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Abstract: A highly intelligent system often draws lessons from the unique abilities of humans.
Current humanlike models, however, mainly focus on biological behavior, and the brain functions
of humans are often overlooked. By drawing inspiration from brain science, this article shows how
aspects of brain processing such as sensing, preprocessing, cognition, obstacle learning, behavior,
strategy learning, pre-action, and action can be melded together in a coherent manner with cognitive
control architecture. This work is based on the notion that the anti-collision response is activated
in sequence, which starts from obstacle sensing to action. In the process of collision avoidance,
cognition and learning modules continuously control the UAV’s repertoire. Furthermore, simulated
and experimental results show that the proposed architecture is effective and feasible.
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1. Introduction

One of the key hallmark requirements of unmanned aerial vehicles (UAVs) is the
ability to avoid obstacles autonomously [1–4]. Many scholars have studied automatic
collision avoidance, with the aim of pushing forward the development of UAVs. Beard [5]
constructed Voronoi diagrams to avoid known obstacles. But Voronoi’s method overlooked
the obstacles’ effective range, as S. L. Wang [6] pointed out. Wang further developed Voronoi
diagrams into Laguerre diagrams to overcome this drawback [7]. However, diagram-based
methods cannot deal with pop-up obstacles [8], since those methods require all the obstacles’
information, which is almost impossible to apply in a dynamic environment. Also, many
experts are engaged in making UAVs more autonomous. They have proposed many
approaches in the literature, such as A-Star and D-Star [9–11], potential fields [12], model
predictive control [13], and evolutionary algorithmic techniques [14,15].

Although many efforts have been made in collision avoidance, UAVs’ anti-collision
capability remains a difficult problem for two reasons: (1) The traditional methods assume
that the obstacles are few and far between each other. (2) The time consumed is limitless.
So, the traditional methods may not be practical for real-time collision avoidance, but this
may be solved by referring to advances in brain-inspired cognitive systems [16].

The ability to avoid obstacles quickly is easy for humans but difficult for UAVs [17].
Douglas Hofstadter envisioned this when he said that “for any program to handle letter-
forms with the flexibility that human beings do, it would have to possess full-scale artificial
intelligence” [18]. Many researchers have conjectured that collision avoidance could be
achieved by incorporating insights from brain and cognitive science research.

One may avoid crowded obstacles without any thinking. We are not born with
avoidance skills, but through explicit and repetitive training, we can develop what is
called an acquired conditioned reflex (CR) [19–21]. People can learn the skill through
special training.

The foundation of artificial intelligence (AI) lies in its capacity for self-learning, a
concept. This self-learning capability is not just a theoretical construct but a fundamental
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requirement for the development of autonomous systems. J. Weng [22], in 2001, delineated
an autonomous learning mechanism that is pivotal in the construction of intelligent robots
capable of functioning with a degree of autonomy [23,24]. This mechanism is designed to
enable robots to learn from their interactions with the environment, thereby improving
their performance over time. M. S. Lim [25] contributed to the field by proposing a rapid
and efficient method for synthesizing humanoid robot hands that can adeptly grasp planar
polygonal objects. This innovation is a step toward more dexterous and versatile robotic
manipulation. M. Asada [26] developed a synthetic approach for cognitive robots, which
was a significant step in endowing machines with cognitive abilities that were once the
exclusive domain of biological systems. The approaches mentioned in [27] further build
upon these ideas, expanding the scope of AI in robotics. Behavior-based control architec-
tures, as suggested by Simmons [28], Rosenblatt, and Thorpe [29], draw inspiration from
Brooks’ [30] behavior-based subsumption architecture. These architectures are designed to
facilitate complex behaviors in autonomous mobile robots through a decentralized control
system that allows for the integration of various behavioral modules. In 2007, Bermudez
and Verschure [21] proposed a bio-inspired UAV system, marking a significant attempt
to integrate biological intelligence into the automatic control of UAVs. This system aims
to leverage principles from biology to enhance the adaptability, efficiency, and autonomy
of UAVs, particularly in dynamic and challenging environments. The integration of these
cognitive and learning principles into UAV systems is crucial for creating machines that can
operate with a higher level of autonomy and intelligence. It is through this lens of cognitive
learning and adaptive behavior that the future of UAV technology is being shaped, and
this has the potential to revolutionize the way we approach robotics and AI.

In this paper, we introduce a cognitive control architecture for UAVs that is inspired
by the human brain’s conditioned-reflex mechanisms. Our approach significantly enhances
the real-time collision avoidance capabilities of UAVs by reducing their computational
complexity and response time. The main contributions of this paper include the devel-
opment of an innovative learning-based strategy that allows UAVs to adapt to dynamic
environments and avoid obstacles more efficiently. We have conducted extensive sim-
ulations and experiments to validate the effectiveness of our proposed system, which
demonstrates a substantial improvement over traditional methods in terms of both safety
and operational efficiency.

2. A Cognitive Control Architecture for the Conditioned Reflex Cycle in the
Anti-Collision Behavior of UAVs
2.1. The Brain Pathway of the Conditioned Reflex Cycle in Human Anti-Collision Behavior

Humans have a fundamental function, which is to find a safe path in crowded envi-
ronments based on the CR. The classical CR refers to a learning process in which a potent
stimulus (e.g., obstacles) is paired with a previously neutral stimulus (e.g., anti-collision
movements); its neural substrates are now beginning to be understood [31,32]. The more
familiar the crowded environment is, the faster and safer will be the path obtained. So, the
CR-based method usually takes less time than normal ways.

For complex problems, humans can find optimal solutions through cognition and
learning [33,34]. Infants may not know how to avoid obstacles in the complex environment,
but they can cognize the obstacles and learn how to deal with obstacles as they grow
up. This process is regarded as a growth of the brain, especially the parts concerning
anti-collision behavior. There are three important parts when humans are performing
collision avoidance, which are the cortex, the thalamus and the basal ganglia. In the
mammalian brain, feedback connections between brain areas play important roles in
collision avoidance [35]. Rivara [36] came up with the study that suggested that the
cerebral cortex has many functions, including movement planning, behavior control, and
motion execution.

The thalamus has multiple functions, and it is generally believed to act as a relay
station or hub, relaying information between different subcortical areas and the cerebral
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cortex [37]. The thalamus receives signals from cortex and produces awareness of the
obstacles [38].

Popular theories implicate the basal ganglia primarily in action selection—in helping
to decide which of several possible behaviors to execute [39]. In more specific terms, the
basal ganglia’s primary function is likely to control and regulate activities of the motor and
premotor cortical areas so that voluntary movements can be performed smoothly [40]. In
conclusion, the basal ganglia is strongly interconnected with the cortex and thalamus, and
its function is to control movements [41]. An anti-collision mechanism in humans can be
derived based on the studies of brain science, as shown in Figure 1.
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In Figure 1, the anti-collision of normal method and CR method is presented with
black flow and red flow respectively.

To normal anti-collision reflex (see in Figure 1, the black flow), there are 8 procedures
in fulfilling complete anti-collision. (1). Sense. Human must have a way, see or touch, to
sense the environment. (2). Preprocess. The prefrontal cortex receives and synthesizes
information from the outside world [42]. The perceived information is then sent to frontal
cortex, functioning on transforming original visual information to classified and reduced
signals [43]. This preprocessing towards information makes subsequent steps more effective.
(3). Cognize. In mammalian brain anatomy, the thalamus is the large mass of gray matter
in the dorsal part of the diencephalon of the brain with several functions such as relaying
of sensory signals, including motor signals, to the cerebral cortex, and the regulation
of consciousness and alertness [38]. The function of thalamus, regarding anti-collision,
is to classify obstacles and to have a consciousness of familiar environment, that is to
cognize obstacles. (4). Obstacles learning. The cortex, in medicine, is the cerebral cortex
which covers the brain, purposing on learning and reserving knowledge, and mapping the
knowledge between each other [44], in other word, to develop brain through learning and
to think a way out in crowded obstacles. (5). Behave. The basal ganglia is in the brains
of vertebrates including humans, which is situated at the base of the forebrain. The basal
ganglia is associated with a variety of functions including: control of voluntary motor
movements, procedural learning, routine behaviors and emotion [41]. Its function is to
design anti-collision strategy and behave safely in the environment. (6). Strategies learning.
The function of frontal cortex is to memorize anti-collision strategies, and match them with
obstacles. (7). Pre-act. The anti-collision strategies cannot be decoded and acted by limbs,
so they should be clarified so as to transform the strategies to body language. (8). Act. The
limbs follow the commands from brain to avoid crowded obstacles.

To CR-based anti-collision (see in Figure 1, the red flow): Conditioned reflex occurs
when a conditioned stimulus is paired with an unconditioned stimulus. After the pairing is
repeated, the organism exhibits a conditioned response to the conditioned stimulus when
the conditioned stimulus is presented along, and it must be acquired through experience.
According to Bouton [45], conditioned reflex does not involve the acquisition of any new
behavior, but rather the tendency to respond in old ways to new stimuli. In conditioned
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reflex anti-collision, there are only two processes, which are sense (9) and act (10). Humans
can avoid obstacles by body language through training and experience. In a crowded
environment, humans do not have any time to go through the normal anti-collision process.
To make themselves safe, they can only move without thinking. But the conditioned reflex
is based on normal anti-collision behavior.

2.2. Cognitive Control Architecture for UAVs

In collision avoidance, traditional UAVs only have two levels (a guidance level and a
motion level) to plan a safe path. However, the guiding algorithms always stay the same.
Even in the most familiar environment, the UAV must calculate every path from scratch.

In a cognitive UAV, there are three levels (see Figure 2; cognition level, guidance
level, and motion level). The flight control strategy is executed by the guidance level,
which generates control variables of the UAVs. The motion level responds to the guidance
level, which transforms the control variables into throttle commands, which regulate the
rotational speed of each motor, so as to control the altitude and attitude. What differs from
traditional UAVs is the cognition level, which makes a UAV learn what obstacles are and
how to avoid obstacles without much thinking in familiar environments.
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Figure 2. The cognitive control architecture of a UAV.

As shown in Figure 2, information about obstacles is transferred to the cognition
controller so as to produce avoidance strategies. The strategies are sent to the guidance
controller to calculate and generate flight instructions. Finally, the motion controller
decodes flight instructions into flying motions that directly control a UAV. In this paper, we
assume that a cognitive UAV can decode avoidance strategies and obtain flying motions
by itself.

2.3. The Brain-Like Conditioned Reflex Cycle of Cognitive UAVs

Building models with reference to the mammalian brain is an important area of study
for UAVs [46,47]. Collision avoidance in a complex environment has met with tremendous
difficulties for it requires the following cognitive characters:

1. Universality: Cognitive algorithms design a universal schema rather than prepro-
gramming and reprogramming for special missions, so they can enrich themselves
incrementally.

2. Interactivity: Humans act as teachers rather than programmers. We can only influence
the process and the context but are definitely not the decision-makers.

3. Learnability: Cognition is a gradual and cumulative process. Advanced knowledge
relies on basic ability.

We introduce a hierarchical model called the recursive brain network (RBN) that
incorporates brain-science studies to fulfill the cognitive demands. In RBN, the anti-
collision process can be described as shown in Figure 3.
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In Figure 3, the intricate flow processes that govern anti-collision systems in UAVs
differ from those in traditional anti-collision methods and those inspired by conditioned
reflexes. The black curves delineate the multi-step normal anti-collision procedures,
which consist of eight distinct processes. These processes are designed to systematically
guide the UAV through obstacle detection, analysis, and evasion, ensuring safe naviga-
tion. As indicated in the figure, each process is crucial for the UAV’s cognitive control
architecture, starting from the initial sensing of the environment to the final execution of
avoidance maneuvers.

The first process, ”Sensing“, involves the utilization of the UAV’s sensors to detect
and identify obstacles in the vicinity. This is followed by ”Preprocessing”, where the raw
sensor data is refined and organized into a usable format. ”Cognition” then interprets
this information, allowing the UAV to understand and classify the obstacles within its
operational space. ”Obstacle learning” is where the UAV retains and recalls information
about the environment, creating a knowledge base for future navigation.

The subsequent processes, ”Behavior” and ”Strategy learning”, are responsible for de-
veloping and implementing collision-avoidance tactics. ”Pre-action” serves as the prepara-
tory stage, where the UAV formulates a response based on its learned strategies, and
”Action” is the culmination of these processes, executing the avoidance actions with pre-
cision. These eight processes, as detailed in Table 1, form a coherent and comprehensive
approach to avoiding collision, ensuring that the UAV can navigate autonomously and
safely in dynamic environments.

Table 1. Detailed description of the eight processes.

Number of Processes Functions

1 Sensing UAVs use sensors onboard to detect obstacles around them.

2 Preprocessing To preprocess the mass and unclassified information
of obstacles.

3 Cognition In collision avoidance, this process involves having an
awareness of familiar environment and cognizing obstacles.

4 Obstacle learning This process aims to learn and reserve paths and to map the
paths between trust regions and waypoints.

5 Behavior Its function is to design an anti-collision strategy and to
behave safely in an environment.

6 Strategy learning This process is to memorize anti-collision strategies.

7 Pre-action The waypoints cannot be decoded and acted by UAVs, so this
process clarifies them so as to transform them into commands.

8 Action Cognitive UAVs follow the commands from the RBN to avoid
crowded obstacles.

In conditioned-reflex anti-collision (see Figure 3; the red flow), there are only two main
processes, which are sensing (9) and action (10). Cognitive UAVs, like humans, can avoid
obstacles directly without repetitive calculations via a conditioned reflex after training.
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Figure 4 of our manuscript illustrates the detailed interplay between the trust region,
flight path, and waypoints, which are crucial components in the cognitive control archi-
tecture for UAVs. The trust region is a spatial area created around the UAV, delineated by
the boundaries of detected obstacles, within which the UAV is deemed to operate safely.
This region forms the foundation for all subsequent navigation decisions. The flight path is
derived from the trust region through a series of complex calculations that consider the
UAV’s current position, the geometry of the trust region, and the intended destination.
These calculations are performed by sophisticated algorithms designed to generate a tra-
jectory that maximizes safety and efficiency. However, since the flight path is an output
of algorithmic processing, there might be instances where the path includes maneuvers,
such as sharp turns or abrupt changes in altitude, that exceed the UAV’s performance
capabilities. For example, the flight path may include right angles that the UAV cannot
physically achieve without risking a stall or control loss.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 18 
 

 

8 Action 
Cognitive UAVs follow the commands from the RBN to avoid 

crowded obstacles. 

In conditioned-reflex anti-collision (see Figure 3; the red flow), there are only two 

main processes, which are sensing (9) and action (10). Cognitive UAVs, like humans, can 

avoid obstacles directly without repetitive calculations via a conditioned reflex after train-

ing. 

Figure 4 of our manuscript illustrates the detailed interplay between the trust region, 

flight path, and waypoints, which are crucial components in the cognitive control archi-

tecture for UAVs. The trust region is a spatial area created around the UAV, delineated by 

the boundaries of detected obstacles, within which the UAV is deemed to operate safely. 

This region forms the foundation for all subsequent navigation decisions. The flight path 

is derived from the trust region through a series of complex calculations that consider the 

UAV’s current position, the geometry of the trust region, and the intended destination. 

These calculations are performed by sophisticated algorithms designed to generate a tra-

jectory that maximizes safety and efficiency. However, since the flight path is an output 

of algorithmic processing, there might be instances where the path includes maneuvers, 

such as sharp turns or abrupt changes in altitude, that exceed the UAV’s performance ca-

pabilities. For example, the flight path may include right angles that the UAV cannot phys-

ically achieve without risking a stall or control loss. 

Anti-collision

Trust region

Flight path

Waypoint

Pool Feature Lateral constraints  

Figure 4. The hierarchical RBN model of the trust region, flight path, and waypoints. 

To address this, the calculated flight path undergoes further refinement to ensure 

that it is applicable to the UAV’s actual flight dynamics. This involves smoothing out the 

path to remove any extreme angles and adjusting the trajectory to fit within the UAV’s 

operational limitations. The end result is a flight path that is not only safe but also feasible 

for the UAV to follow. Once the flight path is finalized, it must be translated into a series 

of waypoints. These waypoints are specific points along the flight path that the UAV will 

navigate to, one after another, to reach its destination. The conversion of the flight path 

into waypoints is based on the UAV’s sensing, processing, and actuation capabilities, en-

suring that each waypoint is reachable and executable. 

In the graphical representation of Figure 4, filled and empty circular nodes symbolize 

features and pools, respectively. Features represent distinct characteristics of the environ-

ment, such as the location of obstacles, while pools are collections of possible flight paths 

that can be taken from one feature to another. Each pool is a composite of factors from its 

level and serves as a hub for the subsequent level’s features. The lateral constraints, de-

picted as grey rectangles, play a critical role in this model. They act as coordinators, dic-

tating the selection among the pools they are connected to, reflecting the sequential nature 

of the flight-path construction process. 

Figure 4. The hierarchical RBN model of the trust region, flight path, and waypoints.

To address this, the calculated flight path undergoes further refinement to ensure that
it is applicable to the UAV’s actual flight dynamics. This involves smoothing out the path to
remove any extreme angles and adjusting the trajectory to fit within the UAV’s operational
limitations. The end result is a flight path that is not only safe but also feasible for the UAV
to follow. Once the flight path is finalized, it must be translated into a series of waypoints.
These waypoints are specific points along the flight path that the UAV will navigate to,
one after another, to reach its destination. The conversion of the flight path into waypoints
is based on the UAV’s sensing, processing, and actuation capabilities, ensuring that each
waypoint is reachable and executable.

In the graphical representation of Figure 4, filled and empty circular nodes symbolize
features and pools, respectively. Features represent distinct characteristics of the environ-
ment, such as the location of obstacles, while pools are collections of possible flight paths
that can be taken from one feature to another. Each pool is a composite of factors from
its level and serves as a hub for the subsequent level’s features. The lateral constraints,
depicted as grey rectangles, play a critical role in this model. They act as coordinators,
dictating the selection among the pools they are connected to, reflecting the sequential
nature of the flight-path construction process.

This comprehensive approach ensures that the UAV’s flight path is not only a product
of calculations based on the trust region but also a reflection of the UAV’s cognitive
understanding of its environment, resulting in a flight strategy that is both intelligent
and adaptable.

Upon examining the recursive brain network (RBN) model in conjunction with the
mechanisms of the human brain, a striking congruence is observed. This alignment suggests
that a brain-inspired anti-collision mechanism for unmanned aerial vehicles (UAVs) can
be effectively engineered to mimic cognitive processes. As depicted in Figure 5, the RBN
model is divided into distinct regions that correspond to various functional areas of the
brain. The blue region symbolizes the cortex function, which is responsible for higher-order
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cognitive processes such as planning and decision-making. The yellow region represents
the thalamus function, which acts as a crucial relay center that processes and integrates
sensory information before it reaches the cortex. Lastly, the purple region signifies the basal
ganglia function, which plays a pivotal role in selecting and initiating appropriate actions
or motor responses.
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Figure 5. A brain-like conditioned reflex cycle in cognitive UAVs.

This tri-colored representation in Figure 5 not only underscores the complexity of the
brain’s anti-collision response but also provides a structured framework for designing UAV
systems that can exhibit cognitive-like behavior. The cortex, thalamus, and basal ganglia
work in concert to enable quick and informed decisions regarding obstacle avoidance,
much like a human’s innate ability to navigate through cluttered spaces without explicit
calculation. By emulating these brain functions, the RBN model offers a sophisticated
approach to enhancing UAV autonomy, particularly in high-stake scenarios in which rapid
and accurate collision avoidance is paramount.

3. Algorithmic Design of Cognitive UAVs

There are two main parts in fulfilling an algorithmic design of a cognitive UAV.
Firstly, we should build the mapping relation between obstacles and avoidance strategies
(see Figure 5; the blue part), which is the learning part of cognitive UAVs. Then the
corresponding obstacle pattern and avoidance strategy should be constructed so as to
cognize obstacles and strategies (see Figure 5; the yellow and purple parts).

3.1. Construction of the Obstacle-Avoidance Mapping Relation

Obstacle development has a one-to-one correspondence at the beginning, which means
that there is only one avoidance strategy ASl corresponding to each obstacle pattern OPk.
However, there may be a similar obstacle pattern in the memory of the cortex region, which
can replace the obstacle pattern OP that the UAV is currently facing, which gradually
accumulates in obstacle learning. Equation (1) shows a mapping relation f that outputs a
safe path S in the anti-collision zone Ω based on the surrounding environment.

S(t + 1) = f
(

S(t), O(t),
OP(t), AS(t)

)
, O /∈ Ω, S ∈ Ω (1)

An anti-collision path can be obtained via obstacle pattern mapping, but it does not
mean that the obstacle-avoidance mapping relation can be constructed. Consider two
obstacle patterns: OP and OP3 (see Figure 6). The avoidance strategy AS1 represents an
anti-collision path; nevertheless, the optimal mapping relation OP3 − AS1 is not optimal
for the obstacle pattern OP.

Unlike a normal obstacle-avoidance mapping structure, cognitive mapping relation
is an incremental learning schema. It can not only output avoidance strategies online,
but it also improves obstacle-avoidance mapping relations offline through ∆O(t). So,
Equation (1), considering incremental learning, can be improved as:

S(t + 1) = f
(

S(t), O(t), ∆O(t),
OP(t), AS(t)

)
(2)
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Figure 6. Structure of obstacle-avoidance mapping.

The improved structure can be described as in Figure 7. The final goal is to avoid
obstacles immediately online and to find optimal paths offline. The basic algorithm is an
artificial potential method, which is an algorithmic approach for collision avoidance that
assigns potential values to different positions in the environment based on their proximity
to obstacles. The core idea is to create a field where the UAV experiences a force that is
inversely proportional to the distance from the obstacle. This force acts as a repulsive effect
that guides the UAV away from obstacles. By calculating the gradient of the potential
field, the UAV can determine the direction of the safest path, which is typically the path
of least resistance or of lowest potential value. This method is efficient because it allows
for real-time navigation decisions without the need for complex computations, making it
suitable for dynamic environments where quick responses are necessary.
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3.2. Construction of an Avoidance Strategy and an Obstacle Pattern

Regardless of a quad-rotor’s rotation around the center of mass, it can be described as
a controllable mass. The gridding model of a UAV is constructed as shown in Figure 8, in
which a UAV has eight flyable directions.
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An avoidance strategy can be obtained via the sequential combination of flying actions:

A = { a1, a2, · · · , an|ai ∈ Actions} (3)

Avoidance-strategy cognition is the combination of well-organized avoidance strategies:

AB = {AS1, AS2, · · · , ASk} (4)

Suppose the k-th obstacle’s position (ρk, ϕk) and velocity (vk, θk) are given in a polar
coordinate system, so the definition of the k-th obstacle can be described as

obk = (ρk, ϕk, vk, θk) (5)

In order to illustrate the computational process, Equation (5) is simplified to Equation
(6), where A1 to A4 means ρk, ϕk, vk, θk, respectively.

ob = (A1, A2, A3, A4) (6)

For the determined value x0 of the q-th property, a subordinating degree function
Aqp(x0) can be obtained by the maximum-membership-degree principle. The fuzzy sets
corresponding to x0 are defined in Equation (7), where x0 ∈ Aqp (1 ≤ p ≤ N

)
.

Aqp(x0) = ∨N
q=1

{
Aqp(x0)

}
(7)

The osculating function σi is introduced to compare whether obstacle k and obstacle l
belong to same obstacle pattern.

Supposing that σi is based on the i-th property,

σi(Aik, Ail) =
1
2
[Aik · Ail + (1 − Aik × Ail)] (8)

where Aik and Ail mean the fuzzy sets based on the i-th property of obstacle k and l,
respectively, and Aik · Ail and Aik × Ail are the inner and outer products.

There are many obstacles in an environment, so we introduce an obstacle pattern to
memorize obstacles as OP =

[
ob′1, ob′2, · · · , ob′k

]′, and the obstacle pattern cognition is a
matrix set as OB = {OP1, OP2, · · · , OPk}.

Suppose that the obstacle pattern around UAV is P =
[
ob′1, ob′2, · · · , ob′m

]′, and the
comparing obstacle pattern knowledge now is Q =

[
ob′1, ob′2, · · · , ob′n

]′. To ensure that
obstacles in Q can completely replace P, every obstacle (obk) in P should find a high closed-
degree function with obl in Q, which means that ∀obk ∈ P, ∀i(i = 1, 2, 3, 4), ∃obl ∈ Q:

σi(Aik, Ail) ≥ ci (9)

where ci is the threshold value of the closed degree for the i-th property.
The similarity degree function sim(P, Q) can be designed by assigning a different

weight ωi to the corresponding obstacle property:

sim(P, Q) =
4

∑
i=1

σi(Aik, Ail)× ωi (10)

For the purpose of selecting the most similar obstacle pattern Q0, the obstacle pattern
P is compared with all the obstacle patterns so that the optimal similar mapping pattern
Q0 can be chosen:

i f max
∀Qk∈TB

(sim(P, Qk)) , Q0 = Qk (11)
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Finally, the knowledge incremental function fadd is constructed so as to judge whether
or not to add a new obstacle-avoidance mapping relation to the memories:

fadd =

{
1 , i f sim(P, Q) ≥ csim
0 , i f sim(P, Q) < csim

(12)

where csim is the threshold of similarity function; the new obstacle pattern can be described
and represented if sim(P, Q) ≥ csim.

4. Simulation and Analysis

To compare the effectiveness and capability of our method, two representative algo-
rithms were introduced (ant colony (AC) algorithm [48] and cognitive game (CG) algo-
rithm [49]).

The AC algorithm is a simulated evolutionary algorithm derived from the biological
world. It has the characteristics of distributed computing, positive feedback of information,
and heuristic searching. It is one of the most effective algorithms for solving the problem of
UAV path planning.

On the basis of the autonomous anti-collision responses of UAVs in a non-isolated
airspace, the cognitive game algorithm transforms the collision-avoidance problem into a
game model. By establishing a kinematics model of UAVs and obstacles, the CG algorithm
puts forward a solution method for safe path planning.

All simulations were run under the Matlab 12.0, 3.3 GHz Inter Core i3, Windows
XP system. Assume that the UAV’s detection range is 10 m and its flight speed is 2 m/s,
the training scenarios involve obstacles randomly occurring within the UAV’s detection
range. As shown in Figure 9a–l, 12 diverse training samples were constructed and safe
avoidance strategies were obtained by a basic anti-collision algorithm. In the diagram,
the black areas are designated to represent obstacles, which could be buildings, trees,
or any other physical entities that may impede the flight of a drone. The blue lines
delineate the collision-avoidance flight paths that the drone takes to navigate around these
obstacles. The gray portions symbolize the drone itself. With this color-coding, it is evident
how the drone utilizes its sensors and algorithms to intelligently plan a safe flight path
based on the surrounding obstacle information. This not only showcases the drone’s
autonomous navigation capabilities but also highlights its adaptability and flexibility in
complex environments, successfully finding and executing an escape route from densely
populated obstacle areas.
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The relation between cognitive learning knowledge and the training samples after
training is shown in Figure 10.
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We can infer that the number of training samples is unequal to the amount of knowl-
edge, because we introduced the concept of fuzzy matching, which combines similar
obstacles and avoidance strategies so as to reduce dimensionality. The similarity-degree
value of obstacles in Figure 9e,f is 0.87 (the value between the avoidance strategies in
Figure 9d,e is 0.92), which means that we can use the same obstacle pattern (and avoidance
strategy) to classify them. But the similarity-degree value of the obstacle patterns between
Figure 9c,l is 0.3, so we have to construct two new obstacle patterns.

The environment is a 200 m × 200 m square crowded with 10 obstacles. A UAV has to
fly from the start position (0,0), pass by two targets at position (60,60) and (140,140), and
finally end at position (200,200).

The results are shown in Figures 11a and 12a, where the gray circles are the amplified
regions of three flying moments. To illustrate the safety degree of a UAV, an equivalent
distance function is constructed. Supposing that there are k obstacles within sensory range,
then the equivalent distance function can be defined as shown in Equation (13):

fed =
ρ1

R
· ρ2

R
· · · ρk

R
=

k

∏
i=1

ρi
R

, ρi ∈ (0, R) (13)

where R is the sensory range, and ρ is the distance between each obstacle and the UAV in R.
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Figure 12. Comparison of CR and CG among crowded obstacles.

The results for the fed are shown in Figures 11b and 12b. We can infer from Figures 11a
and 12a that the AC algorithm and the CG algorithm cannot deal with complex obstacles.
In Figure 11a, though the AC algorithm can obtain a safe path at the beginning, when it
encounters many obstacles, the UAV cannot keep a safe distance from the crowded obstacles
(see the local magnification of the black path). In Figure 12a, the cognitive game algorithm
performs better than the ant colony algorithm, however, the UAV has a collision with
obstacles midway ( fed = 0). The method of the ant colony and cognitive game algorithms
(see Figures 11b and 12b) involves collisions with obstacles at moments 86.7 s and 152.6 s
(when the value of fed decreases to 0). In contrast, the proposed method can obtain a safe
path and keep the fed at the safe value.

This is because the ant colony algorithm requires a continuously re-planned flight path,
and the cognitive game algorithm’s computing time is too long. However, our method can
obtain an anti-collision path directly and dispense with repetitive calculations for similar
obstacle patterns. When encountering complex obstacles, a cognitive UAV will find similar
obstacle patterns based on the similarity-degree function, and then the corresponding
avoidance strategy can be obtained. If there is no similar obstacle pattern, a new path can
be designed, so the UAV can develop itself incrementally.

To make the results more convincing, the three algorithms were compared in the same
environment repeatedly. Table 2 shows the statistical minimum value of the equivalent
distance function Min f and the corresponding time tmin. We find that AC and CG often
result in a collision in crowded environment, because there always exists an Min f = 0. As
assumed above, Min f is the minimum value of fed; when it equals 0, a collision occurs. In
repeated results using CBN, the value of Min f is always positive, which means that this
proposed method always keeps a safe distance between obstacles and the UAV.

Table 2. Repeated simulation results.

Test No.
AC CG CR

Minf/(m) tmin/(s) Minf/(m) tmin/(s) Minf/(m) tmin/(s)

1 0 96.7 0 169.2 0.25 76.8
2 0 87.5 0 89.4 0.42 89.1
3 0 165.2 0 164.3 0.34 79.7
4 0 148.3 0 172.8 0.43 267.5
5 0 87.9 0 94.6 0.26 285.6

Finally, fast anti-collision is achieved like that of humans’ conditioned reflex. The
effectiveness of the anti-collision algorithm is improved by avoiding duplicative planning
in a similar environment.
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5. Experiment and Analysis

As shown in Figure 13, the UAV’s perception model has eight directions. When the
distance between the UAV and the obstacles is less than the threshold value, there is an
obstacle occlusion in this direction.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18 
 

 

for similar obstacle patterns. When encountering complex obstacles, a cognitive UAV will 

find similar obstacle patterns based on the similarity-degree function, and then the corre-

sponding avoidance strategy can be obtained. If there is no similar obstacle pattern, a new 

path can be designed, so the UAV can develop itself incrementally. 

To make the results more convincing, the three algorithms were compared in the 

same environment repeatedly. Table 2 shows the statistical minimum value of the equiv-

alent distance function 
fMin  and the corresponding time mint . We find that AC and CG 

often result in a collision in crowded environment, because there always exists an 

0fMin = . As assumed above, 
fMin  is the minimum value of edf ; when it equals 0, a 

collision occurs. In repeated results using CBN, the value of 
fMin  is always positive, 

which means that this proposed method always keeps a safe distance between obstacles 

and the UAV. 

Table 2. Repeated simulation results. 

Test No. 
AC CG CR 

Minf/(m) tmin/(s) Minf/(m) tmin/(s) Minf/(m) tmin/(s) 

1 0 96.7 0 169.2 0.25 76.8 

2 0 87.5 0 89.4 0.42 89.1 

3 0 165.2 0 164.3 0.34 79.7 

4 0 148.3 0 172.8 0.43 267.5 

5 0 87.9 0 94.6 0.26 285.6 

Finally, fast anti-collision is achieved like that of humans’ conditioned reflex. The 

effectiveness of the anti-collision algorithm is improved by avoiding duplicative planning 

in a similar environment. 

5. Experiment and Analysis 

As shown in Figure 13, the UAV’s perception model has eight directions. When the 

distance between the UAV and the obstacles is less than the threshold value, there is an 

obstacle occlusion in this direction. 

 

Figure 13. The UAV’s perception model. 

The selected equipment and materials of the UAV are shown in Figure 14. 

Figure 13. The UAV’s perception model.

The selected equipment and materials of the UAV are shown in Figure 14.
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Figure 15 demonstrates the anti-collision experiment utilizing an unmanned aerial
vehicle (UAV) in the presence of an obstacle in a single direction, where the red arrows
represents the moving direction. It is observable that as the dynamic obstacle (people
holding a planar board close to the UAV as the dynamic obstacle) approaches, the UAV is
capable of swiftly maneuvering away from the obstacle and maintaining a safe distance.
The upper right corner of the image illustrates the UAV’s trajectory in response to the
obstacle’s movement. It can be discerned that the UAV consistently self-regulates to
maintain a safe distance while flying, contingent upon the proximity of the obstacle to itself.

Table 3 shows the time comparison between the traditional anti-collision method and
the proposed method. It can be seen that the traditional method needs more time from
perceiving the obstacles to finally completing the anti-collision behavior because it needs to
solve the anti-collision algorithm, convert the calculated anti-collision strategy into angle
and throttle signals, and then convert it into control commands. However, the conditioned
reflection method is directly mapped to the anti-collision instructions, which saves on the
intermediate calculation steps, speeds up the operation time of the algorithm, and improves
the anti-collision efficiency.
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Table 3. Time comparison between the traditional anti-collision method and conditioned reflection
method.

Environment 1st 2nd 3rd 4th

Traditional method 6.4 s 8.6 s 7.1 s 6.5 s
Conditioned reflection 3.7 s 5.2 s 3.6 s 4.4 s

In addition to the practical testing of the UAV in a single-obstacle environment, this
paper also conducted anti-collision experiments with obstacles in two different directions
As shown in Figure 16, one was an anti-collision test in the constructed right-angle-obstacle
environment, and Figure 17 features an anti-collision test in the constructed horizontal-
obstacle environment, where the red arrows represents the moving direction. It can be
observed that the UAV can quickly respond to these obstacles and can maintain its stability
in a safe area. In Figures 16 and 17, annotations made in the upper right corner indicate the
UAV’s movement trend in response to the obstacles. From the top-down view, it is evident
that when the UAV is too close to an obstacle, it exhibits a repulsive behavior, and when it
is too far away, it exhibits an attractive behavior, thus maintaining a safe distance.
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6. Conclusions

In terms of UAVs, we have argued that it can follow a cognitive method like the human
conditioned reflex. After reviewing anti-collision studies, a cognitive brain-like model
for UAVs has been proposed from the context of a bio-behavioral perspective. Following
are some concluding remarks: Unlike traditional anti-collision algorithms, the proposed
method can cognize by interacting with environment gradually. And it can learn new anti-
collision mapping relations by online simulations. Similar to the human conditioned reflex,
after experiencing similar obstacles, cognitive UAVs have the ability to avoid obstacles
without thinking.
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Still, there are several issues in need of attention and further investigations, including
practical studies and algorithm optimization.
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