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Abstract: Oral cancer pain remains a significant public health concern. Despite the development of
improved treatments, pain continues to be a debilitating clinical feature of the disease, leading to
reduced oral mobility and diminished quality of life. Opioids are the gold standard treatment for
moderate-to-severe oral cancer pain; however, chronic opioid administration leads to hyperalgesia,
tolerance, and dependence. The aim of this review is to present accumulating evidence that epidermal
growth factor receptor (EGFR) signaling, often dysregulated in cancer, is also an emerging signaling
pathway critically involved in pain and opioid tolerance. We presented preclinical and clinical data
to demonstrate how repurposing EGFR inhibitors typically used for cancer treatment could be an
effective pharmacological strategy to treat oral cancer pain and to prevent or delay the development
of opioid tolerance. We also propose that EGFR interaction with the µ-opioid receptor and glutamate
N-methyl-D-aspartate receptor could be two novel downstream mechanisms contributing to pain
and morphine tolerance. Most data presented here support that repurposing EGFR inhibitors as
non-opioid analgesics in oral cancer pain is promising and warrants further research.

Keywords: oral cancer pain; EGFR; morphine tolerance; µ-opioid receptor; NMDA receptor

1. Introduction

Oral cancer patients tend to experience significantly more pain than other cancer
sufferers [1–4]. Among these patients, pain is often rated as the worst symptom, leading to
restricted oral function such as eating, drinking, and speaking, and overall poor quality
of life [1,5]. Neuropathic pain, a pathological state caused by abnormalities of the somatic
nervous system [6], is regarded as the least tolerable symptom of advanced oral cancer [7].
Neuropathic pain is characterized by spontaneous pain, hyperalgesia, and mechanical
allodynia and is often associated with anxiety, depression, and reduced quality of life [6,8,9].
Pain can result from the tumor itself (through mass effect, ulceration, inflammation, or
invasion) [3,10–15] or from the therapeutic approaches used to combat the disease, such
as surgery, radiotherapy, chemotherapy, and other targeted treatments [16]. Oral cancer
patients need routine assessments of their pain and functional status to be provided with
the most appropriate pain management. To date, opioid analgesics remain the first choice
for the management of oral cancer pain [17]. However, these agents are not without their
share of pitfalls. Opioid analgesics do not always provide complete pain relief and do
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little to restore function, such as swallowing and oral mobility. Moreover, regular use
of opioids is associated with the development of analgesic tolerance and dependence,
which fuel the opioid crisis we currently find ourselves in [18]. Therefore, safer and more
effective approaches for managing oral cancer pain are urgently needed. Although oral
cancer pain is a complex pathological process and a formidable clinical problem, many new
reports [4,7,14,19–26] indicate promising ways to improve pain management. One strategy
is inhibiting the epidermal growth factor receptor (EGFR) activity. In this review, we explore
current clinical and preclinical evidence that supports the potential use of EGFR inhibitors
to address pain and morphine tolerance in oral cancer, in addition to their established role
as effective anticancer agents. The data summarized here were retrieved from PubMed
with keywords search for EGFR + pain, EGFR + morphine tolerance, EGFR + oral cancer,
MOR+ morphine tolerance, NMDAR + pain, NMDAR + MOR, and NMDAR + EGFR.

2. EGFR and Its Known Signaling Pathways

EGFR (ErbB1, HER1) is a 170 KD transmembrane protein that belongs to the receptor
tyrosine kinase (RTK) family and the ErbB/HER family [27,28]. EGFR plays essential roles
in regulating prenatal development, adult tissue homeostasis, cell growth, proliferation,
migration, metabolism, differentiation, and survival [8,29]. In physiological conditions,
EGFR is expressed in human skin, placenta, endocrine tissues, immune cells, and the central
nervous system [30,31]. EGFR is most well known for its involvement in tumorigenesis
and cancer progression [8,32,33]. Notably, EGFR is highly expressed in the rat, mouse, and
human dorsal root ganglia (DRG) [34,35]. EGFR is also expressed in the spinal cord of
humans and mice [36], as well as rats [37].

Structurally, EGFR is a single-chain glycoprotein comprising an ectodomain, a trans-
membrane domain, and a cytoplasmic domain that is composed of two subunits: the
tyrosine kinase domain and the tyrosine C-terminal [29]. The ectodomain binds solu-
ble ligands leading to conformational alterations that activate the receptor by homo- or
heterodimerization with other HER receptors or other RTKs, such as hepatocyte growth
factor receptor (HGFR or MET) and the insulin-like growth factor 1 (IGF-1). This, in turn,
activates the intracellular kinase domain of EGFR, which results in autophosphorylation
of the tyrosine residues at the C-terminal [29]. EGFR has seven reported ligands, each
having a different affinity for the receptor: epidermal growth factor (EGF), betacellulin
(BTC), heparin-binding EGF-like growth factor (HB-EGF), and transforming growth factor
alpha (TGFα) as ligands with high binding affinity, and amphiregulin (AREG), epiregulin
(EREG), and epithelial mitogen (EPGN) having low binding affinity [38].

In addition, EGFR can be indirectly stimulated by the activation of G protein-coupled
receptors (GPCRs). It has been reported that ligands of GPCRs, such as prostaglandin
(PGE2) and gastrin-releasing peptide (GRP), which are often overexpressed in oral cancer,
can activate GPCR and Src-mediated matrix metalloproteinase (MMP), leading to the
cleavage and release of EGFR ligands [39]. The subsequent activation of EGFR can promote
the expression of COX2 and PGE2, giving rise to a self-perpetuating positive feedback
loop [39].

The interaction between EGFR and its ligands can activate a number of different
signaling pathways, such as MAPK, PLCγ/PKC, PI3K/AKT/mTOR, and the JAK/STAT
pathway [8,39] (Figure 1). While the development and progression of oral squamous
cell carcinoma (OSCC) are known to be driven via EGFR-HB-EGF and EGFR-EREG in-
teractions [40–42] in OSCC cells, pain is associated with EREG- or HB-EGF-mediated
activation of EGFR [19,43,44]. Furthermore, morphine tolerance and dependence may
cause downregulation of µ-opioid receptors via EGFR-EGF in rats and HEK293 cells [25,45]
and EGFR-EREG in mice [43].
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Figure 1. EGFR signaling pathways and downstream effects. When EGFR interacts with high- or 
low-affinity ligands, resultant conformational changes lead to homo- or heterodimerization and 
subsequent activation by phosphorylation. This stimulates one or more signaling pathways, which 
lead to carcinogenesis and pain and may induce opioid tolerance. Furthermore, EGFR leads to the 
activation of receptors (TRPV1: transient receptor potential cation channel subfamily V member 1) 
and kinases (GRK: G protein-coupled receptor kinase 2) that are involved in pain and opioid recep-
tor regulation. ADAM17: ADAM metallopeptidase domain 17; EGF: epidermal growth factor, BTC: 
betacellulin, HB-EGF: heparin-binding EGF-like growth factor, TGFα: transforming growth factor 
alpha, AREG: amphiregulin, EREG: epiregulin, EPGN: epithelial mitogen, EGFR: epidermal growth 
factor receptor, MEK: mitogen-activated protein kinase, ERK: extracellular signal-regulated kinase, 
PLCγ: phospholipase C gamma, JAK2: Janus kinase 2, Src: Src-family kinase, STAT3: signal trans-
ducer and activator of transcription 3, PI3K: phosphoinositide 3-kinase, mTORC: mammalian target 
of rapamycin complex, MMP9: matrix metalloproteinase-9. P: phosphorylation. This figure was gen-
erated using Biorender.com. 

3. EGFR in Oral Cancer Treatment in Clinical Studies  
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer 
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In 1991, Santini et al. described EGFR as a biomarker for HNSCC [48] after it was 
found to be overexpressed in human tumor tissues [49–52]. In response to this finding, 
EGFR-targeted therapy arose as an alternative therapeutic option for HNSCC. To date, 
there are two fundamental EGFR-targeted approaches for cancer treatment. One approach 
involves the use of monoclonal antibodies (mAbs) that bind to the extracellular domain 
of EGFR, preventing receptor dimerization and subsequent activation, thereby leading to 
EGFR downregulation. Cetuximab is the only mAb approved by the Food and Drug 

Figure 1. EGFR signaling pathways and downstream effects. When EGFR interacts with high- or
low-affinity ligands, resultant conformational changes lead to homo- or heterodimerization and
subsequent activation by phosphorylation. This stimulates one or more signaling pathways, which
lead to carcinogenesis and pain and may induce opioid tolerance. Furthermore, EGFR leads to the
activation of receptors (TRPV1: transient receptor potential cation channel subfamily V member
1) and kinases (GRK: G protein-coupled receptor kinase 2) that are involved in pain and opioid
receptor regulation. ADAM17: ADAM metallopeptidase domain 17; EGF: epidermal growth factor,
BTC: betacellulin, HB-EGF: heparin-binding EGF-like growth factor, TGFα: transforming growth
factor alpha, AREG: amphiregulin, EREG: epiregulin, EPGN: epithelial mitogen, EGFR: epidermal
growth factor receptor, MEK: mitogen-activated protein kinase, ERK: extracellular signal-regulated
kinase, PLCγ: phospholipase C gamma, JAK2: Janus kinase 2, Src: Src-family kinase, STAT3: signal
transducer and activator of transcription 3, PI3K: phosphoinositide 3-kinase, mTORC: mammalian
target of rapamycin complex, MMP9: matrix metalloproteinase-9. P: phosphorylation. This figure
was generated using Biorender.com.

3. EGFR in Oral Cancer Treatment in Clinical Studies

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer
ranked by incidence and mortality globally, with most lesions in the oral cavityOSCC
comprises more than 90% of all oral malignancies [46]. Even with rigrous treatment,
recurrence, and metastasis are common, accounting for a poor survival rate of 20–40% [47].
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In 1991, Santini et al. described EGFR as a biomarker for HNSCC [48] after it was
found to be overexpressed in human tumor tissues [49–52]. In response to this finding,
EGFR-targeted therapy arose as an alternative therapeutic option for HNSCC. To date,
there are two fundamental EGFR-targeted approaches for cancer treatment. One approach
involves the use of monoclonal antibodies (mAbs) that bind to the extracellular domain
of EGFR, preventing receptor dimerization and subsequent activation, thereby leading
to EGFR downregulation. Cetuximab is the only mAb approved by the Food and Drug
Administration (FDA) and European Medicines Agency (EMA) for the treatment of locally
advanced HNSCC in combination with radiotherapy and as monotherapy for metastatic
cases [53]. Despite panitumumab having failed to show efficacy in HNSCC (NCT00460265,
NCT00820248), other mAbs, such as zalutumumab and nimotuzumab, currently in phase
III clinical trials, have demonstrated promising results (NCT00382031, NCT00957086).
Skin rashes, a main side effect of these treatments, are considered an indicator of drug
efficacy [53–55].

The second approach involves the use of small molecules as irreversible tyrosine kinase
inhibitors (TKIs). TKIs bind to the EGFR-intracellular tyrosine kinase domain and inhibit
EGFR phosphorylation and subsequent downstream signaling. At present, there are no
TKIs that are FDA-approved for HNSCC treatment. Gefitinib, a TKI currently used for lung
cancer, failed to improve the overall survival and the progression-free survival in HNSCC
as either monotherapy or in combination with methotrexate (NCT00206219) or docetaxel
(NCT00088907). On the other hand, erlotinib, approved for use in pancreatic cancer, has
shown promising results in HNSCC clinical trials. Erlotinib used alone, in combination
with cisplatin, or as an adjuvant improved overall survival, decreased HNSCC proliferation
(NCT01515137), and prevented recurrence [56]. The non-selective EGFR/HER2 inhibitor,
lapatinib, approved for use in breast cancer, did not provide a survival benefit in HNSCC
(NCT00098631, NCT01044433, and NCT00424255), either alone or in combination with
chemoradiotherapy. Vandetanib, an EGFR/VGFR2 inhibitor, is currently being studied in
HNSCC preclinical models and has shown promising results [53].

The current challenges of the HNSCC treatment with EGFR TKIs or mAbs lie in
identifying possible EGFR mutations and counteracting the possible resistance mechanisms
that these mutations produce. Although resistance to cetuximab has not been a concern
in HNSCC, several resistance mechanisms have been reported in other cancer types, such
as colorectal cancer and non-small cell lung cancer. Overexpression of EGFR ligands,
nuclear translocation of EGFR, KRAS mutation, and PTEN loss are examples of resistance
mechanisms to anti-EGFR mAbs. This resistance leads to constant activation of EGFR and
PI3K/AKT signaling. Some of these resistance mechanisms also apply to TKIs, along with
evidence of EGFR mutations, IGF-1R activation, and histologic transformation [39].

Recent evidence suggests that the use of EGFR inhibitors in a multitargeted approach
can be more beneficial for the treatment of HNSCC. Several studies have demonstrated
that the combination of more than one HER inhibitors (known as horizontal targeting) or
the combination of HER inhibitors with other TKIs (known as vertical targeting) improves
treatment efficacy and prevents resistance [39,57]. The issue of resistance to EGFR inhibitors
could also be addressed by targeting cancer metabolism, as evidenced by recent studies
reporting a link between lipid metabolism and activation of downstream EGFR pathways,
such as AKT [39,58,59]. Li et al. reported a link between cancer metabolism and cetuximab
resistance in HNSCC in 2015 [60].

4. EGFR in Pain and Morphine Tolerance
4.1. Clinical Studies and Genetic Associations

The earliest evidence that TKIs might alleviate chronic pain came from clinical obser-
vations in non-small cell lung cancer (NSCLC) patients receiving erlotinib treatment. These
patients not only lived longer but also had improved tumor-related pain, physical function,
and overall quality of life [8,61,62]. Afatinib, another TKI, was also reported to decrease
pain in advanced lung cancer patients [63]. Moreover, a case report showed that afatinib
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was effective in relieving pain in a patient with severe neuropathic pain [64]. In addition,
a phase III trial in patients with advanced SCC of the lung after having received first-
line platinum-based chemotherapy demonstrated that afatinib improved progression-free
survival, overall survival, and decreased pain [65].

Regarding mAbs, rectal cancer patients reported pain relief after treatment with
cetuximab despite tumor progression [66]. Pain relief was also reported among neuropathic
pain patients after treatment with cetuximab or panitumumab [67,68]. This was echoed in
another study by Kersten and colleagues, who showed pain relief in 20 neuropathic pain
patients of both sexes undergoing treatment with cetuximab or panitumumab, reporting
skin reactions as the most common side effect [67]. The same researchers also reported a
similar pain reduction response for treatment with TKIs erlotinib and gefitinib [9,69].

Genetic links that involve EGFR and pain were first reported in temporomandibular
disorders, a common condition of orofacial pain by Dr. Luda Diatchenko’s group. In the
Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) project, it was
shown that the single nucleotide polymorphisms (SNPs) of EGFR and one of its cognate
ligands (EREG) are associated with the development of chronic pain in temporomandibular
disorders [43], especially in females of mixed European descendants. In addition, EREG
SNPs, which lead to decreased circulating EREG mRNA, were negatively correlated with
TMD development. Similar results were reported by Verma et al., who performed a
systematically screen of SNPs in all gene loci belonging to EGFR and its ligands in the
OPPERA cohort and found that EREG SNPs were associated with chronic pain intensity [70].
However, after characterization of the same EREG SNPs and acute and chronic pain states
in OPPERA, they paradoxically found that the same EREG SNPs variant that was protective
for chronic pain increased the risk for acute pain intensity. Using an independent cohort of
TMD patients from the U.K. Biobank (UKB), the authors further validated the dichotomous
role of EREG in acute and chronic pain states [70].

Genetic links that involved EGFR and pain were also found in other painful disease
conditions. Recently, it was demonstrated that there was a positive association between
tumors with EGFR mutations and higher rates of pain in response to palliative radiotherapy
in an analysis of NSCLC patient-reported outcomes [71], further supporting the involve-
ment of EGFR in both cancer progression and pain signaling. In an interactome study
aimed to identify ligand-receptor pathways relevant to pain in a cell type-specific manner,
Dr. Price’s group created interactome maps between human DRG sensory neurons and
rheumatoid arthritis-associated synovial macrophages and pancreatic tumor tissue using
published RNA-seq datasets. They found the abundance of EGFR ligands in the periphery
and its receptor expressed on DRGs are important for persistent pain associated with
these two painful disease states [44]. In a recent genome-wide association study (GWAS)
performed on 23,000 participants with musculoskeletal pain from the UKB, the authors
identified a hit in SNP (rs549224715) on chromosome 4 to be significantly associated with
analgesic ladder switch from non-steroidal anti-inflammatory drugs (NSAIDs) to opioids
for pain management by comparing NSAID users and opioids users. In the subsequent
network and pathway analysis on functional genes located on the significant loci, EGFR
was identified as a central hub [72], further suggesting its potential role in pain progression.

4.2. EGFR Involvement in Pain in Animal Models

In most animal studies, EGFR signaling activation was pronociceptive (summarized
in Table 1), where EGFR ligands induced or aggravated mechanical allodynia, thermal
hypersensitivity, cold hypersensitivity, or other nociceptive behaviors. In the initial report
on EGFR involvement in pain, it was shown that EREG is the only ligand among those
tested (e.g., amphiregulin, EGF, TGF-α, Betacellulin) that can not only elicit an acute noci-
ceptive response but also amplify existing pain when injected intrathecally [70]. Recently,
it has been shown that other ligands like EGF [25], HB-EGF, and a peptide toxin mim-
icking the EGF domain of HB-EGF [69,72] can also elicit an acute nociceptive response
when injected at the periphery. Downregulation of TGFαin DRGs, has been shown to
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suppress CCL2/CCR2 signaling and reduce pain in a surgically induced osteoarthritis
pain model [73]. In addition, although directly behavioral data are lacking on epigen
and pain, transgenic mice overexpressing epigen exhibit signs of neuropathies such as
nerve demyelination, axon degeneration, and muscular atrophy in an EGFR-dependent
manner [74].

Accordingly, inhibition of EGFR signaling reduces certain nociceptive behaviors
(Table 1). EGFR signaling can be inhibited by a reduction in EGFR ligand expression [75–77]
or release [73], by scavenging of EGFR ligands [25], or using EGFR TKIs (e.g., gefitinib,
lapatinib, AG1478) [39].

It is important to note that the involvement of EGFR signaling in pain is context
dependent, and its activation may even be neuroprotective or analgesic. Ligands like
EREG have a dicrotous role in pain. EREG was discovered to be analgesic during acute
pain [67] while being pronociceptive for chronic pain [39]. TGFα and HB-EGF were found
to be elevated in degenerated osteoarthritis cartilage [78]. Accordingly, it was proposed
that EGFR inhibitors could be repurposed for joint pain treatment, which was supported
by several rodent studies with injury-induced osteoarthritis [75,76,79]. However, EGFR
activation by intra-articular administration of TGFα, rather than EGFR inhibition, was
reported to attenuate osteoarthritis pain [74,75,79]. In a rat visceral pain model, increased
EGF levels have been implicated in upregulating serotonin transporter-mediated serotonin
uptake in intestinal epithelial cells, therefore lowering the serotonin level and ultimately
reducing rather than producing visceral hypersensitivity [76]. Finally, in a spinal nerve
ligation model, where EGFR ligands are shown to play a role in the initiation of nerve injury-
induced allodynia, but as the disease condition progresses, multiple additional effectors
sustain the pain, so EGFR inhibition alone cannot reverse nociceptive responses [25].

Table 1. EGFR involvement in pain in animal models.

Category Procedure or
Animal Models

Species

EGFR Activation EGFR Inhibition

Ref.
Induced by Behavioral

Outcomes Induced by Behavioral
Outcomes

Nociceptive

None

Mouse HB-EGF injected
into the paw

Mechanical
allodynia [44]

Mouse
HB-EGF

mimicking toxin
(intraplanar)

Mechanical
allodynia,
thermal

hypersensitivity

[80]

Rat EGF (i.t.) Mechanical
allodynia [25]

Mouse Epiregulin (i.t.)

Mechanical
allodynia,
thermal

hypersensitivity

[43]

ADAM17
hypomorphic

mutant
Mouse

Reduced
release of

EGFR
ligands

Reduced
mechanical

allodynia, heat
hypersensitivity,

and cold
hypersensitivity

[81]
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Table 1. Cont.

Category Procedure or
Animal Models

Species

EGFR Activation EGFR Inhibition

Ref.
Induced by Behavioral

Outcomes Induced by Behavioral
Outcomes

Inflammatory

Intraplantar
Injection of

formalin

Mouse Epiregulin (i.t.)

Analgesic during
the early phase;

Aggravated
late-phase

nociceptive
behavior

(lick/bite)

[43]
Mouse

EGF,
amphiregulin
betacellulin
TGFα (i.t.)

No effect

Mouse

AG 1478,
gefitinib,
lapatinib

(i.p.)

Reversal of
late-phase

nociceptive
behavior

(licking/biting)

Injection of
Complete
Freund’s
adjuvant

Mouse

AG 1478,
gefitinib,
lapatinib

(i.p.)

Reversal of
mechanical
allodynia

[43]

Injection of
carrageenan Mouse

AG 1478,
gefitinib,
lapatinib

(i.p.)

Reversal of
thermal

hypersensitivity
[43]

Anterior cruciate
ligament,

transection, and
partial medial
meniscectomy

Rat AG1478
(infusion)

Reduced
osteoarthritis at 4
and 7, not 10 wk
postsurgery in

males

[75,
82]

DMM-induced
osteoarthritis Mouse

Downregulation
of TGFα in
DRGs by
miR-183

Reduced
mechanical

allodynia at 8 wk
postsurgery in

males

[73]

DMM-induced
osteoarthritis Mouse

HB-EGF
overexpression,

or TGFα
(intra-articular)

Reversal of
mechanical

allodynia after
1 week

postsurgery

Gefitinib
(oral)

No reversal of
mechanical

allodynia after
1 wk postsurgery

[78]

DMM-induced
osteoarthritis

in EGFR
knockout mice

Mouse

Reduced
intra-

articular
EGFR

expression

Development of
mechanical
allodynia
1 month

postsurgery

[83]

Tibial loading of
6 Newton Mouse

Intra-articular
HB-EGF

overexpression

Reversal of
mechanical
allodynia

[77]

Intra-colonic
infusion of
acetic acid

Rat

Lower EGF
levels in

plasma and
colon

Development of
visceral

hypersensitivity
[84]
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Table 1. Cont.

Category Procedure or
Animal Models

Species

EGFR Activation EGFR Inhibition

Ref.
Induced by Behavioral

Outcomes Induced by Behavioral
Outcomes

Neuropathic

Spared nerve
injury

Mouse
EGFR

inhibitor III
(i.p.)

Reversal of
mechanical
allodynia

[85]

Mouse

AG 1478,
gefitinib,
lapatinib

(i.p.)

Reversal of
mechanical
allodynia

[43]

Chronic
constriction

injury

Mouse

AG 1478,
gefitinib,
lapatinib

(i.p.)

Reversal of
mechanical
allodynia

[43]

Rat

Erlotinib
(i.p.)

Reversal of
mechanical

allodynia, thermal
hypersensitivity,

cold
hypersensitivity

[86]Gefitinib, AG
1478,

falnidamol,
EGFRi

324674 (i.p.)

Reversal of
mechanical
allodynia

Lapatinib,
afatinib (i.p.)

Reversal of
mechanical
allodynia

Geniposide
(i.p.)

Reversal of
mechanical
allodynia,
thermal

hypersensitivity

[87]

Lumbar spinal
nerve ligation Rat

Imatinib,
gefitinib,

EGF-
scavenging

molecule (i.t.)

No reversal of
mechanical
allodynia

[25]

Injection of
oxaliplatin Mouse

Erlotinib,
gefitinib, AG

1478 (i.p.)

Reversal of
mechanical
allodynia

[86]

Mixed

Injecting cancer
cell supernatant
into the tongue

Mouse Cetuximab
(i.p.)

Reversal of
orofacial

nociceptive
behavior

[19]

Chronic DRG
compression Rat

Gefitinib,
EGFR siRNA

(i.t.)

Reversal of
mechanical
allodynia,
thermal

hypersensitivity,
cold

hypersensitivity

[88]

Note: EGFR signaling activation was nociceptive in all listed models except the models depicted in italics. The
following abbreviations have been used: DMM: destabilization of the medial meniscus by surgery; DRG: dorsal
root ganglions; i.t.: intrathecal; i.p.: intraperitoneal; wk: weeks.
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4.3. Downstream Signaling Cascade of EGFR Signaling in Pain

The downstream effects of EGFR are mediated by one of several important signaling
pathways (listed below) to induce hypersensitivity by EGFR activation or reduce pain by
EGFR inhibition.

(1) PI3K/AKT/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian
target of rapamycin): A study of nocifensive behaviors in a formalin-induced inflammatory
pain mouse model [43] revealed that EREG upregulation in the blood might activate EGFRs
on DRG neurons through the mTOR signaling pathway, which increases phosphorylation
of 4E-BP1 and then MMP-9 translation. MMP-9 is important in inducing early-phase neu-
ropathic pain by activating IL-1β, TNF-α, and microglia [89]. In addition, gene expression
analysis of multiple human cancer cell lines showed that the PI3K/AKT signaling pathway
(including EGFR and mTOR) contained the highest number of differentially expressed
genes with the nociceptive trait matched to that obtained in a mouse model of acute oral
cancer pain [19];

(2) PI3K/AKT/LRP1 (phosphatidylinositol 3-kinase/protein kinase B/lipoprotein
receptor-related protein 1): A study in a neuropathic pain model on rats identified that the
increased excitability and excessive firing that are likely to underlie pain hypersensitivity
may be caused by increased EGFR and AKT recruitment of Nav1.9, Nav1.8, and Cav1.2 by
LRP1 (as the vesicular chaperone) to the apical plasma membrane and proximal stem axon
of primary afferent nociceptive neurons after nerve injury [86];

(3) GCH1/BH4 (GTP cyclohydrolase-1/6R-L-erythro-5, 6, 7, 8-tetrahydrobiopterin): In
rat and human DRG neurons, BH4 was proposed to bind with nNOS, resulting in increased
production of NO, which sensitizes the transient receptor potential vanilloid (TRPV1) or the
transient receptor potential cation channel subfamily A member 1 (TRPA1) channels [90].
A study with a neuropathic pain mouse model [85] uncovered that EGFR/Kirsten ras
sarcoma virus (KRAS) signaling triggers increased GCH1 expression, leading to an increase
in BH4 and persistent pain sensitivity;

(4) In sensory neurons, EGFR also affects other targets, e.g., δ-opioid receptors [91],
beta-adrenergic receptors [92], calcium channels [44], cannabinoid type 1, and TRPV1
receptors [43,93], which are important for pain processing;

(5) In glial cells, e.g., satellite glial cells, EGFR is also expressed [34]. Satellite glial
cells are activated by compressed DRGs and release proinflammatory cytokines, such as
interleukin (IL)-1, IL-6, and TNF-α, to further activate glia; EGFR inhibition may reduce the
release of proinflammatory cytokines and then relieve chronic DRG compression-induced
pain hypersensitivities [34];

(6) In osteoarthritis pain, EGFR signaling activation has a tissue-dependent effect. In
mouse articular cartilage, EGFR signaling may have a protective role against osteoarthritis
pain by maintaining the number and properties of superficial chondrocytes, promoting
chondrogenic proteoglycan 4 (Prg4) expression, and stimulating the lubrication func-
tion of the cartilage surface, which is otherwise diminished in osteoarthritis [77,78,83].
Nonetheless, in mouse DRG, TGFα activation of EGFR was reported to promote movement-
provoked pain via a TGFα-mediated C-C motif chemokine ligand 2 (CCL2)/CC-chemokine
receptor 2 (CCR2) signaling axis [73,75,82].

4.4. EGFR Involvement in Morphine Tolerance in Animal Models

EGFR has also been demonstrated to mediate opioid tolerance in several rodent mod-
els, including two chronic pain models of spinal nerve ligation (SNL)-induced peripheral
neuropathies and cancer-induced bone pain (CIBP) [25,94] and pre-tolerance in morphine-
naive rats [25] (summarized in Table 2) where enhanced EGFR signaling can aggravate
while suppression of EGFR signaling can alleviate morphine tolerance [25,94].
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Table 2. EGFR involvement in morphine tolerance and pre-tolerance in animal models.

Animal Models
EGFR Activation EGFR Inhibition

Ref.
Induced by Behavioral

Outcomes Induced by Behavioral
Outcomes

i.t. morphine Rat EGF
(4 days)

Production of
pre-tolerance
and thermal
hypersensitivity

[25]

Lumbar spinal nerve
ligation Morphine (i.t. or
subcutaneous)

Rat

Gefitinib (i.t. or
subcutaneous)

Reversal of tolerance
mechanical allodynia
and thermal
hypersensitivity [25]

EGF-scavenging
molecule (i.t.)

Reversal of tolerance
and mechanical
allodynia

Injecting Walker
256 mammary gland
carcinoma cells into
tibias + morphine (i.t.)

Rat AG 1478 (i.t.)
Reversal of tolerance
and mechanical
allodynia

[94]

Note: i.t.: intrathecal.

EGFR signaling involved in morphine tolerance occurs predominantly in the spinal
cord [25,94], including both neurons and microglia. In a CIBP model in rats, Yang et al.
demonstrated that morphine tolerance correlates with a sustained increase in the protein
levels of EGFR (both in microglia and neurons), p-EGFR, ERK1/2, and p-ERK1/2 in the
spinal cord as well as microglia proliferation. In contrast, inhibition of EGFR signaling by
intrathecal administration of AG1478 markedly attenuated the degree of morphine toler-
ance in morphine-treated sham or CIBP rats, as well as decreased the number of microglia,
and the protein levels of EGFR, p-EGFR, ERK1/2, and p-ERK1/2 in the spinal cord [26].
In another in vivo model of opioid-induced tolerance, whereby rats were administered
morphine for five consecutive days, it was demonstrated that EGFR is both necessary and
sufficient to induce opioid tolerance and mechanical sensitization. Furthermore, inhibi-
tion of EGFR signaling by gefitinib restored morphine analgesic effect against mechanical
allodynia, and chronic injections of EGF caused a decrease in paw withdrawal threshold,
contributing to the development of pre-tolerance [25].

4.5. Possible Downstream Signaling Cascades of EGFR in Opioid Tolerance
4.5.1. EGFR and MOR Interactions

Opioid analgesia is mediated mainly by the µ-opioid receptor (MOR), which is ex-
pressed both in the CNS (spinal cord and brain) and in the PNS (DRGs and peripheral
nerves). MOR is a G protein-coupled receptor that pairs with inhibitory G proteins (Gi
and Go) [95]. After acute administration, MOR agonists inhibit voltage-gated calcium
channels in primary sensory neurons [96,97], resulting in an inhibition of inflammatory
and pain signaling pathways. However, other mechanisms are activated when morphine
is administered chronically [45,98]. Tolerance is a consequence of adaptive mechanisms
functioning at different levels (cellular, synaptic, and network), in which the activity of
MOR is altered in order to restore normal function following the perturbation produced
by opioid agonists [98]. The following summarizes the proposed mechanisms underlie
opioid tolerance:

(1) Receptor tolerance: loss of surface MOR receptors, phosphorylation of MOR, internaliza-
tion/endocytosis, sequestration/recycling, and downregulation/desensitization [99];

(2) Cellular tolerance and withdrawal: upregulation of cAMP, increase in adenylyl cyclase
(AC) activity and sensitization [45];

(3) Synaptic plasticity in tolerance and hyperalgesia: potentiated presynaptic NMDAR
activity at the spinal cord level [100,101].
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The cross-talk between MOR and EGFR was explored in vitro in primary cultured
cortical neurons (from the whole cortex) isolated from neonatal (postnatal days 1–2) by
Zhao et al. They found that, after chronic morphine treatment, adaptive changes in both
MOR and EGFR signal systems lead to an AC5 superactivation and subsequent develop-
ment of tolerance. Furthermore, in N2A-EGFR cells (a neuroblastoma cell line expressing
EGFR), the same group observed that chronic morphine administration led to increased
EGFR phosphorylation and translocation to the endoplasmic reticulum, which was essen-
tial for posterior MOR-CRT (calreticulin) tethering, leading to increased AC5 activity [45].
Studies of primary afferent nociceptors in mice showed that EGFR is involved in MOR
prolongation of hyperalgesia induced by PGE2 [8,102,103]. Moreover, it has been shown
that in A431 cells (epidermoid carcinoma cells that express EGFR) as well as HEK293 cells
co-expressing GPCR kinase-2 and EGFR, EGFR activation by EGF led to a downregulation
of the opioid receptor as a consequence of its interaction with G proteins, which activated
GPCR kinases [91,104]. It was reported that, after activation, MOR associates with β-
arrestins, thereby inducing receptor internalization and downregulation in different in vivo
models [8,102,105]. Figure 2 summarizes pathways of morphine tolerance potentially
regulated by EGFR and MOR interactions.

4.5.2. EGFR and NMDA Receptor Interactions

Glutamate N-methyl-D-aspartate receptors (NMDAR) are heterothermies consisting
of two obligatory subunits (GluN1) and two regulatory subunits (GluN2A-2D or GluN3),
with GluN2A and GluN2B being the most extensively studied due to their role in synaptic
activity [106]. NMDAR plays a role in physiological processes within the CNS (synapto-
genesis, plasticity) and in various neurological disorders, such as schizophrenia, epilepsy,
ischemic brain damage, and neurodegenerative disorders [106,107]. Furthermore, increased
activity of spinal NMDAR, particularly α2δ-1-bound NMDAR [108–110], has a major role
in the development of central sensitization and neuropathic pain [111]. In the hippocampus,
EGF treatment increases NMDAR phosphorylation and surface expression of the GluN2B,
contributing to long-term potentiation (LTP) [106].

NMDAR expressed in primary sensory neurons, and their central terminals in the
spinal cord also promotes opioid-induced hyperalgesia and analgesic tolerance. Increased
glutamate activity under chronic morphine can induce hyperalgesia/allodynia and conse-
quently counteract opioid analgesia. That event occurs at different levels:

(1) Neuronal circuits (synaptic signaling), such as suppressing MOR signaling via
(a) dimerization with presynaptic mGluR5 to potentiate NMDAR synaptic expression
and activity, and (b) complex with three functionally interrelated MAPKs (ERK1/2, p38,
and JNK) to induce a tonic activation of presynaptic NMDARs [112] at primary afferent
central terminals;

(2) Cellular adaptations, which include gene expression [113–115] and the reduction
in MOR function. An exemplar study of the latter is that increased activity of NMDAR
by PKC/PKA-induced phosphorylation of its GluN2A and GluN2B subunits leads to
higher calcium influx, increased release of NO, and subsequent negative regulation of MOR
activity [116].

Pharmacological studies have identified several signaling proteins involved in the
interaction between glutamate/NMDAR and opioid/MOR tolerance. Some of them include
nitric oxide synthase (NOS), protein kinase C (PKC), protein kinase A (PKA), calcium
(Ca2+)/calmodulin (CaM)-dependent kinase II (CaMKII), delta-opioid receptor (DOR) and
the regulators of G-protein signaling (RGS) proteins [114,117,118].

EGFR signaling was shown to be responsible for an increase in NMDAR calcium
currents as a consequence of in vitro EGF-mediated increased expression and phosphory-
lation of GluN2B subunit in primary hippocampal cells cultured from Sprague–Dawley
rat fetuses on embryonic days 17–19 [106]. The same subunit was reported as a substrate
for EGFR in glioma cells [119], where EGFR phosphorylates the COOH-terminal domain
of the subunit, leading to an increase in glutamate-NMDAR signaling. Similarly, in an
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HB-EGF knockout mice model, the absence of the EGFR ligand led to reduced protein
levels of the GluN1 subunit and calcium influx [120]. LTP, a maladaptive plasticity involved
in numerous pathologies, including hyperalgesia, drug addiction, and tolerance, can be
triggered by opioids in the spinal cord of rats and mice [100,101]. EGFR signaling activation
by EGF enhances LTP in hippocampal primary cultures derived from rat fetuses [106].
EGFR activation may lead to synaptic NMDAR hypersensitivity in the pain pathways to
induce morphine tolerance (Figure 3).
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Figure 2. Pathways of morphine tolerance potentially regulated by EGFR and MOR interactions.
(A) EGFR activation due to its phosphorylation (P), generates pre-tolerance by interacting with
MOR-activated by acute morphine administration. This leads to MOR lysosomal degradation
via β-arrestin association, a subsequent impediment to interact with GPCR (comprised by α, β
and γ subunits), and finally, hyperalgesia and tolerance. (B) Chronic morphine administration
blocks the interaction between MOR and GPCR and activates EGFR. Subsequently, EGFR undergoes
retrograde translocation to the ER, resulting in the trafficking of CRT (Calreticulin) to the Golgi
before migrating again to the membrane and finally couples to MOR. This coupling leads to the
activation of the AC5/cAMP/PKA signaling cascade, generating the release of higher concentrations
of Ca2+ and Na+ within synaptoneurosome, which contribute to the development of tolerance and
hyperalgesia. (C) MOR’s chronic stimulation by morphine leads to PGE2 activation of EP receptor,
which, together with EGFR’s transactivation, activates Src/FAK/MAPK signaling, a pathway well
known for hyperalgesia. (D) EGFR activation triggers the p-ERK1/2/MAPK pathway, which activates
microglia at the CNS. Activated microglia release cytokines that act on MOR chronic morphine-
stimulated, leading to the activation of AC5/cAMP/PKA signaling cascade and the release of Ca2+

and Na+. The following abbreviations have been used: EGFR: epidermal growth factor receptor;
GPCR: G protein-coupled receptors; ER: endoplasmic reticulum; ERK: extracellular signal-regulated
kinase; CRT: calreticulin; AC5: adenylyl cyclase 5; cAMP: adenosine monophosphate; PKA: protein
kinase A; PGE2: prostaglandin E2; EP: prostaglandin E receptor; Src: Src-family kinase; FAK: focal
adhesion kinase; MAPK: mitogen-activated protein kinase; p-ERK1/2: extracellular signal-related
kinase. Own figure created using BioRender.com.
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5. Challenges

To implement EGFR inhibitors for cancer pain control, several challenges remain. The
underlying mechanisms of EGFR’s pronociceptive actions are still evolving. The potential
interaction of EGFR with MOR and NMDAR reviewed above has not been studied directly
in the pain pathways. Resistance to EGFR inhibitors may potentially limit their prolonged
use for pain management. Lastly, the content-dependent action of EGFR ligands in pain
and the paradox of EGFR activation suppressing acute pain in certain conditions warrant
a closer examination of the nuanced roles of each ligand and their downstream signaling
pathways. Nevertheless, similar strategies used in treating cancer can be adopted for pain,
such as developing new generations of EGFR inhibitors, employing different combinations
of EGFR inhibitors, and/or combinations with non-EGFR inhibitors to develop non-opioid
analgesics to treat oral cancer pain.

6. Conclusions and Perspectives

EGFR inhibitors for cancer therapies are an area of active research, with many already
on the market [121–133]. Emerging evidence suggests that EGFR expressed along the
pain signaling pathway may play a significant role in regulating pain and promoting
opioid analgesic tolerance and dependence. EGFR inhibitors could be repurposed for
oral cancer pain management because their safety profile is well known. The benefits of
repurposing EGFR inhibitors as non-opioid analgesics are promising and clearly warrant
further research. This is particularly crucial in our current climate as we endeavor to fight
the opioid overdose epidemic.
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