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Abstract: Arterial blood pressure (ABP) serves as a pivotal clinical metric in cardiovascular health
assessments, with the precise forecasting of continuous blood pressure assuming a critical role in
both preventing and treating cardiovascular diseases. This study proposes a novel continuous non-
invasive blood pressure prediction model, DSRUnet, based on deep sparse residual U-net combined
with improved SE skip connections, which aim to enhance the accuracy of using photoplethysmog-
raphy (PPG) signals for continuous blood pressure prediction. The model first introduces a sparse
residual connection approach for path contraction and expansion, facilitating richer information
fusion and feature expansion to better capture subtle variations in the original PPG signals, thereby
enhancing the network’s representational capacity and predictive performance and mitigating po-
tential degradation in the network performance. Furthermore, an enhanced SE-GRU module was
embedded in the skip connections to model and weight global information using an attention mech-
anism, capturing the temporal features of the PPG pulse signals through GRU layers to improve
the quality of the transferred feature information and reduce redundant feature learning. Finally, a
deep supervision mechanism was incorporated into the decoder module to guide the lower-level
network to learn effective feature representations, alleviating the problem of gradient vanishing
and facilitating effective training of the network. The proposed DSRUnet model was trained and
tested on the publicly available UCI-BP dataset, with the average absolute errors for predicting
systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) being
3.36 ± 6.61 mmHg, 2.35 ± 4.54 mmHg, and 2.21 ± 4.36 mmHg, respectively, meeting the standards
set by the Association for the Advancement of Medical Instrumentation (AAMI), and achieving
Grade A according to the British Hypertension Society (BHS) Standard for SBP and DBP predictions.
Through ablation experiments and comparisons with other state-of-the-art methods, the effective-
ness of DSRUnet in blood pressure prediction tasks, particularly for SBP, which generally yields
poor prediction results, was significantly higher. The experimental results demonstrate that the
DSRUnet model can accurately utilize PPG signals for real-time continuous blood pressure predic-
tion and obtain high-quality and high-precision blood pressure prediction waveforms. Due to its
non-invasiveness, continuity, and clinical relevance, the model may have significant implications for
clinical applications in hospitals and research on wearable devices in daily life.

Keywords: continuous blood pressure prediction; photoplethysmography; U-net; sparse residual
connections; SE-GRU; temporal features; deep supervision

1. Introduction

With the continuous acceleration of global population aging and urbanization, the
incidence of cardiovascular diseases (CVDs) is steadily increasing, gradually becoming
some of the diseases with the highest incidence and mortality rates [1]. According to the
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relevant reports, cardiovascular diseases accounts for the largest proportion of disease-
related deaths in both rural and urban residents, with CVDs accounting for 48.00% and
45.86% of deaths in rural and urban areas, respectively, in 2020 [2]. Despite the high level of
attention given to the prevention and control of cardiovascular diseases, the upward trend
in their incidence has not been fundamentally reversed, making cardiovascular diseases a
major global public health issue [3].

Blood pressure (BP) is a crucial physiological indicator of the human circulatory
system, comprising systolic blood pressure (SBP) and diastolic blood pressure (DBP) [4].
Monitoring these metrics aids in evaluating an individual’s blood pressure status. Hyper-
tension represents a significant risk factor for cardiovascular ailments, encompassing heart
disease, stroke, arteriosclerosis, and various other cardiovascular complications. According
to the inaugural Global Hypertension Report unveiled by the World Health Organization
in 2023 [5,6], the global prevalence of hypertension surged from 650 million in 1990 to
1.3 billion in 2019. Consequently, the quest for achieving portable, continuous monitor-
ing of human blood pressure to facilitate early detection, prevention, and treatment of
hypertension and cardiovascular diseases has emerged as a paramount concern.

Currently, blood pressure measurement methods mainly include direct measurement,
intermittent blood pressure measurement, and continuous non-invasive blood pressure
measurement [7–9]. Direct blood pressure measurement involves inserting a catheter
into the artery to directly monitor real-time blood pressure data. While this method
is unaffected by external noise, its invasive nature poses risks of infection and arterial
damage. Intermittent blood pressure measurement methods commonly used include
the auscultatory method and the oscillometric method. The auscultatory method [10]
utilizes a stethoscope to listen to blood flow sounds to determine the systolic and diastolic
pressures. Although convenient, it is subject to subjective errors and may lead to the “white
coat” phenomenon. Conversely, the oscillometric method [11] automatically measures
blood pressure using oscillations beneath the blood pressure cuff, offering convenience
and practicality. However, the measurement method based on cuff inflation and deflation
repetitively compresses the arterial blood vessels, leading to psychological discomfort and
other issues. As a result, it cannot continuously track dynamic blood pressure changes and
achieve accurate continuous blood pressure measurement.

In the realm of continuous blood pressure monitoring, methods based on pulse transit
time (PTT) and pulse wave velocity (PWV) calculate arterial blood pressure by measuring
the time or velocity required for a pulse to travel from one location to another. However,
both these methods require frequent calibration to actual blood pressure values, posing
limitations in terms of measurement accuracy and applicability [12,13]. Additionally, these
methods typically necessitate at least two fully synchronized input signals (such as PPG and
ECG signals) to obtain accurate physiological parameters. Ensuring strict synchronization
of ECG and PPG signals in time during PTT measurements, as well as ensuring that the R
peak of the ECG signal corresponds to the main peak of the PPG signal within the same
cardiac cycle, significantly increases the complexity of blood pressure prediction tasks and
the amount of raw data required, making them less suitable for clinical research [14–16].

In addition to utilizing pulse wave parameters for blood pressure prediction, many
researchers have explored the relationship between various physiological signals and blood
pressure through the construction of mathematical models. For instance, Shi et al. [17]
combined electrical network models with tube-load models to propose a hybrid mathe-
matical model for establishing the relationship between PPG signals and blood pressure
signals. Through system identification methods, individualized continuous blood pressure
measurements can be achieved. Similarly, Yi et al. [13] established the relationship between
piezoelectric pulse waves and blood pressure waves using linear and integral relation-
ships, enabling wearable continuous blood pressure prediction without motion artifacts.
These approaches, based on specific assumptions and inferences, offer strong predictive
performance and interpretability by elucidating the relationship between blood pressure
changes and PPG signal features. However, acquiring medical physiological datasets that
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encompass various physiological states is often challenging. This limitation extends to
parameter tuning for the established mathematical models.

The continuous advancement of deep learning has provided new perspectives for
continuous blood pressure prediction, offering an end-to-end learning paradigm that can
directly learn the mapping relationship between input and output from raw data [18].
Traditional methods require the manual extraction of physiological parameters and features
from input signals, often involving complex feature engineering and data preprocessing
steps, making them unsuitable for efficient and precise wearable products [19,20]. Deep
learning models possess high-performance feature extraction capabilities and the ability
to handle large-scale data, enabling them to capture individual differences and blood
pressure variations without the need for complex physical modeling. Moreover, they can
automatically tune parameters, laying the technical foundation for achieving accurate and
continuous blood pressure monitoring [21]. With its formidable feature extraction and
information mining capabilities, deep learning has been widely employed in the field of
continuous non-invasive blood pressure prediction based on PPG signals. For instance,
Baek et al. [22] utilized Convolutional Neural Networks (CNNs) with dilated and strided
convolutions in both the time and frequency domains to extract features from periodic
signals, achieving accurate blood pressure prediction. Sadrawi et al. [23] employed deep
convolutional autoencoders based on LeNet and U-Net architectures to transform PPG
signals into ABP signals. Schrumpf et al. [16] trained blood pressure prediction models
based on PPG signals using three different deep learning models, combined with signal
parameterization methods for empirical evaluation. They further fine-tuned the network
models using transfer learning to successfully apply them to clinical environments for blood
pressure prediction based on rPPG signals. Numerous studies [24–26] have demonstrated
a high degree of similarity between PPG and blood pressure waveforms, highlighting
the significance of recovering original blood pressure waveforms for clinical research.
Therefore, in addition to predicting blood pressure parameters, this study also attempted to
reconstruct the original blood pressure waveform using only a single PPG signal, revealing
the patterns of blood pressure changes.

Since the proposal of the U-shaped architecture (U-net) by Ronneberger et al. [27], this
model has garnered significant attention from scholars due to its highly symmetric structure
and the paradigm of skip connections, and has been widely applied in the field of blood
pressure prediction. Cheng et al. [28] constructed ABP-Net for blood pressure waveform
prediction through the design of the network structure, input signals, and loss functions. It
allows for non-invasive estimation of physiological parameters reflecting the cardiovascular
status, albeit with room for improvement in accuracy. Athaya et al. [25] introduced new
activation functions and dropout optimization to enhance the traditional U-net structure,
demonstrating its potential for blood pressure prediction and potential application in
sensor-based wearable devices. Ibtehaz et al. [26] developed a dual-layer U-net model
comprising an approximate network and a refinement network, achieving the precise
prediction of blood pressure waveforms but falling short of meeting the A-grade criteria of
the BHS standard in the systolic blood pressure prediction task. Sun et al. [29] proposed a
dual-channel encoder U-net model and incorporated an improved attention mechanism
block into the encoder to address the strong periodicity and continuity characteristics of
PPG signals, thereby achieving accurate and rapid blood pressure prediction.

However, existing research indicates that there is still room for improvement in using
the U-net model for continuous blood pressure prediction. Firstly, the direct transmission
of long-distance information via skip connections for high–low-scale feature fusion may
lead to information redundancy and loss. Additionally, the use of ordinary convolutions
for information transmission in the upsampling and downsampling paths may result in
information loss and gradient vanishing issues [30]. Finally, the traditional U-net primarily
focuses on extracting and reconstructing local features, which presents certain limitations
in capturing global contextual information. However, physiological signals such as PPG
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signals exhibit strong temporal and continuous characteristics, posing challenges for U-net
in effectively extracting their temporal features.

In response to the aforementioned issues, this paper proposes a novel continuous non-
invasive blood pressure prediction method based on deep sparse residual U-net combined
with improved SE skip connections, aiming to enable continuous blood pressure prediction
using a single PPG signal. The main contributions of this work are as follows:

(1) The introduction of a highly symmetric DSRUnet architecture, incorporating refined
sparse residual connections to facilitate feature propagation, thereby enhancing infor-
mation fusion and feature expansion for capturing subtle variations in PPG signals.
To address the issue of the inability of the fully connected layers in the SE module to
dynamically learn temporal data features, GRU layers are introduced to capture tem-
poral pulse signal features by learning internal channel dependencies. Furthermore,
an SE-GRU module is embedded within the skip connections for global information
modeling and weighting, aimed at enhancing the discriminative and representational
capabilities of essential features in the original PPG signal.

(2) The integration of a deep supervision mechanism by introducing additional output
layers at the decoder end of the DSRUnet network, guiding the lower-level network
to learn effective feature representations, thus alleviating the issue of gradient disap-
pearance and improving the network’s training efficiency and performance.

(3) The proposed method not only predicts highly accurate SBP, DBP, and MBP values
but also enables the accurate recovery of blood pressure waveforms from a single PPG
signal. Extensive ablation experiments and comparisons with the existing research
demonstrate the superior blood pressure prediction performance of the DSRUnet
model proposed in this study, particularly in SBP prediction, surpassing other state-
of-the-art models in terms of accuracy, thus indicating its potential applicability in
wearable devices.

The remaining sections of the paper are organized as follows: Section 2 provides
a detailed description of the research methodology for continuous non-invasive blood
pressure prediction based on photoplethysmography (PPG) signals. It also outlines the
fundamental and innovative theories behind the proposed DSRUnet model. Section 3
encompasses the experimental settings, dataset descriptions, establishment of evaluation
metrics, and configuration of the comparative models. Section 4 elucidates the experimental
results and analysis, including assessments based on various standards, results from
ablation experiments, and comparisons with existing methods. Section 5 summarizes the
research findings of the paper and outlines potential future research directions.

2. Materials and Methods

To enhance the generalization and representational capacity of the blood pressure
prediction network and address limitations in information fusion, global feature modeling,
and gradient vanishing, we propose a Deep Sparse Residual U-net (DSRUnet) for con-
tinuous non-invasive blood pressure prediction. The network employs U-net as its core
framework, comprising traditional encoder–decoder modules and skip connections, and
incorporates structural optimization strategies such as sparse residuals, SE-GRU, and deep
supervision. This section primarily describes the research methodology for continuous
non-invasive blood pressure prediction based on photoplethysmography (PPG) signals,
including data acquisition, preprocessing, model training, and prediction. The specific
research framework is illustrated in Figure 1. Additionally, this section elaborates on
the basic theory and innovative modules of the proposed DSRUnet model, sequentially
introducing these modules and analyzing their roles and innovations in the blood pressure
prediction task.
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Figure 1. Overall research framework for continuous non-invasive blood pressure prediction based
on PPG signals. The process consists of four stages: (A) data acquisition, (B) data preprocessing,
(C) model training, and (D) model validation and prediction. Stage (D) includes both blood pressure
waveform prediction and blood pressure parameter prediction.

2.1. Blood Pressure Prediction Task Based on PPG Signals

The blood pressure prediction task based on photoplethysmography (PPG) signals
aims to accurately predict individual blood pressure values by leveraging the temporal and
spectral features of PPG signals, in conjunction with deep learning or machine learning
models [31]. PPG signals, acquired through non-invasive optical sensors, represent varia-
tions in skin microvascular blood flow induced by heartbeats, which are closely associated
with cardiac activity and vascular status [32]. By analyzing and mining the feature informa-
tion of PPG signals, the blood pressure prediction task elucidates the relationship between
PPG features and blood pressure-related parameters, providing non-invasive, real-time
means of blood pressure monitoring for medical and health care, with significant clinical
application prospects.

The main blood pressure parameters include SBP, DBP, and MBP. In blood pressure
signals, SBP represents the highest pressure point, typically corresponding to the maximum
value during cardiac contraction, while DBP represents the lowest pressure point, typically
corresponding to the maximum value during cardiac relaxation. These points can be
identified in the blood pressure waveform by monitoring the peaks and troughs of the
blood pressure signal [33]. Mean blood pressure (MBP) is also a significant physiological
parameter in blood pressure monitoring. It reflects the average arterial pressure level
throughout the cardiac cycle and aids in assessing blood pressure regulation function [34].
It should be noted that the values of SBP, DBP, and MBP are calculated and may vary
depending on changes in physiological conditions.

Based on relevant mathematical knowledge, this paper defines the blood pressure
prediction task based on PPG signals as a regression task aimed at minimizing the target loss
function. Let X represent the original input PPG signal and Y represent the corresponding
blood pressure signal. The task objective is to learn an optimal mapping function f : X → Y ,
which accurately transforms the PPG signal into the blood pressure signal. This mapping
function can be represented by Equation (1).

Y = f (X), (1)

In this process, the numerical values of the regression model’s parameters and the
relationship between the final PPG signal and blood pressure signal are determined through
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training a deep learning model. The optimal mapping function f ∗(x) can be obtained by
minimizing the objective loss function, as shown in Equation (2).

f ∗(X) = argmin(L( f (X), Y)), (2)

In this context, L(·, ·) represents the loss function.
Therefore, given the original inputs, the predicted SBP, DBP, and MBP can be computed

using Equations (3)–(5).
SBP = max( f ∗(X)), (3)

DBP = min( f ∗(X)), (4)

MBP =
1
3
(SBP + 2DBP), (5)

2.2. Overall Framework of DSRUnet Network

This section provides a detailed overview of the overall framework of the proposed
DSRUnet network model. It adopts the conventional U-net network architecture, consisting
of encoder and decoder modules, each comprising four downsampling modules and
four upsampling modules, respectively. Both the downsampling and upsampling paths
consist of multiple sparse residual connection modules, with corresponding dimensional
skip connections linked by SE-GRU modules. The SE attention module facilitates the
transmission of features learned in the encoder to the corresponding decoder, assisting
the decoder in recovering detailed information. The improved GRU module enables the
model to adapt more effectively to the characteristics of temporal pulse data, enhancing
the network’s perception and utilization efficiency of important features. Furthermore,
deep supervision was introduced into the network by introducing supervisory signals
at different levels of the model’s output, allowing the model to learn and optimize from
multiple levels, thereby accelerating convergence, improving robustness, and mitigating
the issue of gradient vanishing. The overall framework of the network model is illustrated
in Figure 2.
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2.3. SE-GRU Module
2.3.1. Original SE Attention Mechanism Module

The SE (Squeeze-and-Excitation) attention mechanism, a technique employed to en-
hance the representational capability of features, was initially proposed by Hu et al. [35]
in 2018. This mechanism adjusts the importance of each feature channel by learning fea-
ture weights, thereby increasing the model’s focus on important features. The SE module
primarily consists of two steps: Squeeze and Excitation. The Squeeze step involves global
average pooling, converting the feature maps of each channel into global features for each
channel, compressing the feature maps along the spatial dimension to obtain a global
feature description for each feature channel. Subsequently, in the Excitation step, weights
for each channel are learned using fully connected layers, which are then applied to weight
the feature channels to obtain enhanced feature representation. The framework schematic
of the original SE attention mechanism module is illustrated in Figure 3.
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Assuming the input features are denoted as X ∈ RH×W×C, where H, W, and C
represent the height, width, and number of channels, respectively, the operations of the SE
module can be described in the following three steps.

(1) Squeeze Operation: Perform a Squeeze operation on X, utilizing global average
pooling to map each H ×W matrix of X into a global feature channel descriptor,
zC ∈ RC, as shown in Equation (6).

zC = Fsq(X) =
1

W × H

W

∑
i=1

H

∑
j=1

X(i, j), (6)

(2) Excitation Operation: Conduct an Excitation operation on X by learning channel-
specific activation weights ω through a linear layer, followed by a Sigmoid function to
obtain distinct excitation weights s, as depicted in Equation (7).

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)), (7)

where δ represents the Relu activation function; W1 ∈ RC/r×C and W2 ∈ RC×C/r are the
weight parameters of the fully connected layer; r represents the scaling factor; and in this
model, σ signifies the Sigmoid activation function.

(3) Apply the excitation weights s to each channel of the input features X to obtain the
final enhanced feature output Y, as shown in Equation (8).

Y = X⊗ s, (8)

where ⊗ represents element-wise multiplication (Hadamard product), and Y ∈ RH×W×C

denotes the feature output after being processed by the SE module.

2.3.2. Improved SE Attention Mechanism Module

In the original SE module, the global channel descriptor obtained after compression is
conveyed through a fully connected layer. However, fully connected layers are typically
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utilized for processing flattened input data and are unable to capture dependencies between
sequential features [36]. Their fixed parameter relationships imply an inability to model
temporal dependencies within data and to dynamically learn relationships between features.
Moreover, the considerable parameter count not only increases model complexity but also
tends to lead to overfitting, thereby compromising the model’s generalization ability. As a
result, they are unsuitable for utilizing temporal pulse signals for blood pressure prediction.

Therefore, this paper proposes an improvement to the original SE module’s approach
of obtaining internal channel dependencies using fully connected layers, aiming at the
temporal characteristics of PPG signals and blood pressure signals. We introduced a GRU
layer capable of capturing temporal data features, thus presenting a more suitable SE-GRU
module for blood pressure prediction utilizing temporal pulse signals. Initially, the module
compresses the original features into global channel descriptors via the Squeeze operation.
Subsequently, by inputting the global channel descriptors into the corresponding GRU layer,
the module leverages the gate mechanism within the GRU units to dynamically adjust the
current hidden state based on the current input and the previous hidden state. This process
facilitates the acquisition of output weights for different channels, enabling more effective
learning and representation of dynamic features and dependencies within sequential data.
Finally, the obtained output weights are used to weight the original features, restoring them
to their original dimensions. The proposed SE-GRU module is illustrated in Figure 4.
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GRU, a variant of recurrent neural networks [37], is designed for handling sequen-
tial data and possesses inherent memory capabilities. It comprises two gate units: the
Reset Gate and the Update Gate. The Reset Gate controls the degree of retention of past
information, while the Update Gate regulates the degree of integration of new information.

Assuming at time step t, the input is x(t) and the hidden state is h(t−1), the computation
of the Reset Gate r(t) and the Update Gate z(t) in the GRU is formulated as shown in
Equations (9) and (10), respectively.

r(t) = σ
(

Wr·
[

h(t−1), x(t)
]
+ br

)
, (9)

z(t) = σ
(

Wz·
[

h(t−1), x(t)
]
+ bz

)
, (10)

Here, σ denotes the Sigmoid function, and Wr, Wz, br, and bz represent the weight
parameters. In the application of the Reset Gate, new memory content utilizes the Reset
Gate to store relevant past information. The computation of the candidate hidden state h̃(t)

is formulated as shown in Equation (11).

h̃(t) = tanh
(

W·
[
r(t) � h(t−1), x(t)

]
+ b
)

, (11)
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Here, � represents the Hadamard product, and W and b are weight parameters. The
final memory computation process requires the use of the Update Gate, which determines
the current memory content and the information to be gathered from the previous time
step. The update of the hidden state is formulated as shown in Equation (12).

h(t) =
(

1− z(t)
)
� h(t−1) + z(t) � h̃(t), (12)

Embedding the SE-GRU module into the skip-connection path facilitates a more accu-
rate transmission of features learned in the encoder to the corresponding decoder segments,
enhancing feature representation and emphasizing critical details such as peaks, valleys,
and waveform shapes. The fundamental concept is to dynamically weight the features
transmitted through the skip connections to highlight important feature information rel-
evant to the current task, thereby improving the network’s perception and utilization
efficiency of essential features. Specifically, feature information generated through convolu-
tional operations is input into the SE-GRU module, comprising global average pooling and
a GRU layer. Through global average pooling, the feature information of each channel is
transformed into the corresponding global features. Subsequently, the GRU layer learns
temporal pulse features, obtaining weights for each channel, which are then used to weight
the feature channels, resulting in enhanced feature representation. Finally, the features pro-
cessed by the SE module are transmitted to the corresponding decoder network structure,
aiding in the recovery of detailed information by the decoder and supporting subsequent
feature extraction and learning, thus enhancing the model’s predictive performance and
generalization capability.

2.4. Sparse Residual Connection Module

While attention mechanisms assist base networks in extracting salient features from
input signals, deep models encounter challenges such as gradient vanishing and perfor-
mance degradation with increasing convolutional layers [38]. Residual connection [39] is
a technique used in deep neural networks to address issues of vanishing and exploding
gradients. Its core idea involves introducing direct skip connections between certain layers
of the network, allowing information to flow directly from lower to higher layers. This
facilitates easier learning of residuals, i.e., the differences between the target output and the
current predicted output, thereby enhancing model training effectiveness and convergence
speed. The ordinary convolutional unit and residual unit are illustrated in Figure 5a,b.

Each residual convolutional unit can be represented by Equations (13) and (14).

yi = F(xi, Wi) + h(xi), (13)

xi+1 = f (yi), (14)

where xi and xi+1 are the input and output of the residual unit, F(·) is the residual function,
H(·) is the identity mapping function, and f (·) is the activation function.

In order to better extract features from the raw PPG time-series data and assist the
model in adapting to complex data distributions and task requirements, an improvement
was made to the conventional residual units by introducing a sparse residual connection
approach. In the encoder module, each input feature undergoes a residual connection
after only one convolutional layer and a batch normalization (BN) layer. Subsequently,
the obtained feature’s original information is concatenated to generate the first residual
information. Then, the feature undergoes another round of processing by the convolu-
tional layer and BN layer to obtain the second residual information. This transformation
converts a single residual connection in the original residual unit into two sparse residual
connections, while the corresponding decoder path adopts a sparse residual connection
only once. Replacing traditional convolution operations in the contraction and expansion
paths with this sparse residual connection approach allows for the direct transmission
of input information to the output, alleviating potential issues of gradient transmission
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hindrance commonly associated with conventional residual connections. This approach
enables more effective capturing and utilization of the input data’s feature information,
and deeper network structures are no longer constrained by gradient vanishing issues. The
proposed sparse residual connection module, after improvement, is depicted in Figure 5c.
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2.5. Deep Supervision Module

Deep supervision is a method for training deep neural networks [40,41], which in-
volves adding additional auxiliary outputs in the middle layers of the network to provide
more supervision signals. These outputs offer supervision at different depths of the net-
work to aid faster convergence and better learning of feature representations, thereby
enhancing the understanding and prediction capabilities using blood pressure signals. The
model’s auxiliary outputs at each level enable the capture and prediction of blood pressure
changes at different scales. Original blood pressure signals may be affected by noise such
as motion interference and signal drift. Deep supervision, through additional supervision
signals, allows the network to learn more robust feature representations, enhancing the
model’s resistance to noise and improving the training efficiency and accuracy. In this
study, five deep supervision layers were added, placed individually after the five outputs
in the decoder path, denoted as the “out” layer, and “level1” to “level4” layers. The loss
weights for each layer were set as [1, 0.9, 0.8, 0.7, 0.6], respectively. The loss function is
shown in Equation (15).

Ltotal = ∑N
i=1

(
L(y, pout) + ∑4

j=1 L
(

plevelj

))
, (15)

where pout is the final output prediction, plevelj
is the prediction of the j auxiliary output,

and N is the number of samples.
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3. Experimental Settings
3.1. Experimental Environment and Parameter Settings

The deep learning framework employed in this study is TensorFlow 2.13.0, which was
run on the Windows 10 operating system. The GPU utilized was NVIDIA GeForce RTX
2080 with 8GB dedicated GPU memory. The algorithm implementation and experimental
validation were conducted using Python 3.8. The proposed blood pressure prediction net-
work was trained using the Adam optimizer, with a batch size set to 256. Each experiment
was run for 100 epochs, incorporating an early stopping mechanism. Specifically, if the
performance on the validation set did not improve continuously for 10 consecutive epochs,
the training process was immediately halted. The learning rate of the network was set
to 0.0001.

To effectively evaluate the model’s performance, the mean absolute error (MAE) was
employed as the loss function. As per related research [42], MAE demonstrates better
robustness in the presence of motion artifacts and noise, and by balancing all error terms,
it showcases superior performance. The calculation of MAE is depicted in Equation (18)
below. Additionally, the Mean Squared Error (MSE) was used as an additional metric to
monitor the model, providing a better assessment of the difference between the predicted
results and the actual data, as shown in Equation (19) in Section 2.3.

3.2. Experimental Dataset
3.2.1. UCI-BP Dataset

To train and evaluate the proposed DSRUnet network, the UCI-BP dataset provided
by the University of California Irvine (UCI) machine learning repository was utilized. This
dataset, compiled by Kachuee et al. [43,44], was sourced from the MIMIC-II database and
comprises synchronized continuous fingertip PPG signals, ABP signals, and ECG signals
from 12,000 records of ICU patients. Each record has a duration ranging from 8 to 592 s,
with a sampling frequency of 125 Hz for all signals. The precision of the recordings is
8 bits. The dataset is stored in four .mat files, labeled as Part_1 to Part_4, each containing
3000 cell arrays. Each cell represents a record, and each row of the record corresponds to a
signal channel. This study specifically utilized the synchronized PPG and ABP signals. A
statistical summary of the UCI-BP dataset from [26] is presented in Table 1.

Table 1. Statistics of raw UCI-BP data.

Mean (mmHg) Std (mmHg) Min (mmHg) Max (mmHg)

SBP 134.19 22.93 71.56 199.99
DBP 66.14 11.45 50 165.17
MBP 90.78 14.15 59.96 176.88

It can be observed that SBP had a significantly larger standard deviation value. This
indicates that when using this dataset for blood pressure prediction, predicting the SBP
parameter may result in larger errors, which aligns with the hypothesis proposed by
Kachuee et al. [44]. Therefore, in the final evaluation of the model’s predictive performance,
for networks with similar performance, this study determined the optimal blood pressure
prediction model based on the accuracy and effectiveness of predicting the SBP parameter,
as proposed by the DSRUnet network.

3.2.2. Data Preprocessing

In the task of blood pressure prediction, high-quality data are essential for the model to
learn pulse and blood pressure features effectively. Reasonable data preprocessing methods
can improve data quality and reliability [45]. Therefore, this study referred to previous
research [22,24,46,47] and performed preprocessing operations on the PPG signals and
blood pressure signals in the UCI-BP dataset, including baseline drift removal, bandpass
filtering, outlier removal, data partitioning, and data standardization. Firstly, records with
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a time span less than 8 min were removed, reducing the total number of records from
12,000 to 2064, ensuring the reliability of the final PPG and blood pressure signals [48,49].
Baseline drift in the original PPG signals was removed using Fourier Transform (FFT).
Subsequently, a fourth-order Butterworth bandpass filter with a low cutoff frequency of
0.5 Hz and a high cutoff frequency of 8 Hz, corresponding to the sampling frequency of
125 Hz, was applied to eliminate low-frequency and high-frequency noise present in the
PPG and blood pressure signals.

To eliminate abnormal peak values in the signals, the peak clipping method [50] was
employed for correction and adjustment. In the first step, the mean and standard deviation
were calculated to determine the threshold. Linear interpolation was then applied in the left
and right regions of the abnormal peaks based on the difference between the signal value
and the threshold, gradually approaching the set threshold. This effectively eliminates
peak abnormalities and fluctuations, resulting in smoother and more reliable signals.

To eliminate inter-individual differences and differences in scale among different
features, the Z-score standardization method [51] was applied to the original PPG signals
for data standardization. The specific method is illustrated by Equation (16).

z =
x− µ

σ
, (16)

Here, x represents the original PPG signal data, µ denotes the mean of the original data,
σ represents the standard deviation of the original data, and z signifies the standardized
PPG signal data. By using the Z-score for data standardization, data with similar scales
and distributions are obtained, making the feature weights learned by the model more
generalizable and enhancing the model’s generalization ability. The statistical data of the
UCI-BP dataset after data preprocessing are presented in Table 2, where it can be observed
that the standard deviation values of each parameter have decreased, which facilitates
subsequent model training for prediction.

Table 2. UCI-BP data statistics after data preprocessing.

Mean (mmHg) Std (mmHg) Min (mmHg) Max (mmHg)

SBP 134.31 17.99 85.86 179.36
DBP 72.98 9.48 57.79 134.22
MBP 93.42 9.92 69.01 139.81

The model training in this study was ultimately divided into training, validation, and
test sets in a ratio of 6:2:2. The training set comprised 23,648 samples, while the validation
and test sets each contained 7808 samples, and the length of each sample was 1024. The
blood pressure data consisted of three channels representing SBP, DBP, and MBP. The final
distribution of the blood pressure information is illustrated in Figure 6.
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3.3. Model Evaluation Metrics

This study adopted several evaluation metrics to assess the blood pressure prediction
model’s performance. These metrics include mean error (ME), mean absolute error (MAE),
Mean Squared Error (MSE), standard deviation (STD), and Coefficient of Determination
(R-squared) [52]. The specific calculation method is shown in Equations (17)–(21).

ME =
1
N

N

∑
i=1

(yi − ŷi), (17)

MAE =
1
N

N

∑
i=1
|yi − ŷi|, (18)

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2, (19)

STD =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2, (20)

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 , (21)

where N presents the number of samples, yi represents the true blood pressure value, ŷi
represents the predicted blood pressure value, and yi represents the mean of the true values.
These metrics provide comprehensive insights into the accuracy, precision, and reliability
of the blood pressure prediction model.

3.4. Comparative Model Settings

To validate the roles of various modules in the proposed DSRUnet model and facilitate
subsequent ablation experiments on the preprocessed UCI-BP dataset, seven networks
were established for the ablation experiments and comparative validation based on the
traditional U-net network’s encoder–decoder structure. These networks were set up with
different modules at different positions in the network architecture, as shown in Table 3.
They included the proposed DSRUnet network, where each network utilizes deep super-
vision. The skip connection methods were set to the original SE modules and SE-GRU
modules, while the transmission methods for the upsampling and downsampling paths
were set to the regular residual and sparse residual. Model 1 does not include any additional
modules, representing the simplest U-net structure.

Table 3. Model settings for comparison of different modules. “
√

” represents the inclusion of this
module, and “—” represents the exclusion of this module.

Deep Supervision Skip Connection Downsampling and Upsampling

DS SE SE-GRU Resnet Sparse Resnet

Model 1
√

— — — —
Model 2

√ √
— — —

Model 3
√

—
√

— —
Model 4

√ √
—

√
—

Model 5
√ √

— —
√

Model 6
√

—
√ √

—
DSRUnet

√
—

√
—

√
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4. Results and Discussion
4.1. Evaluation and Analysis of Experimental Results Based on BHS Standard

The British Hypertension Society (BHS) standard [53] is one of the international
standards used to assess the accuracy of blood pressure measurement devices. It serves as
a foundation for determining whether blood pressure prediction models can be applied
in clinical experiments. The accuracy criteria in the BHS standard evaluation method
are established based on absolute errors, requiring evaluation based on the percentage
of absolute errors in the predicted values for the test samples. The thresholds are set at
5 mmHg, 10 mmHg, and 15 mmHg, and the BHS defines three grades, A, B, and C, as
shown in Table 4. The overall evaluation grade for the SBP, DBP, and MBP predictions
under the three scenarios was determined using the worst result among the three sets of
threshold judgment results.

Table 4. BHS standard for classification of prediction levels.

BHS Standard

≤5 mmHg ≤10 mmHg ≤15 mmHg

Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

Utilizing the BHS standard, the evaluation grade results for the different models are
presented in Table 5. It can be observed that the proposed DSRUnet model achieved grade
A in the evaluation of its SBP, DBP, and MBP predictions according to the BHS standard.
Furthermore, compared with the other models, the DSRUnet model achieved significant
breakthroughs in the prediction accuracy for SBP after incorporating the improved SE-GRU
module and sparse residual connection module. Specifically, the percentage of predictions
below a difference of 5 mmHg exceeded 80% for the first time, and predictions below
10 mmHg exceeded 90%. Although the performance of this model in DBP and MBP
prediction was slightly lower than that of Model 5 and Model 6, comparing DSRUnet
with Model 6 revealed that the prediction accuracy of SBP was enhanced by 1.51%, 0.75%,
and 0.34% under the three thresholds, respectively. Meanwhile, the prediction accuracy
of DBP decreased by only 0.08%, 0.45%, and 0.14%, respectively. This suggests that the
improvement in SBP prediction performance by DSRUnet far outweighed the decrease in
DBP prediction performance. Considering the substantial difficulty in predicting SBP in
blood pressure prediction tasks, this outcome is acceptable according to the hypothesis
proposed by Kachuee et al. [44,54]. Figure 7 illustrates the distribution of absolute errors
when predicting SBP, DBP, and MBP. It can be observed that the majority of absolute
errors were below 2.5 mmHg, indicating that the proposed model achieved small errors
in blood pressure prediction and exhibits good prediction performance, meeting the basic
requirements for clinical applications [55].

Table 5. Evaluation results of BHS standards for different models. Where SBP represents Systolic
Blood Pressure, DBP represents Diastolic Blood Pressure, MBP represents Mean Arterial Pressure,
and the last column of the table represents the three grades A, B, and C of the BHS standard.

Model Task
Threshold Range

Grade
≤5 mmHg ≤10 mmHg ≤15 mmHg

Model 1
SBP 62.08% 80.52% 89.88% C
DBP 78.16% 92.83% 97.03% A
MBP 81.30% 94.65% 97.66% A

Model 2
SBP 72.58% 88.16% 94.38% B
DBP 83.85% 94.11% 98.16% A
MBP 85.49% 95.04% 97.94% A
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Table 5. Cont.

Model Task
Threshold Range

Grade
≤5 mmHg ≤10 mmHg ≤15 mmHg

Model 3
SBP 76.37% 89.63% 95.18% A
DBP 84.93% 94.86% 97.96% A
MBP 86.59% 94.99% 97.61% A

Model 4
SBP 79.09% 89.96% 94.95% A
DBP 84.54% 94.26% 97.86% A
MBP 86.08% 94.85% 97.86% A

Model 5
SBP 78.71% 89.91% 95.57% A
DBP 85.95% 95.34% 98.22% A
MBP 86.18% 94.77% 97.75% A

Model 6
SBP 79.93% 89.63% 95.45% A
DBP 85.54% 94.84% 98.14% A
MBP 87.06% 95.38% 97.76% A

DSRUnet
SBP 81.44% 90.38% 95.79% A
DBP 85.46% 94.39% 98.00% A
MBP 87.22% 95.07% 97.73% A
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4.2. Evaluation and Analysis of Experimental Results Based on AAMI Standard

Similar to the BHS standard, the Association for the Advancement of Medical In-
strumentation (AAMI) Standard [56] serves as another benchmark for assessing the per-
formance of medical devices. In the realm of blood pressure measurements, the AAMI
standard is frequently employed to gauge the accuracy and reliability of blood pressure
measuring devices. This standard imposes specific requirements regarding error limits,
stipulating that the average error and standard deviation between predicted and true re-
sults should each be less than 5 mmHg and 8 mmHg, respectively. Furthermore, adherence
to the AAMI standards typically necessitates a minimum sample size of 85 subjects in the
study. Table 6 presents the evaluation results of the DSRUnet model in accordance with the
AAMI standard.

Table 6. The AAMI standard evaluation results of the proposed DSRUnet model.

Model Task
Evaluation Metrics No. of

Subjects Pass or Not
ME STD

DSRUnet
SBP −0.15 6.71

244
Yes

DBP −0.54 4.54 Yes
MBP −0.41 4.36 —

AAMI
standard SBP/DBP ≤5 ≤8 ≥85 —
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From the evaluation results, it is evident that the proposed DSRUnet model meets
the AAMI standard for blood pressure prediction. Building upon this foundation, to
assist researchers and medical professionals in assessing the consistency between predicted
and true results, Bland–Altman plots [57] of the predicted SBP, DBP, and MBP results are
generated based on the ME and STD evaluation metrics. These plots provide a visual means
to evaluate potential biases or anomalies in the predicted results and reflect the central
tendency of the predictions. Bland–Altman plots utilize the standard deviation of the
differences to describe the variability of the mean. The requirement for good consistency
between true and predicted results is that the vast majority of differences fall within the
95% limits of agreement, defined as ±1.96 times the standard deviation of the differences.
The range of this limit is [µ− 1.96σ, µ + 1.96σ], where µ and σ represent the mean and
standard deviation of the differences, respectively. This range can reflect the acceptable
level in clinical practice.

The final results, as shown in Figure 8, distinctly illustrate the consistency analysis
of the SBP, DBP, and MBP predictions using the DSRUnet model. The majority of the
errors were below 5 mmHg, with the local density heatmaps distributed near the 0 scale
line. Although some samples exceeded 15 mmHg in the SBP predictions, the distribution
of the local density heatmap in this scenario was the most uniform. This demonstrates
that the DSRUnet model has relatively reliable performance for blood pressure prediction,
particularly with a qualitative breakthrough in SBP predictions. Moreover, the results can
be validated through consistency checks.
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4.3. Ablation Experiment and Result Analysis

In order to comprehensively evaluate the generalization ability and predictive perfor-
mance of the proposed DSRUnet model, degradation experiments were conducted based
on the model evaluation metrics set in Section 2.3 and the comparative models set in
Section 2.4, using an independent test set. The evaluation results of the different models are
presented in Table 7. To facilitate a more intuitive comparison of the ME metric differences,
the absolute values of the ME results were used for comparison.

The comparison of four performance metrics across different models is illustrated in
Figure 9. It is evident that the DSRUnet model exhibited superior performance, indicating
its advanced capabilities.
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Table 7. Comparison of experimental results of evaluation indicators obtained from different models.
“↓” indicates that a lower value is better, and “↑” indicates that a higher value is better.

Model
SBP (mmHg) DBP (mmHg) MBP (mmHg)

|ME| ↓ MAE ↓ STD ↓ R2 ↑ |ME| ↓ MAE ↓ STD ↓ R2 ↑ |ME| ↓ MAE ↓ STD ↓ R2 ↑

Model 1 1.16 6.11 9.73 0.715 3.01 3.98 5.53 0.659 1.62 3.47 5.35 0.726
Model 2 1.70 4.56 7.56 0.784 0.75 2.84 4.74 0.697 1.07 2.83 4.63 0.759
Model 3 1.27 4.16 7.45 0.818 0.47 2.60 4.72 0.703 0.73 2.57 4.66 0.764
Model 4 0.59 3.97 7.14 0.833 0.96 2.67 4.65 0.712 0.44 2.45 4.53 0.777
Model 5 1.05 3.89 7.35 0.823 0.30 2.47 4.54 0.725 0.60 2.39 4.42 0.787
Model 6 0.49 3.57 6.71 0.852 0.28 2.51 4.51 0.730 0.35 2.33 4.29 0.800

DSRUnet 0.15 3.36 6.61 0.856 0.54 2.35 4.54 0.725 −0.41 2.21 4.36 0.794

Sensors 2024, 24, x FOR PEER REVIEW 17 of 27 
 

 

based on the model evaluation metrics set in Section 2.3 and the comparative models set 
in Section 2.4, using an independent test set. The evaluation results of the different models 
are presented in Table 7. To facilitate a more intuitive comparison of the ME metric differ-
ences, the absolute values of the ME results were used for comparison. 

Table 7. Comparison of experimental results of evaluation indicators obtained from different mod-
els. “↓” indicates that a lower value is beĴer, and “↑” indicates that a higher value is beĴer. 

Model 
SBP (mmHg) DBP (mmHg) MBP (mmHg) 

|ME| ↓ MAE ↓ STD ↓ R2 ↑ |ME| ↓ MAE ↓ STD ↓ R2 ↑ |ME| ↓ MAE ↓ STD ↓ R2 ↑ 
Model 1 1.16 6.11 9.73 0.715 3.01 3.98 5.53 0.659 1.62 3.47 5.35 0.726 
Model 2 1.70 4.56 7.56 0.784 0.75 2.84 4.74 0.697 1.07 2.83 4.63 0.759 
Model 3 1.27 4.16 7.45 0.818 0.47 2.60 4.72 0.703 0.73 2.57 4.66 0.764 
Model 4 0.59 3.97 7.14 0.833 0.96 2.67 4.65 0.712 0.44 2.45 4.53 0.777 
Model 5 1.05 3.89 7.35 0.823 0.30 2.47 4.54 0.725 0.60 2.39 4.42 0.787 
Model 6 0.49 3.57 6.71 0.852 0.28 2.51 4.51 0.730 0.35 2.33 4.29 0.800 

DSRUnet 0.15 3.36 6.61 0.856 0.54 2.35 4.54 0.725 −0.41 2.21 4.36 0.794 

The comparison of four performance metrics across different models is illustrated in 
Figure 9. It is evident that the DSRUnet model exhibited superior performance, indicating 
its advanced capabilities. 

 

Figure 9. Evaluation index prediction results of different models for different blood pressure pa-
rameter predictions. 

From the results of the ablation experiment, it can be observed that the performance 
the pure U-net network without any improvement modules for continuous blood pres-
sure prediction was the poorest. In particular, the MAE for SBP predictions reached 6.11 
and the STD reached 9.73, indicating very unsatisfactory results. Building upon the per-
formance of the worst-performing Model 1, different improvement modules were pro-
gressively added for the degradation experiment. 

A comprehensive comparison and analysis of the experimental results of each model, 
using the mean absolute error (MAE) of each prediction as the evaluation metric, validates 
the effectiveness of the proposed innovative modules for SBP, DBP, and MBP predictions. 
The specific results are as follows: 
 Model 2 and Model 3 have embedded traditional SE modules and improved SE-GRU 

modules, respectively, in the skip-connection part. Compared to Model 1, the MAE 
for SBP predictions was reduced by 1.55 and 1.95, respectively, for Model 2 and 
Model 3. Similarly, for DBP prediction, the MAE was reduced by 1.14 and 1.38, re-
spectively. This demonstrates that improving the skip-connection method can 

Figure 9. Evaluation index prediction results of different models for different blood pressure parame-
ter predictions.

From the results of the ablation experiment, it can be observed that the performance
the pure U-net network without any improvement modules for continuous blood pressure
prediction was the poorest. In particular, the MAE for SBP predictions reached 6.11 and the
STD reached 9.73, indicating very unsatisfactory results. Building upon the performance of
the worst-performing Model 1, different improvement modules were progressively added
for the degradation experiment.

A comprehensive comparison and analysis of the experimental results of each model,
using the mean absolute error (MAE) of each prediction as the evaluation metric, validates
the effectiveness of the proposed innovative modules for SBP, DBP, and MBP predictions.
The specific results are as follows:

• Model 2 and Model 3 have embedded traditional SE modules and improved SE-GRU
modules, respectively, in the skip-connection part. Compared to Model 1, the MAE for
SBP predictions was reduced by 1.55 and 1.95, respectively, for Model 2 and Model
3. Similarly, for DBP prediction, the MAE was reduced by 1.14 and 1.38, respectively.
This demonstrates that improving the skip-connection method can significantly reduce
blood pressure prediction errors, and introducing GRU layers to enhance SE modules
can further improve the prediction accuracy and enhance the ability to extract pulse
signal features.

• Building upon the improved skip-connection method, the effectiveness of replacing
conventional convolution modules in the sampling paths with residual modules was
verified. Model 4 and Model 5 are based on Model 2 but use ordinary residual mod-
ules and sparse residual modules for feature transmission, respectively. Compared
to Model 2, the MAE for SBP predictions was reduced by 0.59 and 0.67, respectively,
for Model 4 and Model 5. Similarly, for DBP predictions, the MAE was reduced by
0.17 and 0.37, respectively. This indicates that replacing the original conventional
convolution modules with residual modules in both the downsampling and upsam-
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pling paths can further improve the blood pressure prediction accuracy, alleviate the
gradient vanishing problem, and enhance the robustness and generalization ability of
the network.

• From the experimental results, Model 6 and the proposed DSRUnet model emerged
as the two best-performing models. Both models have improved SE-GRU modules
embedded in the skip connection and residual connection modules for feature trans-
mission were introduced. Among them, the DSRUnet model achieved the smallest
MAE results for SBP, DBP, and MBP predictions, which were 3.36, 2.35, and 2.21, re-
spectively. While Model 6 attained the best ME, STD, and R2 values for DBP and MBP
predictions, considering the difficulty in SBP prediction in existing blood pressure pre-
diction tasks, and the minor differences in DBP and MBP prediction performances (ME
difference of 0.26 and 0.06, STD difference of 0.03 and 0.07, R2 difference of 0.005 and
0.006), this study selected the more accurate DSRUnet model for SBP prediction as
the optimal model. This choice validates the excellent prediction performance and
stability of the proposed SE-GRU module and sparse residual connection module.

Figure 10 illustrates the regression fitting results of the proposed DSRUnet model for
SBP, DBP, and MBP prediction tasks. The green solid line represents the original data line,
while the red dashed line represents the fitted line. Different colors denote the degree of
dispersion of the data points. It can be observed that the majority of data points exhibited
small errors. Additionally, the coefficients of determination (R2) for the SBP, DBP, and MBP
prediction fitting results were 0.85, 0.72, and 0.79, respectively. From the fitting results, it
can be observed that the majority of points were clustered around the line, indicating a
good overall prediction performance. There were relatively few red scattered points with
significant deviations.
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4.4. Model Loss Curves and Results of Deep Supervision Monitoring

The DSRUnet model constructed in this study introduces a deep supervision mech-
anism to monitor the training process of the model. Five deep supervision layers were
incorporated into the encoder module to learn intermediate representations and output
intermediate losses for visual analysis. Additionally, to better evaluate the performance
and generalization ability of the model, and to intuitively analyze the model’s performance
during training and validation, the losses using the training set and validation set were
recorded for a comprehensive comparison. The final results are shown in Figure 11.
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From the comparative analysis, it is evident that the disparity between the training
and validation losses was minimal, with the training loss consistently lower than the
validation loss. Both exhibited a decreasing trend, which gradually approached a plateau,
indicating that the model’s training process adheres to scientific principles without signs of
overfitting or underfitting, thus providing valuable guidance. An analysis of the loss output
from the five layers of deep supervision revealed higher losses during the initial stages of
upsampling learning, coupled with slower descent rates, which could be alleviated through
appropriate adjustments to the learning rate. Throughout all stages, the network’s learning
efficacy progressively converged, with the loss values tending towards a smaller range,
thus affirming the reliability of the model’s training process.

4.5. Comparison with Existing Methods

Comprehensively comparing the existing blood pressure prediction methods is of-
ten challenging. Different prediction methods may utilize distinct medical datasets for
model training and evaluation, which could originate from diverse age groups and clinical
settings with varying sampling frequencies and storage methods, resulting in significant
data heterogeneity. The commonly used publicly available datasets in the field of blood
pressure prediction include MIMIC-I [58], MIMIC-II [59], MIMIC-III [60], UCI-BP, and the
Queensland Vital Signs Dataset [61], among others. Notably, there is a scarcity of datasets
specifically tailored for blood pressure prediction tasks, with limited studies solely relying
on the UCI-BP dataset, which is derived from a subset of the MIMIC-II database following
preprocessing steps. Besides dataset disparities, differences in evaluation methodologies
also pose challenges in comparing different methods. Various studies may opt for different
evaluation metrics, and even when using the same metrics, they may employ different
evaluation techniques and cross-validation strategies, leading to substantial impacts on
comparison outcomes.

In light of the aforementioned considerations, in order to scientifically assess the
predictive performance of the proposed DSRUnet model and determine its relative ad-
vancement compared to existing methods and models, we refer to current mainstream
evaluation methodologies [62–64]. Specifically, we conducted a comprehensive comparison
by evaluating the overall models rather than isolated parameters. We strived to select
methods with similar data processing procedures and evaluation workflows for a holistic
assessment. This study conducted a comprehensive comparison with existing research in
three aspects:

(a) Direct Model Comparison: Disregarding the impact of different data preprocessing
methods, we included methods utilizing the MIMIC-II and MIMIC-III datasets for
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comparison alongside the DSRUnet model. We directly compared the DSRUnet model
with existing models based on common evaluation metrics. The final comparative
results are presented in Table 8.

(b) Innovation Assessment Against U-net Models: The DSRUnet model proposed in
this study primarily addresses the limitations of the traditional U-net model. In order
to better validate the advancement of our proposed model, we considered the existing
methods for blood pressure prediction based on the U-net model for a comprehensive
comparison. The results are presented in Table 9.

Table 8. Direct comparison results between the proposed DSRUnet model and existing models. The
symbol “—” indicates cases where specific metrics were not computed for a particular study. In this
context, A, B, C, and D represent the evaluation grades under the BHS standard. When assessing the
DSRUnet model according to the AAMI standard, “P” denotes compliance with the standard, while
“F” indicates failure to meet the standard.

Method Year Dataset Signals Input
Type

SBP|DBP (mmHg)

|ME| ↓ MAE ↓ STD ↓ R2 ↑ BHS AAMI

SVM [43] 2015 MIMIC-II PPG, ABP Raw data — 12.38|6.34 16.17|8.45 — D|B —
Adaboost [65] 2019 MIMIC-II PPG, ECG, ABP Raw data 0.05|0.19 3.97|2.43 8.90|4.17 — D|A F|P
BiLSTM [66] 2020 MIMIC-II PPG, ECG Features 4.64|3.16 6.73|2.52 14.51|6.44 — B|A F|P

CNN + LSTM [67] 2020 MIMIC-II PPG, ABP Raw data 1.91|0.67 3.97|2.10 5.55|2.84 — A|A P|P
PPG2ABP [26] 2020 MIMIC-III PPG, ABP Raw data 1.58|1.62 5.73|3.45 10.69|6.86 — B|A F|P
RandomForest

[68] 2020 MIMIC-II PPG, ECG Features — 9.00|5.48 — 0.72|0.71 — —

Modified U-net
[25] 2021 MIMIC-III PPG, ABP Raw data — 3.68|1.97 4.42|2.92 0.95|0.94 A|A P|P

RDAE [24] 2021 MIMIC-II PPG, ABP Raw data 1.65|1.28 5.42|3.14 6.64|3.74 — B|A P|P
DeepCNAP [48] 2022 MIMIC-II PPG, ABP Raw data 1.23|0.53 3.40|1.75 5.40|2.81 0.93|0.90 A|A P|P
CycleGAN [69] 2022 MIMIC-II PPG, ABP Raw data — 2.89|3.22 4.52|4.67 — A|A —

ARIU [70] 2022 MIMIC-III PPG, ABP Raw data — 4.75|2.81 6.72|4.59 — A|A P|P
TFNet-MTD2L

[46] 2023 MIMIC-II PPG, ABP Raw data 0.48|0.39 5.89|3.35 8.93|5.08 0.61|0.51 B|A F|P

UTransBPNet [71] 2023 MIMIC-II PPG, ECG, ABP Raw data 0.40|0.11 4.38|2.25 6.21|3.10 — — P|P

Ours: DSRUnet 2024 MIMIC-II PPG, ABP Raw data 0.15|0.54 3.36|2.35 6.61|4.54 0.86|0.73 A|A P|P

Table 9. Comparison results of blood pressure prediction models based on the U-net model. ‘—
’ denotes instances where a particular study did not calculate a specific metric. “↓” signifies
that lower values indicate a better performance, while “↑” indicates that higher values indicate
a better performance.

Method

Parameter Results of Blood Pressure Prediction Based on U-Net Model

SBP (mmHg) DBP (mmHg)

|ME| ↓ MAE ↓ STD ↓ R2 ↑ r ↑ |ME| ↓ MAE ↓ STD ↓ R2 ↑ r ↑
BP-Net [21] 0.23 5.16 8.50 — — 0.59 2.89 4.78 — —
ARIU [70] — 4.75 6.72 — 0.93 — 2.81 4.59 — 0.91

U-Net4 [72] 3.35 15.21 18.99 — 0.49 0.21 7.12 9.38 — 0.39
MAGU [73] 0.21 3.49 5.40 — — 0.43 2.11 3.24 — —

DEU-Net [29] 0.42 3.80 6.86 — — 0.03 1.81 4.52 — —
iPPG2BP [74] 1.51 6.73 9.22 — — 1.00 5.10 6.78 — —

Ours: DSRUnet 0.15 3.36 6.61 0.86 0.92 0.54 2.35 4.54 0.73 0.86

From Table 8, it is evident that, disregarding various influencing factors, the pro-
posed DSRUnet model attained the highest level among the analyzed models in terms
of blood pressure prediction capability. The predicted absolute mean error (|ME|) and
mean absolute error (MAE) values were significantly lower than those of most existing
studies, indicating smaller prediction errors from the DSRUnet model. Particularly note-
worthy is the marked improvement achieved in predicting SBP compared to similar models,
which holds considerable significance for the task of blood pressure prediction given the
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historical challenge associated with predicting systolic pressure. Overall, although the
DSRUnet model did not outperform some existing models on certain metrics (such as R2),
its performance advantage remains substantial when considering multiple indicators. It is
imperative to emphasize that model performance in blood pressure prediction should not
rely solely on a single metric, but should encompass various factors including accuracy, sta-
bility, and clinical applicability. Furthermore, the evaluation system of the DSRUnet model
is relatively comprehensive, covering the majority of evaluation metrics and possessing the
capability to recover real-time blood pressure signals from single PPG signals, a feature not
commonly found in other models. This attribute gives the DSRUnet model a significant
advantage in practical clinical applications, as it can provide faster and more precise blood
pressure predictions.

The proposed DSRUnet model demonstrated consistent performance across different
metrics, with all prediction results meeting the A-grade standards outlined by the British
Hypertension Society (BHS) and also aligning with the standards set by the Association
for the Advancement of Medical Instrumentation (AAMI). This underscores its promising
clinical applicability in blood pressure prediction.

Table 9 presents a comparative analysis of the existing methods for continuous non-
invasive blood pressure prediction based on PPG signals and U-net architectures. During
the comparison, it was noted that R2, a commonly used evaluation metric, was not cal-
culated in these methods. Only a few studies mentioned the calculation results of the
correlation coefficient (r) when performing parameter regression fitting. Therefore, we
included the calculation of the correlation coefficient (r) for predicting SBP and DBP using
the DSRUnet model for localized comparisons, as described in Equation (22).
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ŷ2

i −
(

∑N
i=1 ŷi
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where N presents the number of samples, yi represents the true blood pressure value, and
ŷi represents the predicted blood pressure value.

When selecting specific comparison methods, besides considering the necessity of
employing the encoder–decoder architecture of the U-net model, this study aimed to choose
systems trained on similar datasets and relatively large datasets for comparison. It can
be observed that the proposed method, which combines deep sparse residual U-net with
improved SE skip connections, achieved superior performance compared to the majority of
the U-net-based systems. Additionally, it boasts a comprehensive evaluation framework.
It can accurately reconstruct blood pressure waveforms using only a single PPG signal,
without the need for additional physiological signals, a feature uncommon in the existing
methods. In particular, DSRUnet exhibited the lowest mean error and mean absolute
error in SBP predictions, indicating a higher precision in SBP prediction compared to the
existing U-net-based methods. This was achieved with only a slight compromise in DBP
prediction performance. This suggests that the innovative structure of DSRUnet might be
more suitable for SBP prediction, providing valuable insights for improving SBP prediction
performance in the future. However, optimizing the DSRUnet structure for DBP prediction
remains an area for further exploration. Furthermore, the calculated correlation coefficient
(r) results of 0.92 and 0.86 demonstrate a strong correlation between the predicted and
actual values, further validating the scientific rigor and credibility of the proposed method.

Combining the comparison results from both sections, it becomes evident that achiev-
ing optimization across all evaluation metrics in the field of continuous non-invasive blood
pressure prediction is challenging. This is attributed to the inherent characteristics of
blood pressure prediction tasks mentioned earlier. Moreover, the lack of a comprehensive
prediction system that encompasses all feature datasets and measurement methods could
be a potential avenue for future research. From this perspective, solely pursuing the “supe-
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riority” of data metrics while overlooking the fairness of evaluation brought about by the
characteristics of blood pressure prediction tasks may not be highly persuasive.

During the exploration of relevant methods, it was noted that the original input signals
varied, encompassing both raw PPG signal data and raw waveform features, as well as
inputs fused from multimodal information such as ECG, first-order derivatives of PPG, and
second-order derivatives of PPG, among others. In this study, a singular PPG signal was
employed for continuous blood pressure signal prediction. The final prediction results not
only include numerical predictions but also encompass predictions of the blood pressure
waveform. Analyze and present the results of a randomly selected set of sampling bands,
each with a length of 1024, showcasing real blood pressure waveforms, predicted blood
pressure waveforms, and a comprehensive comparison between the two, as illustrated in
Figure 12.
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This study demonstrated the robust performance of the DSRUnet model in estimating
blood pressure waveforms by converting input PPG signals into corresponding predicted
blood pressure waveforms. A comparative analysis with real blood pressure waveforms
revealed that the DSRUnet model achieved a waveform prediction MAE of 3.37 mmHg,
STD of 6.33 mmHg, and R2 value of 0.91. A visual inspection of the graphs indicated that
the overall shapes, amplitudes, and trends of the predicted blood pressure waveforms
closely match those of the actual blood pressure waveforms. Minor discrepancies in
phase and amplitude were observed only at certain peaks, troughs, and reperfusion traces,
corresponding to errors in the SBP and DBP predictions. Additionally, some variations
were observed in the prediction of individual systolic phases (i.e., the stage where the
arterial pressure reaches its peak), which may correspond to challenges encountered in SBP
prediction. Overall, the predicted blood pressure waveforms not only closely matched the
real waveforms but also accurately described the systolic and diastolic processes of blood
pressure changes, capturing the corresponding peak points, trough points, and rebound
traces. Moreover, the predictions were unaffected by motion artifacts in the PPG signal
and alleviated the phase lag issues. Generally, ABP waveforms are collected and stored
invasively. Through the proposed DSRUnet model, real-time reliable ABP waveforms can
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be reconstructed from PPG signals acquired using optical sensors, thus expanding the
possibilities for clinical applications.

5. Conclusions

This study proposes a continuous non-invasive blood pressure prediction model,
named DSRUnet, based on a deep sparse residual U-net combined with an improved SE
skip connection. Utilizing only a single PPG signal, the model produced high-precision
predictions of SBP, DBP, and MBP, as well as an accurate visualization of blood pressure
waveforms. The integration of BP parameters and waveform patterns assists in identifying
cardiovascular abnormalities, providing new possibilities for clinical research in hospitals
and deployment studies for medical edge devices.

Specifically, the DSRUnet model employs a single PPG signal as the network input
and utilizes an end-to-end U-net structure with highly symmetrical features for feature
extraction. Sparse residual connection modules were introduced in the upsampling and
downsampling paths to replace the ordinary convolutional modules to better capture subtle
feature variations in the original PPG signal and preventing performance degradation.
To model and weight global feature information more effectively, an improved SE-GRU
module was embedded in the skip connections to extract the temporal features of the
PPG signal through the GRU layer and enhancing the model’s generalization performance.
Furthermore, a deep supervision mechanism was added to each layer’s output in the up-
sampling path to guide the learning of effective feature representations in the lower layers
and alleviate the problem of gradient vanishing. Through ablation experiments on the
UCI-BP dataset and comparisons with existing models, the effectiveness and advancement
of the DSRUnet model were verified. When comparing with existing studies, we took
into account the impact of data processing and evaluation procedures on the prediction
outcomes. By establishing two sets of contrasting principles, we found that solely assessing
system superiority based on prediction results is not objective. What is required for blood
pressure prediction tasks is a comprehensive and adaptable system that remains stable
across various data types. The experimental results indicated that the proposed DSRUnet
model achieved higher prediction accuracy than most existing models, with a significant
improvement in SBP prediction compared to the majority of the existing blood pressure
prediction models. The model’s ability to accurately predict blood pressure waveforms is
also relatively rare in existing research. Additionally, the model’s prediction results meet
the A-grade standard of the BHS and fulfill the basic requirements of the AAMI standard,
showing practical application potential in the field of intelligent wearable medical devices.

Building upon the traditional U-net model, this study balanced model complexity and
prediction performance by optimizing the model structure. The proposed sparse residual
connection modules and SE-GRU modules provide insights for researchers in other areas
of blood pressure prediction, such as introducing models that can better extract temporal
signal features, such as LSTM and GRU, to explore the underlying patterns between PPG
signals and blood pressure signals, contributing to the field of blood pressure prediction.

In future work, we will delve deeper into the following issues:

1. Physiological characteristics vary from person to person, making it challenging for
a single model to accurately predict blood pressure for different individuals. We
will explore the mechanisms behind individual differences in blood pressure predic-
tion tasks, considering methods such as network model optimization and transfer
learning, to improve the model’s ability to generalize across individuals and resist
noise interference.

2. In blood pressure prediction, the number of samples within the normal blood pres-
sure range is often much larger than those within the high or low blood pressure
ranges, resulting in dataset imbalance issues. In future research, we will address
the problem of imbalance regression caused by insufficient datasets, and consider
appropriate data preprocessing methods and data balancing techniques to enhance
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the prediction stability and accuracy of the blood pressure prediction model under
data imbalance conditions.

3. The proposed DSRUnet method appears to be more focused on predicting SBP. In
future research, we will consider adjusting the model structure and data processing
methods to enhance the DBP prediction performance while maintaining its perfor-
mance in predicting SBP. Additionally, we will explore integration with wearable
devices for enhanced prediction capabilities.
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