in Table 1, Figures S1E–S4E.
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Table 1. Enrichment analysis of methanolic and n-hexane extracts from root and stem plant parts of
P. nepalensis.

Descriptors MR MS NR NS

BP
Nucleic-acid-templated
transcription positive
regulation

DNA-templated
transcription regulation,
nucleic-acid-templated
transcription positive
regulation

Nucleic-acid-templated
transcription positive
regulation

Nucleic-acid-templated
transcription positive
regulation

MF Protein homodimerization
activity

Protein serine/threonine
phosphatase activity

DNA binding, protein
homodimerization activity

DNA-binding
transcription activator
activity, protein
serine/threonine
phosphatase activity,
oxidoreductase activity

CC

Intracellular
membrane-bounded
organelle, nucleus,
secretory granule lumen

Nucleus, azurophil granule
lumen

Intracellular
membrane-bounded
organelle, nucleus

Intracellular organelle
lumen, endoplasmic
reticulum lumen,
secretory granule lumen

Pathways

Vegfa-Vegfr2 signaling
pathway, leptin signaling
pathway, micro-RNAs in
cardiomyocyte
hypertrophy, B-cell
receptor signaling pathway

Nuclear receptors
meta-pathway, Osteoblast
differentiation, Vitamin-D
receptor pathway

Nuclear receptors
meta-pathway, Vitamin-D
receptor pathway

Common pathways
underlying drug
addiction, melanoma,
pyrimidine metabolism

Diseases
Neoplasm metastasis, liver
carcinoma, mammary
neoplasms, melanoma

Neoplasm metastasis,
breast carcinoma, prostate
malignant neoplasm

Neoplasm metastasis,
liver carcinoma

Breast carcinoma, breast
neoplasm malignant,
neoplasm metastasis

Drugs

Aprindine, Domperidone
Trifluoperazine, Pitolisant,
Cyproheptadine, Pimozide,
Brompheniramine
Buprenorphine,
Lidoflazine, Chlorambucil

Mefenamic Acid,
Diclofenac, Flufenamic
Acid, Quercetin
Mezlocillin,
Hydrochlorothiazide
Hydroxycarbamide
Bendroflumethiazide
Benzthiazide,
Chlorambucil

Bezafibrate, Rosiglitazone
Stearic Acid, Dodecanoic
Acid, Gamolenic Acid,
Aprindine, Caffeine,
Eicosapentaenoic Acid,
Linolenic Acid, Mefenamic
Acid

Stearic Acid, Epalrestat
Dodecanoic Acid,
Gamolenic Acid,
Vemurafenib, Bezafibrate,
Gemfibrozil, Linolenic
Acid, Aprindine,
Eicosapentaenoic Acid

BP—biological process; MF—molecular function; CC—cellular components.

2.4. Protein–Protein Interactions

Protein-protein interaction networks were generated by interlinking the induced genes
using String DB, resulting in the network containing nodes (called proteins) and edges
(called interactions). The interactions have diverse sources from the experiment, text
mining, gene fusion, co-expression, neighborhood, and databases. To achieve better insight
into the constructed PPI networks, network topological parameters were employed, which
include degree centrality, average shortest path length, clustering coefficient, closeness
centrality, and betweenness centrality on each gene’s interaction proteins in the network in
Table 2, File S2.
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Table 2. Network topological parameters of the complete protein–protein interaction network.

Induced Genes Used Proteins
Network Topological Parameters

DC Avg Short. Path Leng. CC C. Cen BC

MR
HSPCB 15 3.02 0.18 0.33 0.18

NFKB1 15 2.85 0.25 0.34 0.33

MS TP53 25 1.87 0.15 0.53 0.56

NR TP53 20 2.32 0.16 0.42 0.58

NS TP53 25 1.75 0.17 0.57 0.59

DC—degree centrality; Avg Short Path Leng.—average shortest path length; CC—clustering coefficient; C.
cen—closeness centrality; BC—betweenness centrality.

In evaluating the four PPI network topological parameters descriptors, degree central-
ity (DC) represents the number of interactions within the network. The average shortest
path gauges the minimum number of edges required to connect between the nodes. The
clustering coefficient (CC) measures the interconnections required to form a triangular
sub-cluster. The shortest path numbers in a network can be measured between centrality
(BC) values, which act as a transitional in switching the information. Closeness centrality (C.
cen) signifies the closest node to the rest of the nodes in the network. Accounting for these
descriptors, five actively interacting genes emerge as significant. These include HSPCB and
NFKB1 from MR-extract-induced genes in Figure 2. TP53 is a central figure among MS-,
NR-, and NS-extract-induced genes, illustrated in Figures 3–5. These pivotal proteins that
played prominent roles in the network are indicated with centrally positioned rectangular
boxes, highlighted with a yellow background and blue fonts. Furthermore, Table 2 indicates
the network topological parameter values of these key proteins, further reaffirming their
status as potent therapeutic targets sourced from the P. nepalensis PCs. This evaluation
paves into the critical genes and their connectivity, enhancing our understanding of the
molecular level within the network.

Color was applied based on the number of interactions by each gene in the network.
Rectangular shape, yellow back colored with blue font—exhibiting 15 interactions; octago-
nal shape, light blue back colored with green font—exhibiting 12 interactions; diamond
shape, light green back colored with pink font—exhibiting 11 interactions; round rectangu-
lar shape, purple back colored with pink font—exhibiting 10 interactions; parallelogram
shape, orange back colored with blue font—exhibiting 9 interactions; hexagonal shape,
light green back colored with red font—exhibiting 8 interactions; ellipse circular shape,
light blue back colored with red font—exhibiting less than 8 interactions.

Color is applied based on the number of interactions by each gene in the network.
Rectangular shape, yellow back colored with blue font—exhibiting 25 interactions; octagonal
shape, light blue back colored with green font—exhibiting 18 to 14 interactions; diamond
shape, light green back colored with pink font—exhibiting 8 to 13 interactions; ellipse circular
shape, light brown back colored with green font—exhibiting less than 8 interactions.

Color is applied based on the number of interactions by each gene in the network.
Rectangular shape, yellow back colored with blue font—exhibiting 20 interactions; octago-
nal shape, brown back colored with green font—exhibiting 11 to 15 interactions; hexagonal
shape, light pink back colored with pink font—exhibiting 9 to 10 interactions; round rectan-
gular shape, orange back colored with purple font—exhibiting 5 to 8 interactions; ellipse
circular shape, light green back colored with red font—exhibiting less than 5 interactions.
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Color is applied based on the number of interactions by each gene in the network. Rect-
angular shape, yellow back colored with blue font—exhibiting 25 interactions; octagonal
shape, light blue back colored with pink font—exhibiting 10 to 16 interactions; hexagonal
shape, light green back colored with red font—exhibiting 7 to 9 interactions; rectangular
shape, light pink back colored with blue font—exhibiting less than 7 interactions.

2.5. Molecular Docking

To explore the interactions between the PCs and potential therapeutic target proteins,
molecular docking analyses were conducted on the methanolic and n-hexane extracts from
the root and stem parts of P. nepalensis. The objective was to determine the binding affinity of
the PCs concerning the proteins, namely p53 from the TP53 gene, heat shock protein from
the HSPCB gene, and nuclear factor kappa light chain from the NFKB1 gene (see Table 2). In
total, 40 PCs were subjected, resulting in docking scores that indicate the strength of binding
interactions in Table S5. Among the array of PCs, five of them—1b, 2a, 3a, 4a, and 4c—stood
out for resulting in higher binding affinity with both p53 and heat shock proteins.
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Figure 6 and Table 3 indicate the binding affinity and amino acid involved in interaction
types. The binding affinity of 1b with the p53 protein was −8.6 kcal/mol. This interaction
involved a single conventional hydrogen bond with the Aser1503 residue. Furthermore, two
alkyl bonds formed, connecting the alkyl ends of 1a with the alkyl groups of BMet1584 in
the p53 protein. Seventeen π-alkyl bonds emerged, linking the π-alkyl groups of 4ATrp1495,
ATyr1502, 2APhe1519, ATyr1523, 3BTrp1495, 3BTyr1502, 2BPhe1519, and BTyr1523 with the
π-orbitals of 1b. PC 2a demonstrated −8.0 kcal/mol of binding affinity with the p53 protein.
AMet1584 participated in an alkyl bond formation with alkyl ends. Additionally, a set of
twelve π-alkyl bonds connecting the π-alkyl groups of 2ATrp1495, 2ATyr1502, 2APhe1519,
2BTrp1495, BTyr1502, 2BPhe1519, and BTyr1523 with the π-orbitals of 2a.
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PCs 3a, 4a, and 4c exhibited impressive docking scores of −9.6, −8.7, and −8.2 kcal/mol
with HSP protein. 3a engaged in nine interactions with the HSP residues. AMet98 is involved
in three different bond types, including a sulfur bond, a π-Sigma, and an alkyl bond with 3a.
Three additional alkyl bonds were formed between the alkyl ends of HSP residues (2ALeu107,
AAla111) with 3a. The π-orbitals between APhe138 with 3a are involved to form a π-π Stacked
bond in enchaining their stability. Two π-alkyl bonds merged between the π-alkyl groups
of APhe138 and AVal150 and the π-orbitals of 3a. For 4a, three π-alkyl bonds and a π-π
stacked bond were formed with the APhe138 residue. Additionally, two π-alkyl and two
π-π shaped bonds were made by 4a with ATrp162. One π-alkyl and two alkyl bonds were
formed with AMet98, followed by an alkyl bond with AVal186. Another π-alkyl and one alkyl
bond connected 4a and Aleu107. Lastly, 4c shows two CHB interactions with the ATrp162
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residue. Six π-alkyl bonds emerged, connecting the π-alkyl groups of APhe22, APhe170,
2ALeu107, AMet98, and AVal150 with the π-orbitals of 4c. Furthermore, an alkyl between
the alkyl groups of 4c and AIle26 formed. Two π-π stacked (2APhe138) and three π-π T
shaped (ATyr139, 2ATrp162) bonds were formed by 4c. These results provide binding modes
and interactions of PCs 3a, 4a, and 4a with the HSP protein, contributing potential roles in
therapeutic applications.
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2.6. Molecular Dynamics Simulations and MMGBSA

To study the dynamic nature and protein–ligand stability of the complex in the water
molecular, dynamics simulations were employed. They provide insights into interaction
informatic at an atomic level. In the current study, from the results of molecular docking,
best pose docking score complexes were taken for MD simulations and MMGBSA calcula-
tions. A total of five complexes were employed for MDS at 300 ns; they are (i) p53 with 1b,
(ii) p53 with 2a, (iii) HSPCS with 3a, (iv) HSPCB with 4a, and (v) HSPCB with 4c. These
complexes were pre-processed into three stages along with energy minimization, NPT, and
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NVT equilibrium. Root mean square deviations (RMSDs), root mean square fluctuations
(RSMFs), and MMGBSA values were analyzed by the trajectories.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 12 of 21 
 

 

PCs 3a, 4a, and 4c exhibited impressive docking scores of −9.6, −8.7, and −8.2 kcal/mol 

with HSP protein. 3a engaged in nine interactions with the HSP residues. AMet98 is in-

volved in three different bond types, including a sulfur bond, a π-Sigma, and an alkyl 

bond with 3a. Three additional alkyl bonds were formed between the alkyl ends of HSP 

residues (2ALeu107, AAla111) with 3a. The π-orbitals between APhe138 with 3a are in-

volved to form a π-π Stacked bond in enchaining their stability. Two π-alkyl bonds 

merged between the π-alkyl groups of APhe138 and AVal150 and the π-orbitals of 3a. For 

4a, three π-alkyl bonds and a π-π stacked bond were formed with the APhe138 residue. 

Additionally, two π-alkyl and two π-π shaped bonds were made by 4a with ATrp162. 

One π-alkyl and two alkyl bonds were formed with AMet98, followed by an alkyl bond 

with AVal186. Another π-alkyl and one alkyl bond connected 4a and Aleu107. Lastly, 4c 

shows two CHB interactions with the ATrp162 residue. Six π-alkyl bonds emerged, con-

necting the π-alkyl groups of APhe22, APhe170, 2ALeu107, AMet98, and AVal150 with 

the π-orbitals of 4c. Furthermore, an alkyl between the alkyl groups of 4c and AIle26 

formed. Two π-π stacked (2APhe138) and three π-π T shaped (ATyr139, 2ATrp162) bonds 

were formed by 4c. These results provide binding modes and interactions of PCs 3a, 4a, 

and 4a with the HSP protein, contributing potential roles in therapeutic applications. 

 

Figure 6. Molecular interactions of the complexes. (i) p53 with PCs 1a and 2a and (ii) HSP with PCs 

3a, 4a, and 4c. 
Figure 6. Molecular interactions of the complexes. (i) p53 with PCs 1a and 2a and (ii) HSP with PCs
3a, 4a, and 4c.

The computed trajectories RMSDs of the complexes are represented in Figure 7. For
p53 protein bound with 1b (p53+2b) and 2a (p53+2a) in Figure 7A, initially to the complex
p53+2a, deviations were higher compared to the p53+1b. The p53+1b complex maintained
constant deviation not exceeding 5Ả. Both complexes reached equilibrium at 6000 frames
(~130 ns) at 2–3 Ả. Both ligands exhibit stable complexes and did not leave the binding site
during the whole simulation.
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Table 3. Binding affinity (B.A.) and interactions of the heat shock protein (HSP), nuclear factor
NF-kappa-BP (NFKB1), and TP53-binding protein (p53) with the extracted PCs of P. nepalensis.

Complex
B.A. (kcal

/mol)

Hydrogen
Bonds Hydrophobic Bonds

Other
Bonds

Proteins PCs CHB π-Alkyl Alkyl π-π
Stacked

π-π T
Shaped

π-
Sigma

p53 1b −8.6 ASer1503

4ATrp1495,
ATyr1502,

2APhe1519,
ATyr1523,
3BTrp1495,
3BTyr1502,
2BPhe1519,
BTyr1523

2BMet1584 - - - -

2a −8.0 -

2ATrp1495,
2ATyr1502,
2APhe1519,
2BTrp1495,
BTyr1502,

2BPhe1519,
BTyr1523

AMet1584 - - - -

HSP
3a −9.6 - APhe138, Aval150

AMet98,
2ALeu107,
AAla111

APhe138 - AMet98 AMet98

4a −8.7 -

3APhe138,
2ATrp162, AMet98,

ALeu107

2AVal186,
2AMet98,
AVal150,
ALeu107

APhe138 - 2Trp162 -

4c −8.2 2ATrp162
APhe22, APhe170,

2ALeu107, AMet98,
AVal150

AIle26 2APhe138
ATyr139,
2ATrp162 - -

PCs—phytoconstituents; CHB—conventional hydrogen bond; other bond—sulfur bond.
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For the complexes, HSPCB protein with 3a (HSPCB+3a), with 4a (HSPCB+4a), and
with 4c (HSPCB+4c) are presented in Figure 7B. Their MDS analysis represents the con-
vergence achieved at the end of 100 ns. At the beginning of the simulation, the deviations
were increasing in three complexes but not exceeding greater than 3.5 Ả in HSPCB+4c.
All the three complexes’ protein–ligand (s) simulations were stable between 2–3 Ả. This
indicates the stability of the complexes and without leaving of ligands are exhibited during
simulation from their binding regions.

RMSF by B-factor was employed to determine residue displacement in Figure 8.
The RMSF of complexes, p53+1b, and p53+2a exhibited similar RMSF without major
fluctuations in Figure 8A, suggesting that the binding site was not affected differently by
any of both ligands. The three complexes are HSPCB+3a, HSPCB+4a, and HSPCB+4c.
Their RMSF in Figure 8B shows that in the HSPCB+4c, residue 97 suffered considerable
fluctuation; nonetheless, it was not involved in the binding site cavity.
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Figure 8. RMSF values by B-factor of every residue in p53 (A) with 1b (red) and 2a (black) complexes;
HSPCB (B) with 3a (pink), 4a (brown), and 4c (green) complexes.

Free energy calculations like MMGBSA runs performed by the cpptraj module are
employed in analyzing the trajectories of the five complexes. For p53+1b and p53+2a,
frame 6000 was declared as starting with five frame intervals. For HSPBC+3a, HSPBC+4a,
and HSPBC+4c, frame 4000 was also started with five frame intervals. Frames taken
for analysis relied on autocorrelation for every complex. Energy fluctuation calculated
by MMGBSA demonstrated the difference between p53+1b and p53+2a complexes since
p53+1b revealed better binding energies. Nonetheless, at the end of the simulation, these
energies began to fall somehow equal to the p53+2a ligand in Figure 9A. Both ligands
are considered sufficiently thermodynamically favorable to the target receptor; the t-tests
for both complexes demonstrate a significant difference between energies in Table S6.
MMGBSA calculations demonstrated the ability to target HSPCB protein while maintaining
thermodynamically favorable energies during the whole simulation. One-way ANOVA
analysis demonstrates that ligand 3a is significantly different from 4a and 4c in Figure 9B;
nevertheless, 4a and 4c are not different from each other in Table S7. The summary of the
MMGBSA free energies results of the complexes was presented as box-and-whisker plots
in Figure 10.
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3. Discussion

Considering the root and stem PCs by the n-hexane (NR and NS) and methanolic
(MR and MS) extracts through Gas Chromatography-Mass Spectrometry (GC-MS) on
P. nepalensis, the present study has proceeded to identify the inducing genes/protein as
therapeutic targets by enrichment analysis, protein–protein interaction networks, and
molecular docking followed by MDS and MMGBSA studies.

Of the total 764 inducing genes in Text S1–S4, prediction from the DIGEP-Pred was
carried out at Pa > 0.8. Enrichment analysis was performed to find the functional anno-
tations of the genes identified by descriptors of gene ontology, pathways, diseases, and
drugs, subjecting each extract to StringDB to build PPI networks.

Through the protein–protein interaction (PPI) network, the gene-encoded proteins
and their functions and interactions can be defined. In the network of PPI, proteins are
represented by nodes and connecting lines referred to as edges. The current study intended
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to comprehend the interplay among the genes. The network topological analysis of the
more interacting genes in the network is shown in Table 2. DC of HSPCB and NFKB1 is 15
of the MR-extract-induced genes, less than the TP53 from the rest of the extract-induced
genes. Three proteins have average shortest path values in the range of 1.75 to 3.02, which
means the connected nodes are interconnected nearer compared to the other genes. The CC
of TP53 is relatively less than HSPCB and NFKB1. The C. cen values of TP53 (0.53, 0.42 and
0.57) are a little far with GSPCB and NFKB1 (0.33 and 0.34). TP53 has a greater BC value
of 0.56, 0.58, and 0.59, compared to HSPCB and NFKB1 of 0.18 and 0.33. Targeting these
three genes will have a greater significance in the network. Hence, three genes have been
identified as potential therapeutic targets for the PCs of P. nepalensis.

HSPCB belongs to the heat shock protein 90 family, considered a pseudogene like a
heat shock 90 kD protein 1 beta, which has a prominent role in signaling, gastric apoptosis,
protein folding, and inflammation. Previous studies have reported its involvement in
various cancer cell lines as potential targets such as breast cancer [9] and ovarian cancer
tissues [10].

Nuclear factor kappa B subunit 1 (Nf-kB1) known as the transcription regulator
activates in the nucleus by translocation into it by stimuli substances (cytokines and oxidant
free radicals) followed by the transcription [11]. Problems in Nf-kB1 activation have been
linked to numerous inflammatory diseases, while continuous inhibition affects immune cell
development or delayed cell growth [12]. It is widely used as a therapeutic target in diabetic
cardiomyopathy [13]. Thus, inhibition of the Nf-kB1 helps to reduce the anti-inflammatory
activity of targeting Nf-kB1 in the associated pathways [14,15]. Designing the antagonist to
the Nf-kB1 changes the central gene expression in the leukemic process [16].

The TP53 gene on transcription gives p53, which is a tumor suppressor protein that
is involved in the regulation of cell division in an uncontrolled way [17]. p53 protein
is widely known for its action in cancer regulation and is well renowned as a target for
various cancer types because of its involvement in earlier causes of cancer [18]. At present,
few drugs like piperdinone analogs, spirooxindole, nutlin, and isoquilinone are actively
using inhibitors against the p53-Mdm2 complex [19]. Wide research studies are being
conducted in designing the small molecules (ligands) targeting mutated p53 protein to
restore tumor-suppressing activity [20].

Considering the above-mentioned research study statement and our study, purpose
correlated in PCs of P. nepalensis found therapeutic targets can effectively exhibit their
activity upon binding. Thus, finding the interaction between the PCs and identified
therapeutic target proteins subjected to the docking studies resulted in PCs 1b and 2a,
exhibiting better binding scores with p53 protein and PCs 3a, 4a, and 4c with HSPCB in
Table 3. Most of the interactions made by the PCs with the p53 and HSPCB are hydrophobic
interactions. Thus, designing these PCs with suitable chemical functional groups that
could make hydrogen bonds might make the binding stronger. MDSs of these complexes,
inferring RMSD in Figure 7 and RSMF in Figure 8, have better stability between them
without higher deviations that are between 2 and 3 Ả. MMGBSA calculations in Figure 9
demonstrated the ability to target HSPCB protein while maintaining thermodynamically
favorable energies during the whole simulation.

4. Materials and Methods
4.1. Retrieving the Compounds

PubChem IDs, 2D structures, and Simplified Molecular Input Line Entry System (SMILES)
formats of the PCs found in P. nepalensis were retrieved from the PubChem database
https://pubchem.ncbi.nlm.nih.gov/ (5 September 2023) [21]. These compounds were ear-
lier identified from the root and stem parts using methanolic and n-hexane extracts GC-MS
method [7]. PubChem is an open-source chemical compound library with a description.

https://pubchem.ncbi.nlm.nih.gov/
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4.2. Inducing Genes of the PCs

The SMILES format of the PCs was utilized to identify induced genes, meeting the
criteria of having pharmacological activity greater than 0.8 (Pa > 0.8). This analysis was
performed in the DIGEP-Pred web server http://www.way2drug.com/GE (10 September
2023) [22], which is built based on the prediction of activity spectra for substances (PASS),
calculated by using leave-one-out cross-validation and depended on both mRNA data and
protein data.

4.3. Enrichment Analysis

Enrichment analysis for the human genes induced by the PCs was conducted using
Enrichr https://maayanlab.cloud/Enrichr/ (20 September 2023) by applying a false dis-
covery rate (FDR) and a significant (p) value, both set to be less than 0.05 (FDR < 0.05;
p-value < 0.05) [23]. Duplicate genes were removed, resulting in a refined gene set that
was used as input to ascertain the respective gene’s biological process, molecular function,
cellular components, pathways, diseases, and available drugs in the market.

4.4. Protein–Protein Interactions

The interactions among the predicted induced gene proteins were exploited using the
String DB https://string-db.org/ (28 September 2023) platform. A high confidence threshold
of 0.7 was employed to construct the networks. These networks are formed from various
sources, including text mining, experimental data, databases, co-expression patterns, neigh-
borhood analysis, gene fusion events, and co-occurrence patterns [24]. Subsequently, the
resulting network was analyzed by sending it into Cytoscape V3.10.0. [25]. With the use of the
Analyzer plugin, a protein–protein interaction network was established based on the gene set.
These networks underwent further analysis to identify the key gene’s network topological
parameters, including degree centrality, average shortest path length, clustering coefficient,
closeness centrality, and betweenness centrality. These parameters offer valuable insights into
the interactions and relationships among the genes within the network.

4.5. Molecular Docking

We employed our previously performed molecular docking methods in defining the
binding affinities between the protein–ligand complexes [26]. The tertiary structures of the
TP53-binding protein (PDB ID: 6MXY) https://www.rcsb.org/structure/6MXY (5 October
2023)” with K6M ligand (N-[3-(tert-butylamino)propyl]-3-(trifluoromethyl)benzamide),
nuclear factor NF-kappa-BP (PDB ID: 3GUT) [27], and heat shock protein (PDB ID: 1UYM)
with PU3 ligand (9-butyl-8-(3,4,5-trimethoxybenzyl)-9h-purin-6-amine) [28] were retrieved
from the RCSB PDB https://www.rcsb.org/ (5 October 2023). All these structures were
determined experimentally through the X-ray diffraction method with resolutions of 1.62,
3.59, and 2.45.

The PCs’ SMILES format obtained from PubChem and protein structures sourced
from the PDB were not suitable for docking. To address this, the ligands were prepared
by adding hydrogens at pH 7.4, generating 3D geometries, and the application of the
MMFF94 forcefield using the Open Babel software [29], a tool that converts the file to
various chemical formats. For the proteins, the extra bound ligands and water molecules
were removed in the Drug Discovery studio. Subsequently, the protein structures were
repaired by adding missing atoms, polar hydrogens, and Gasteiger charges using the
Autodock software [30].

Grid parameters play a crucial role in defining the precise interacting positions and
binding affinity of the ligands. For instance, the bound chemical compounds, such as K6M
ligand of TP53 protein (X = −10.80, Y = 26.77, and Z = −3.52), heat shock protein with
PU3 ligand (X = 3.60, Y = 11.13, and Z = 24.75), and the NFKB whole structure (X = 28.80,
Y = −23.60, and Z = 58.23), were considered as grid centers with grid sizes considered as
grid parameters in the present study to dock through the AutoDock Vina software [31].

http://www.way2drug.com/GE
https://maayanlab.cloud/Enrichr/
https://string-db.org/
https://www.rcsb.org/structure/6MXY
https://www.rcsb.org/
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This strategic utilization facilitated the accurate protein–ligand interactions and binding
affinities in the context of this study.

4.6. Molecular Dynamics Simulations and MMGBSA

Computational molecular simulations for MD were performed on an Ubuntu 22.04
LTS workstation equipped with an Intel Core i7-13700k processor and an NVIDIA RTX
4080 graphics card. Amber 22 and AmberTools23 [32] packages were used to carry out
all simulations and trajectory analyses. The ligands bound to p53 and HSPCB from dock-
ing complexes were separated, and any missing hydrogens were added using UCSF
ChimeraX [33]. The ligand parameters were assigned using General Amber Force Field
(GAFF) [32], and these were calculated through Antechamber under the AM1-BCC charge
method. The amber force field FF19SB [34] was employed, along with the TIP3P water
model. Neutralization was achieved by adding sodium and chlorine ions, and these param-
eters were assigned to the respective files for ligands, proteins, and solvents. To balance the
system, a total of 30,000 steps of minimization were performed, followed by an increase
in temperature to 300 K and 1 atm pressure equilibrium for 200 ps of simulation. A pro-
duction simulation of 300 ns was then conducted using pmemd software, accelerated by
CUDA. Molecular Mechanics Generalized Born Surface Area (MMGBSA) [35] analysis of
trajectories was employed using module MMPBSA.py for binding energies calculation.
Data visualization and figures were carried out using xmgrace 5.1.25 [36] and R v 4.2.3 [37].

5. Conclusions

P. nepalensis has gained widespread recognition for its therapeutic potential, attributed
to the presence of specific compounds (PCs) identified in prior studies. In this investigation,
we unveiled a total of 764 genes influenced by the plant. Through a meticulous analysis
of protein–protein interaction (PPI) networks, three standout therapeutic targets emerged:
TP53, derived from genes affected by multiple stimuli (MS, NR, and NS), and HSPCB and
Nf-kB1, originating from genes influenced by MR. Noteworthy interactions were observed
between two PCs, namely 1b (MR) and 2a (MS), with the p53 protein, displaying exceptional
binding scores of −8.6 and −8.0, respectively. Additionally, three other PCs, 3a (NR), 4a, and
4c (NS), exhibited significant binding scores with the HSP protein, measuring at −9.6, −8.7,
and −8.2. Molecular dynamics simulation (MDS) and Molecular Mechanics Generalized
Born Surface Area (MMGBSA) analyses affirmed the stability of these complexes without
substantial deviations and showcased favorable free energy values. Importantly, the
identified therapeutic targets, TP53, HSPCB, and Nf-kB1, play pivotal roles across diverse
cancer types. This thorough analysis underscores the potential of P. nepalensis compounds
in modulating specific genes and proteins associated with cancer, promising avenues for
further exploration in therapeutic applications.
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2D Two-dimensional
3D Three-dimensional
BPs Biological processes
CCs Cellular components
DIGEP Drug-induced genes expression profile
FDR False discovery rate
HSP Heat shock protein
MDSs Molecular dynamic simulations
MFs Molecular functions
MMPBSA Molecular mechanics Poisson–Boltzmann surface area
MR Methanolic root extract
MS Methanolic stem extract
Nf-kB Nuclear factor kappa B
NR n-hexane root extract
NS n-hexane stem extract
Pa Pharmacological activity
PASS Prediction of activity spectra for substances
PCs Phytoconstituents
PDB Protein data bank
PPI Protein–protein interaction
SMILES Simplified Molecular Input Line Entry System
TP53 TP53-binding protein
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