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Abstract: Passive acoustic monitoring (PAM) through acoustic recorder units (ARUs) shows promise
in detecting early landscape changes linked to functional and structural patterns, including species
richness, acoustic diversity, community interactions, and human-induced threats. However, current
approaches primarily rely on supervised methods, which require prior knowledge of collected
datasets. This reliance poses challenges due to the large volumes of ARU data. In this work, we
propose a non-supervised framework using autoencoders to extract soundscape features. We applied
this framework to a dataset from Colombian landscapes captured by 31 audiomoth recorders. Our
method generates clusters based on autoencoder features and represents cluster information with
prototype spectrograms using centroid features and the decoder part of the neural network. Our
analysis provides valuable insights into the distribution and temporal patterns of various sound
compositions within the study area. By utilizing autoencoders, we identify significant soundscape
patterns characterized by recurring and intense sound types across multiple frequency ranges. This
comprehensive understanding of the study area’s soundscape allows us to pinpoint crucial sound
sources and gain deeper insights into its acoustic environment. Our results encourage further
exploration of unsupervised algorithms in soundscape analysis as a promising alternative path for
understanding and monitoring environmental changes.

Keywords: autoencoders; deep learning; ecoacoustics; landscape monitoring; soundscape ecology;
unsupervised learning

1. Introduction

Acoustic landscape ecology, also known as soundscape ecology, is a field within ecoa-
coustics dedicated to describing and studying the sounds present in natural landscapes [1].
The goal is to extract information about various types of sounds or sources originating from
human activity (anthropophonies), physical phenomena (geophonies), and biotic sources
(biophonies), the latter referring to sounds emitted by living organisms such as animal
vocalizations [1–3]. These acoustic signals serve as valuable indicators for assessing species
diversity and abundance, habitat use, and population dynamics [4]. Additionally, changes
in the acoustic landscape, often influenced by human activities, can reflect the impacts of
habitat loss and degradation on wildlife populations [5]. In this context, the soundscape
emerges as a crucial area for monitoring the ecological integrity of landscapes and detecting
early signals of ecological change. Studying soundscapes can, thus, significantly contribute
to biodiversity conservation efforts.
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Soundscape studies employ acoustic recording units (ARUs) to capture sound over
predefined periods [6], which can range from days to weeks or even months. ARUs are
programmed to be activated at specified intervals, recording audio for a predetermined
duration before entering a standby mode for a set period and then resuming recording.
Recent advancements in recording technology, characterized by low energy consumption
and increased storage capacity, have facilitated operation over extended sampling periods
and recording times. Consequently, significant volumes of soundscape data are being
generated, creating a demand for the development of automated tools for efficient data
processing and analysis [7].

Machine learning is now a popular solution for developing innovative data processing
frameworks due to its exceptional performance across various domains, including computer
vision, semantic analysis, natural language processing, automatic speech, audio recognition,
and machinery fault prevention and diagnosis [8,9]. Within the realm of ecoacoustics
and soundscape analysis, there is extensive usage of machine learning algorithms such
as Random Forests [10], Support Vector Machines [11], and Neural Networks [1,12] to
extract meaningful features from acoustic data. Recent advancements in ecoacoustics
and soundscape research have leveraged deep features and Neural Networks to enhance
sound type identification. For instance, Dufourq et al. [13] employed transfer learning
to adapt existing Convolutional Neural Networks (CNNs) for bioacoustic classification.
Furthermore, architectures such as ResNet, EfficientNet, MobileNet, and DesNet have
been deployed to accurately identify acoustic scenes involving humans, birds, insects,
and silence [14], and the MobileNetV2 architecture has been successfully employed for
classifying biophonies, geophonies, anthropophonies, and silence [1]. These advancements
underscore the growing contribution of machine learning to advance our understanding of
acoustic environments.

Supervised methodologies in acoustic analysis often yield high-accuracy results but
face challenges due to their reliance on labeled data for model training and testing. These
challenges include the need for expert analysis to identify patterns in audio [15,16], as-
sumptions about data structure [10] such as the set of possible animal vocalizations [17],
time-consuming sample labeling with practical issues like lacking specific timestamps and
frequency bands, and handling overlapping acoustic events in time and frequency [15,16].
Moreover, feature extraction methods are sensitive to noisy data [7]. These limitations
drive the exploration of unsupervised learning as a compelling alternative. Unsupervised
methods can circumvent many difficulties inherent in supervised approaches. For instance,
Keen et al. proposed a framework combining unsupervised Random Forest, K-means
clustering, and t-SNE to evaluate acoustic diversity [10]. Ulloa et al. introduced the
Multiresolution Analysis of Acoustic Diversity (MAAD) method, which decomposes the
acoustic community into elementary components called soundtypes based on their time
and frequency attributes [18]. These contributions pave promising paths for leveraging
unsupervised learning to understand and explore soundscape composition beyond spe-
cific sound types, often limited to biophonies, thus capturing valuable information across
acoustic environments.

In this paper, we introduce a novel methodology for characterizing soundscapes using
autoencoders, providing a fresh perspective that goes beyond traditional species-specific
approaches. Our approach utilizes autoencoders to effectively uncover large-scale patterns
within sound recordings, thereby capturing the broader ecological context. By focusing
on feature extraction with autoencoders, we aim to bridge the gap between identified
patterns, metadata, and the ecological attributes of the landscape. This integration enables
a comprehensive evaluation of the soundscape, considering both acoustic patterns and
their ecological significance. Moreover, we introduce an unsupervised framework designed
to explore novel landscape attributes through the lens of soundscape heterogeneity. This
framework promotes a holistic understanding of the acoustic environment, facilitating
the identification and interpretation of previously unexplored patterns and associations.
In summary, the novelty of our work lies in the synthesis of cutting-edge autoencoder
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technology with soundscape ecology, offering a forward-thinking approach to characterize
and interpret acoustic landscapes within a broader ecological context.

2. Related Work

The majority of deep learning methodologies for ecoacoustics applications reported
in the literature rely on supervised approaches, whereas end-to-end unsupervised frame-
works have not been sufficiently studied. However, some approximations have emerged,
e.g., Rowe et al. [19] used autoencoders to characterize sound types and identify groups
corresponding to species vocalizations. Nevertheless, although the methodology is un-
supervised, it requires prior information about the species for validation. Dias et al. [20]
also explored autoencoders for feature extraction and data visualization; additional, they
used acoustic indices and spectral features to characterize sites from Costa Rica and Brazil.
Best et al. [21] introduced a new method for encoding vocalizations, using an autoencoder
network to obtain embeddings from eight datasets across six species, including birds and
marine mammals, also employing clustering and dimension reduction techniques such as
DBSCAN and UMAP. Akbal et al. [22] collected a new anuran sound dataset and proposed
a hand-modeled sound classification system through an improved one-dimensional local
binary pattern (1D-LBP) and Tunable Q Wavelet Transform (TQWT), obtaining a 99.35%
accuracy in classifying 26 anuran species. Gibb et al. [15] discuss the limitations of su-
pervision in soundscape analysis and propose variational autoencoders to embed latent
features from acoustic survey data and evaluate habitat degradation. Rendon et al. [23]
proposed the Uncertainty Fréchet Clustering Internal Validity Index, which was assessed
using real-world and synthetic data, including a soundscape dataset identifying the trans-
formation of ecosystems. On the other hand, Allaoi et al. [24] investigated the problem
of treating embedding and clustering simultaneously to uncover data structure reliably
by constraining manifold embedding through clustering and introduce the UEC method.
Given the evolution and significant interest within the scientific community regarding
this study area, we conducted a comprehensive review of machine learning applications
in soundscape ecology and ecoacoustics. In this review, we compiled a list of methods
encompassing both supervised and unsupervised learning, as well as deep and traditional
approaches [25]. Similarly, we summarize the latest highly related works in Table 1.

Table 1. Review of related work: Our selection criteria focused on articles that utilize autoencoders
for representing soundscape data, perform clustering analysis on spectrogram data, and introduce
novel methods for enhancing clustering performance and integrating features into clustering for
embedded representations.

Approach Methods Dataset Reference Year

Unsupervised
UEC, GMMs, NMI,
K-means

IRIS, Spiral, CIFAR10,
ATOM, EngyTime,
USPS, MNIST,
Reuters 10K

[24] 2024

Supervised VGG, UMAP, HDBSCAN
8 datasets of timestamped
and type labeled vocalizations
of birds and marine mammals

[21] 2023

Supervised
Q Wavelets, 1D-LBP,
KNN

New anuran dataset
with 1536 sounds of
26 species

[22] 2023

Supervised and
Unsupervised

Variational Autoencoders,
UMAP,
Binomial classification

Datasets from Equador
and United Kingdom
about habitat degradation

[15] 2023

Unsupervised GMMs, Uncertainty Fréchet
36 Synthetic and 5 real
datasets (including
a PAM dataset)

[23] 2023



Sensors 2024, 24, 2597 4 of 21

Table 1. Cont.

Approach Methods Dataset Reference Year

Unsupervised
Acoustic indices,
Autoencoders,
Hierarchical clustering

SERF Dataset [19] 2021

Unsupervised

Acoustic indices,
Image descriptors,
Autoencoders, PCA,
t-SNE, LAMP

More than 4000 files
from terrestrial and marine
ecosystems from Costa Rica
and Brazil

[20] 2021

This review of related work highlights the importance of further investigating unsu-
pervised methodologies to facilitate the exploration of acoustic data and assist with the
identification of representative patterns associated with landscape heterogeneity. Moreover,
one observes a trend towards investigating and relating heterogeneity with landscape
attributes indicators of ecosystem health.

3. Materials and Methods

The methodology introduced in this work is summarized in Figure 1. The initial step
following data acquisition involves generating time-frequency spectrogram representations,
which serve as input to train an autoencoder architecture for feature extraction. Two data
processing strategies are executed: a supervised pathway and an unsupervised pathway.
The supervised data processing pathway gives us a baseline to compare the performance
of the autoencoder features against more standard representations adopted in soundscape
ecology. We evaluated the performance of a Random Forest classifier on the features
learned by the proposed autoencoder, taking, as baselines, features obtained with the
VGGish architecture and a feature vector of acoustic indices. Acoustic indices have been
proven effective to capture acoustic variations reflecting ecosystem attributes, while the
VGGish [26] Deep Neural Network is commonly employed for video and audio analyses.
In the unsupervised data processing pathway, features extracted by the autoencoder and
their projections are clustered using K-means, and the resulting clusters are characterized
based on their temporal patterns and spectral ranges. We utilized multiple metrics of
cluster cohesion and separation to establish a quantitative baseline for assessing cluster
quality. Further details on this process are provided below.

3.1. Study Site

Our experimental investigation utilized a dataset sourced from the Jaguas Colombian
tropical forest. ARUs were placed near the Jaguas hydroelectric power plant in the north-
ern region of Antioquia (6°26′ N, 75°05′ W; 6°21′ N, 74°59′ W) (refer to Figure 2 for the
location of the recorders). Jaguas spans a protected area of 50 km², characterized by an
elevation gradient from 850 to 1300 m above sea level. The reserve predominantly com-
prises secondary forests (70%), with the remaining areas consisting of a vegetation mosaic
(23%), degraded surfaces (5%), and grassland (2%). Renowned for its rich communities of
terrestrial vertebrates, the protected area plays a crucial role in biodiversity conservation at
the regional scale [27,28]. For data acquisition, 31 Song Meter SM4 devices (Wildlife Acoustics,
Inc., Maynard, MA, USA) were deployed throughout the study site (technical details are sum-
marized in Table 2). Data were sampled for one minute at 44.1 kHz every 15 min, resulting in
four .wav files per hour and a total of 20,068 audio files overall. We sub-sampled the dataset to
22,050 because the audible soundtypes of interest occur mostly under 12 KHz. The recorders
were configured with 16 dB of gain at a resolution of 16 bits and stereophonic sound. The
complete dataset at its original sampling frequency had a size of 212.4 GB. The dataset was
collected by the herpetological group of Antioquia (GHA) between 11 May and 26 June 2018.
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Figure 1. Overview of the principal stages in the methodological framework based on pre-processing,
supervised learning, unsupervised learning, clustering analysis and results, and classification results.

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!
!

!
!

!

!

!

!

!

!

!

! !

!

G9

G8

G7

G6

G4

G3

G58

G57G54
G52

G51

G50

G49
G47G46

G41
G40G37

G36G35

G34G29
G28

G27

G25
G24

G23

G19

G17
G15

G13

74°58'W75°0'W75°2'W75°4'W

6°2
6'N

6°2
4'N

6°2
2'N

6°2
0'N 0 3.51.75

Km

72°W76°W

10
°N

6°N
2°N

Legends
! Sampling sites

Protected area
Cropland/natural vegetation
Pastures
Forest
Degraded surfaces
Water bodies

¯Caribbean sea

Pa
cif

ic 
Oc

ea
n

¯

Figure 2. Geographical distribution of recorders (31 Song Meter SM4 devices) in the Jaguas protected
area in Antioquia, Colombia.



Sensors 2024, 24, 2597 6 of 21

Table 2. Data acquisition and sampling parameters: Rec refers to the recorders, NSS to the number of
sites studied, RD to the recording duration, SR to the sample rate, SS to the sub-sampling rate, RP to
the periodicity of recording, MU to the memory used to store the recordings, AL to the cover type
labels available across sites.

Rec NSS RD (S) SR (KHz) SS (KHz) dB Gain RP MU (GB) AL

SM4 31 60 44.1 22.05 16 1 min every 212.4 Forest Non-forest
15 min 14,637 5431

Total 20,068

3.2. Pre-Processing

We implemented the method described in [29] for automatically detecting and re-
moving recordings with heavy rainfall. These recordings were excluded due to their high
signal-to-noise ratio and the presence of various sound types, such as geophonies (e.g.,
rivers) and biophonies (e.g., cicadas), which often mask a wide range of frequencies in
ecological audio. Removing these instances was necessary to prevent overfitting or bi-
ases in the feature extraction and clustering tasks. As a result of this pre-processing step,
16,968 (12,313 forest and 46,151 non-forest) recordings remained for subsequent analysis.

3.3. Spectrograms Computation and Parameterization

The data were processed in batches using Python 3.8 and PyTorch 2.2 software. Follow-
ing standard practice in ecoacoustics data analysis and the knowledge generated around
audio featuring using spectral representations [17,30–33], the audio was converted to the
time–frequency domain spectrogram representation using the Short-Time Fourier Trans-
form (STFT), as shown in Equation (1). Each one-minute recording was split into five 12 s
segments. This division allowed us to obtain spectrograms with dimensions of 515 × 515
by applying a Hamming window of length 1028 and an overlap equal to half the window
size. To maintain a squared output, the number of frequency bins was kept equal to the
window length.

STFT[k, l] =
N−1

∑
n=0

s(n)W(n + IL)exp
(
− j2πnk

N

)
. 0 ≤ n, k ≤ N − 1 (1)

where n and k are the time and frequency indices, respectively, and l is the relative dis-
placement of the current audio segment in terms of steps of L samples [34]. The Hamming
window is defined as in Equation (2):

W[n] = a0 − a1Cos
(

2πn
N − 1

)
. a0 = 0.53836, a1 = 0.46164. (2)

An audio segment duration of twelve seconds is unlike the standard practice in
the field, which is typically less than five seconds [19]. Our choice of 12 s segments
was influenced by the Short-Time Fourier Transform (STFT) parameters, which yield 515
bins in the frequency axis. The effective management of these segments demanded the
development of a customized data loader for loading and processing individual segments
using the STFT. This process allowed us to generate spectrograms in batches of 14 audio
files, yielding 70 sub-audios per batch.

3.4. Autoencoders

Autoencoders are Deep Neural Network architectures tailored to leverage the potential
of deep learning for automatic and unsupervised feature extraction. The primary objective
is to train a multi-layer network capable of learning a low-dimensional embedding from
the input high-dimensional data while preserving relevant patterns [35]. Within this archi-
tecture, there exists a middle layer where features are extracted via abstract representations
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derived from convolutional operations across each level of the network [36]. This interme-
diate layer is commonly referred to as the latent space, and the process of generating this
space is known as the encoding phase. Following the encoding phase, a decoding process
is carried out using the learned representation within the latent space. The Neural Network
is configured to execute the encoding process in an “inverse direction”, meaning features
are projected from a low-dimensional representation back to the input space, thereby re-
constructing the original data. Theoretically, the outputs of the autoencoder should closely
resemble the original data. Consequently, the latent space effectively represents the original
input data using fewer dimensions, implying efficient information compression.

Mathematically, let x ∈ RD be an input vector; an autoencoder maps x to a latent space
z ∈ RD′

using a deterministic function fθe(x) = s(Wx + b), according to the parameters
θ = {W, b}, where W is a weight matrix and b is a bias. The new representation vector z
can be returned to the original input space using a second function gθd(z) = s(W′z + b′),
with θd = {W′, b′} [37,38]. This is represented in Equation (3).

θ∗e , θ∗d = arg min
θe ,θd

1
n

n

∑
i=1

L
(

x(i), y(i)
)

(3)

Due to y resulting from transformations performed with the encoding and decoding
functions fθ , gθ′ , the parameters θ∗e and θ∗d can be expressed in terms of x as in Equation (4):

θ∗e , θ∗d = arg min
θe ,θd

1
n

n

∑
i=1

L
(

x(i), gθd

(
fθe

(
x(i)
)))

(4)

where L denotes the Magnitude Square Error (MSE) loss function. This metric calculates the
average Euclidean distance between corresponding pixels of the original and reconstructed
spectrograms. The optimization process involves separately adjusting the parameters θe and
θd to minimize the MSE, thereby enhancing the fidelity of the reconstructed spectrograms.

3.5. Feature Projection

After processing spectrograms through the autoencoder architecture, the dimension of
the latent space is determined by the size of the resulting images and the number of channels.
The resulting feature vectors have a size of img_width × img_height × num_channels =
9 × 9 × 64 = 5184, which represents a significant reduction in input dimensionality, com-
pared to the original spectrogram dimensions of 515 × 515 = 265,225. Thus, the original
information can be preserved using representations with only 2% of the original image size.

We experimented with PCA, t-SNE, and UMAP for dimension reduction in order
to have grounds for a comparative analysis within the context of soundscape data. The
techniques have been employed both for visualization purposes and also to reduce the
dimensionality of the autoencoder feature space prior to classification.

3.5.1. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is employed for the dimensionality reduction of
datasets characterized by a substantial number of dependent variables. The primary objective is
to preserve essential information within the dataset through the transformation of variables into
uncorrelated variables known as Principal Components (PCs) [39]. By eliminating redundancy,
PCA enhances computational efficiency and reduces the risk of overfitting [40]. We selected the
number of principal components maintaining a 90% of the variance.

3.5.2. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-distributed Stochastic Neighbor Embedding (t-SNE) was introduced as a technique
to project high-dimensional data into a low-dimensional representation space [41]. It
is a variation of Stochastic Neighbor Embedding (SNE), which compares conditional
probabilities representing similarities between data points in different dimensions [41].
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Conditional probabilities are calculated from the Euclidean distance between data points xi
and xj as in Equation (5).

pi|j =
exp
(
−||xi − xj||2/2σ2

i
)

∑k ̸=i exp
(
−||xi − xk||2/2σ2

i
) (5)

where σi is the variance of a Gaussian centered on xi. Then, the conditional probability qj|i
of the projected counterparts yi and yj is obtained as in Equation (6).

qi|j =
exp
(
−||yi − yj||2/2σ2

i
)

∑k ̸=i exp
(
−||yi − yk||2/2σ2

i
) (6)

The technique seeks to minimize the mismatch between conditional probabilities pi|j and qi|j.

3.5.3. Uniform Manifold Approximation and Projection (UMAP)

The UMAP (Uniform Manifold Approximation and Projection) dimension reduction
algorithm is grounded in a rigorous mathematical foundation rooted in Riemannian ge-
ometry and algebraic topology. It stands as an alternative to t-SNE that notably boasts
significantly faster performance compared to most t-SNE implementations, rendering it
more efficient for handling large datasets. Moreover, its mathematical formulation seeks
the preservation of both local and global structures inherent in the data [42]. Over time,
UMAP has emerged as a highly popular non-linear projection technique, particularly for
visualizing intricate patterns delineated by features in two or three dimensions [43].

3.6. K-Means Clustering

Clustering serves as an unsupervised learning technique for exploratory data anal-
ysis, particularly useful when there is limited prior knowledge about the data and its
distribution [44]. The underlying principle involves comparing intrinsic features and
generating clusters based on similarities or minimum distances computed from the data
features. Clustering algorithms are generally categorized into two main groups: probability
model-based approaches and non-parametric approaches [45]. The latter is further subdi-
vided into hierarchical or partitional methods, offering a variety of algorithms to choose
from [24,45–47]. In this study, we employed the K-means algorithm, which falls under
the category of partitional algorithms [47,48]. K-means clustering partitions the data into
distinct clusters based on the similarity of data points, providing a straightforward and
efficient approach to clustering analysis.

Given a dataset X = x1, . . . , xN , where N is the number of samples, the K-means
algorithm finds k centroids C = c1, . . . , ck minimizing the mean distance between each data
sample in x and their nearest centroids. The objective function is defined in Equation (7).

E(C) =
1
N

N

∑
i=1

||xi − c(ai)||2 (7)

where E is the energy, and ai is the minimum distance between samples and centroids, i.e.,
ai = arg minj∈1,...,k ||xi − cj||.

There are many variations of K-means [49]; in our study, we employed the traditional
Lloyd’s algorithm [44]. We did not perform comparisons with other clustering algorithms
because our scope is centered on features and the information they extract. Moreover,
previous work has shown that K-means is accurate and computationally efficient compared
to others [47,49]. Additionally, several authors have succeeded in combining K-means
clustering with Deep Neural Networks [48], suggesting it is a suitable choice for our
purposes of exploring feature distributions in the data.



Sensors 2024, 24, 2597 9 of 21

3.7. Performance Metrics

The following metrics have been employed to assess the performance of classification
models in the supervised pathway:

• Accuracy: provides a global assessment of the model’s correctness by quantifying the
ratio of correctly predicted instances to the total number of instances. Accuracy is
defined in Equation (8).

Accuracy =
Number of Correct Predictions

Total Number of Instances
(8)

• Recall: also known as sensitivity, or the true positive rate, recall measures the model’s
capability to accurately identify positive instances from the entire pool of actual
positive instances, as depicted in Equation (9).

Recall =
True Positives

True Positives + False Negatives
(9)

• F1-score: the F1-score is obtained as the harmonic mean of precision and recall, offering
a balanced measure that considers both false positives and false negatives, as described
in Equation (10).

F1-score =
2 × Precision × Recall

Precision + Recall
(10)

The following metrics have been employed to assess the quality of clustering models
in the unsupervised pathway:

• Silhouette Coefficient: provides a measure of cluster cohesion and separation, as
described in Equation (11). Cohesion is assessed based on the similarity of data
instances within a single cluster, while separation is determined by the dissimilarity
between instances from different clusters.

silhouette(i) =
b(i)− a(i)

max{a(i), b(i)} (11)

where a(i) is the average distance from the i-th data point to other data points in the
same cluster (cohesion) and b(i) is the smallest average distance from the i-th data
point to data points in a different cluster, minimized over clusters (separation).
The silhouette score for the entire dataset is the average of the silhouette score for each
instance. The overall silhouette score can be calculated as in Equation (12).

silhouette_average =
∑N

i=1 silhouette(i)
N

(12)

• Calinski–Harabasz (CH) index: measures the ratio of between-cluster variance to
within-cluster variance. It helps in assessing how well-separated the clusters are from
each other. This index is calculated using Equation (13).

CHI =
Tr(Bk)

Tr(Wk)
× N − k

k − 1
(13)

where Bk is the between-cluster scatter matrix, Wk is the within-cluster scatter matrix,
N is the total number of data points, and k is the number of clusters.

• Davies–Bouldin (DB) index: computes the average similarity between each cluster
and its most similar cluster. It provides insights into the compactness and separability
of the clusters. The DB index is computed as in Equation (14).

DB =
1
n

n

∑
i=1

max
j ̸=i

(
σi + σj

d(ci, cj)

)
(14)
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where n is the number of clusters, σi is the average distance from the centroid of cluster
i to the points in cluster i, ci is the centroid of cluster i, and d(ci, cj) is the distance
between centroids ci and cj.

4. Experiments

We conducted experiments on the spectrograms generated from the Jaguas dataset
processed as detailed in Section 3.1. We also considered metadata such as the timestamp of
each recording, the recorder location, and the recording site cover type (forest or non-forest).

4.1. Autoencoder Architecture and Training

We allocated 98% of the dataset for training a vanilla autoencoder [35] with the architecture
outlined in Figure 3. To assess the model’s performance and generalization capability, we
reserved the remaining 2% of the dataset for testing purposes. During each epoch of training,
this subset was utilized to evaluate the Mean Squared Error (MSE) as a test error metric.
Additionally, spectrograms from this test subset were passed through the autoencoder to
obtain reconstructions, enabling a visual comparison between the original and reconstructed
spectrograms. This approach allowed us to monitor the autoencoder’s performance on unseen
data and verify its capability to reconstruct spectrograms from the test set.

The encoding section of the autoencoder network comprises four convolutional layers
with Rectified Linear Unit (ReLU) activation functions interspersed between them. Sim-
ilarly, the decoding section follows the same structure, employing four deconvolutional
layers with ReLU activation functions and a sigmoidal activation function for the final layer.
The embedding space was derived using the encoding network by applying a flattening
operation over the final layer. As a result, the dimension of the output was determined by
the number of channels and the residual image after the convolutional layers, resulting
in an embedding space of 5184 features. This outcome was achieved because the output
channels were fixed to 64, and the residual image dimension was 9 × 9 (64 × 9 × 9 = 5184).

Convolutional ReLU

Fully-connectedDeconvolutional

515x515x1

170x170x8

9x9x64

515x515x1

55x55x16

18x18x32

1x1x5184
9x9x64

18x18x32

170x170x8

55x55x16

Figure 3. Proposed Autoencoder Neural Network. The embedded space is reduced to 5184 by
applying a flattening to the residual image after the convolutional layers.

4.2. Supervised Learning Approach

We executed the supervised data processing pathway to compare the effectiveness of
autoencoder features with more standard approaches in soundscape ecology. Considering
that the dataset lacked information about biodiversity, species richness, or the presence
of specific sound types, we relied on labels indicating the landscape type of the recording
site, as either a forest or non-forest, provided by researchers involved in the sampling and
analysis effort. We, thus, ran the RF classifier on the three input feature spaces:

• The autoencoder features, extracted from our trained autoencoder architecture.
• Feature vectors comprising sixty distinct acoustic indices computed using the scikit-

maad Python module [50].
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• The VGGish feature embedding, obtained from a pre-trained Convolutional Neural Net-
work (17 layers) inspired by the VGG networks typically used for sound classification.

For the classification experiments, the dataset was divided into 80% of the samples
for training and 20% for testing. We maintained uniform parameters and distributions
across all classification models to ensure a direct comparison of results. In the case of the
RF classifier, we set the maximum depth to 16 and the random state to 0. We applied
dimensionality reduction to reduce the size of the feature space and use a feature space of
the same size across all methods. The RF algorithm was then trained to predict landscape
types using the reduced feature spaces obtained from each method.

Model performance was evaluated in terms of accuracy, recall, and F1-Score metrics,
as described in Section 3.7. These metrics provide a comprehensive assessment of the
performance of our classification models that take class imbalance into account. The
analysis offers insights into the effectiveness of the three feature extraction techniques in
predicting landscape types from the acoustic data.

4.3. Unsupervised Learning Approach

In the non-supervised data processing pathway, we employed the embedded au-
toencoder features to explore potential relationships between the temporal occurrences
of acoustic events and the clusters identified with the K-means clustering algorithm. Fur-
thermore, we employed PCA, t-SNE, and UMAP to generate two-dimensional projections
of the features for visualization purposes. The visualizations are enriched with metadata
concerning the recording hour and location in order to highlight potential temporal and
spatial patterns. This allowed us to gain insight into the temporal and spatial distribution
of acoustic events. By adopting this comprehensive approach, we were able to uncover
valuable patterns and associations within the acoustic data, thereby contributing to a deeper
understanding of the underlying dynamics of the soundscapes under investigation.

We evaluated the clustering quality using three commonly employed metrics: the
Silhouette Coefficient (SLT), the Calinski–Harabasz (CH) index, and the Davies–Bouldin
(DB) index. These metrics were applied while varying the number of clusters K from 3 to 35,
allowing us to analyze the clustering performance across different cluster numbers.

5. Results
5.1. Autoencoder Training

We conducted a thorough evaluation of the vanilla Autoencoder Neural Network,
analyzing its learning rate curve over ten epochs. The Mean Squared Error (MSE) between
the input and reconstructed spectrograms was computed, providing insights into the
network’s performance. Additionally, we visually compared the reconstructions generated
by the autoencoder with the corresponding input data samples. The autoencoder’s learning
curve exhibited a rapid convergence, reaching the inflection point or “elbow” in less than
one epoch (approximately 500 iterations) (Figure 4), indicating its efficiency. Following
the inflection point, the mean error stabilized around 0.16, with a slight decrease observed
in subsequent epochs (again, see Figure 4). Despite small fluctuations observed in the
MSE across successive epochs, discernible improvements in the reconstructions were
notable. Specifically, there was an accentuation of temporal patterns and an enhancement
of background delineation. Accurate reconstructions of soundtype patterns, particularly
in low and middle frequencies, were observed. However, challenges were encountered
with higher frequencies beyond 8 kHz, where weak sounds became imperceptible in the
reconstructions. Soundtypes with broad spectral ranges required multiple epochs to adjust
to the original pattern. On the other hand, concerning background noise, the network
initially depicted remarkable repeated patterns, gradually diminishing with each epoch.
This Deep Neural Network was employed to extract a feature embedding, which served as
an input for both the supervised and unsupervised data analysis pathways.
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Figure 4. Autoencoder Learning Rate Curve: The similarity between reconstructions (upper figures)
and original inputs (lower figures) was evaluated visually. Additionally, the difference between
inputs and reconstructions was quantified using the Mean Squared Error (MSE) across ten epochs.

5.2. Feature Projections

We generated reduced embeddings of the original autoencoder’s feature space using
various dimensionality reduction techniques. Initially, we employed the traditional Prin-
cipal Component Analysis (PCA) method to identify and organize components based on
decreasing variance. This approach effectively determined a minimal number of compo-
nents that accounted for over 90% of the data variance, facilitating feature space reduction
while preserving performance and information content. Although 30 components captured
90% of the variance, we opted for 60 components to align with the dimensionality of the
feature vector of acoustic indices. In addition to PCA, we utilized T-SNE and UMAP for
dimensionality reduction, considering them state-of-the-art methods. We preserved the
same number of components (60) to maintain consistency across feature vectors. Con-
sequently, feature vectors of size 60 were input to the classification and clustering tasks.
For visualization purposes, only two dimensions per method were used to showcase data
distribution, as depicted in Figure 5. By examining these visualizations, one can discern
patterns and relationships within the data based on the recording hour or location labels,
providing insights into the temporal and spatial distributions of acoustic events across
the dataset.

In Figure 5, we compare distributions using the recording time and recorder location
as labels for each data point. In terms of the temporal aspect, PCA effectively distinguishes
data points across different hours. However, more favorable outcomes were observed in
the views obtained with UMAP and t-SNE, which demonstrated superior capability to
separate hours into distinct distributions. On the other hand, discerning a clear pattern
in the distribution of recording locations is not straightforward. Nevertheless, UMAP
and t-SNE again exhibited superior separation for certain segregated points. Moreover,
the absence of discernible segregation among points corresponding to various recording
locations is regarded as a favorable outcome, as we did not expect to discover notorious
patterns that might be introduced from the bias of the recorders. Therefore, we consider
that spatial patterns deserve further investigations, given the lack of distinct separations,
indicating that a more in-depth exploration of potential spatial correlations is required.
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Figure 5. The projections of the feature space obtained with PCA, t-SNE, and UMAP are displayed
in the rows. The points in the plots represent the audio segments, each distinct color shade maps a
specific hour or location label. This setup favors a comparative analysis of data distributions across
different dimensions and labeling schemes.
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5.3. Classification of Landscape Type Using Supervised Learning

We trained a Random Forest classifier using the data point labels of “forest” or “non-
forest”, considering the reduced feature spaces relative to the three feature extraction
methodologies. The forest and non-forest classification was based on a land cover map
derived from satellite images. Forest cover exclusively included forested areas, while
non-forest cover comprised all other land cover types (such as grasslands and secondary
vegetation) [51]. Our objective in this experiment was to compare the performance of the
features obtained with the proposed autoencoder with methods recognized as effective
in the literature, such as acoustic indices and the VGGish architecture. Additionally, we
aimed to enrich our analysis by incorporating contextual information. Specifically, we were
interested in leveraging satellite-derived labels and biological content extracted from the
audio of the sites. This was motivated by the understanding that various factors, including
degradation, landscape transformation, and other conditions, can interfere with acoustic
patterns. Figure 6 presents the results pertaining to the original autoencoder embedding and
after applying dimensionality reduction to 60 components, along with the acoustic indices
and VGGish features. These results offer insights into the effectiveness of different feature
extraction methodologies in distinguishing between forest and non-forest environments.
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Figure 6. Results of classification with Random Forest using autoencoder features (before and after
dimensionality reduction) as compared with a vector of acoustic indices and VGGish features.

The normalized autoencoder features exhibited the best classification metrics, with
an F1 score of 90.4%, recall of 88.7%, and accuracy of 92.8%. Additionally, its projections,
particularly with UMAP and 60 components, yielded comparable results, indicating that
reducing the original feature space from 5184 to 60 components is computationally efficient
while preserving relevant information. While PCA-based projections showed improved
results compared to the baseline methodologies of acoustic indices and VGGish, there was a
notable discrepancy compared to the original features and UMAP. This suggests that UMAP
has superior capacity to compress relevant information in certain contexts. However, it is
worth noting that results may vary depending on the specific task and landscape attribute
being assessed. Conversely, the feature spaces computed with the baseline methodologies
exhibited comparatively inferior performance and demonstrated limitations despite their
frequent use. In the case of VGGish, although it computes spectrograms approximately
every minute, compared to our solution which computes spectrograms every twelve
seconds, there is a significant difference in all the classification metrics, indicating that
spectrograms extracted from longer time series than those reported in the state of the art
can reveal discriminant patterns.

5.4. Unsupervised Learning Results

To explore the potential of unsupervised methods in understanding landscape het-
erogeneity patterns without relying on species-specific analysis, we investigated temporal
and sound type relationships within the clusters obtained with K-means, following the
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methodology outlined in [52]. We systematically generated clusters with K ranging from
three to thirty. For each clustering iteration, we computed both individual and average
Silhouette scores (SLT), as well as the Davies–Bouldin and Calinski–Harabasz indices,
serving as metrics of cluster quality.

Table 3 shows the results for models obtained with varying values of K and four
input feature spaces (the autoencoder features and the three-dimensional reduced spaces
obtained with PCA, t-SNE and UMAP). One observes that the best scores in all metrics were
obtained with three clusters in most cases, and the scores tended to decrease as the number
of clusters increased. However, there are a few exceptions, e.g., the UMAP features yielded
better DB index scores with 35 clusters, whereas the t-SNE features yielded the best DB
index with 7 clusters and a better CH index with 30 clusters. Notably, the UMAP features
yielded better cluster quality metrics, indicating they consistently excelled in creating well-
defined, compact, and segregated clusters, yielding an SLT of 0.41, DB index of 0.85, and CH
index of 86,427.27, as detailed in Table 3. Moreover, when computing the metrics’ means
and standard deviations, UMAP showed the best mean values for SLT and CH and the best
deviation value for DB; in contrast, t-SNE had the best values of DB mean and Silhouette
and CH deviations. Nevertheless, both t-SNE and PCA contributed to score improvements,
with PCA showing a slight enhancement, and t-SNE achieved the highest DB index using
seven clusters as mentioned before, indicating that although UMAP and t-SNE are similar
theoretically, spaces projected by these methods are well differentiable. On the other hand,
contrasting the number of clusters among projection methods, we identified that when
clusters increased, several patterns in alternating bands of frequency were accentuated,
indicating that clusters could be considered similar based on the quantitative metrics, but
there were variations in the biological content associated with animal vocalizations, i.e., for
unsupervised studies, the metrics should be aligned to the biological content of recordings
due to clusters with lower scores being able to capture relevant information and patterns
which are sensitive to being masked by other frequency ranges.

Table 3. Quality metrics (Silhouette coefficient (SLT), Davies–Bouldin index (DB), and Calinski–
Harabasz index (CH)) of cluster models obtained with K-means over the autoencoder features and
UMAP, t-SNE, and PCA projections, for varying values of K. The best values for each configuration
are shown in bold, and the best global values are shown in blue. SLT values are in the range of
[−1, 1], where higher values indicate better cohesion and separation. Lower values of DB are better,
indicating dense and well-segregated clusters, whereas higher values of CH index are better.

NC Full Embedded Space UMAP t-SNE PCA

SLT DB CH SLT DB CH SLT DB CH SLT DB CH

3 0.2131 1.7692 29,185 0.4123 0.8589 86,427 0.3783 0.8565 66,293 0.2493 1.5490 37,770
5 0.1368 2.0666 20,519 0.3872 0.8167 85,305 0.3411 0.9031 70,358 0.1773 1.7393 27,896
7 0.1304 1.9938 16,484 0.3503 0.8709 81,715 0.3646 0.7740 74,417 0.1755 1.6660 23,248
10 0.128 2.0494 12,910 0.3420 0.8665 78,940 0.3431 0.8495 72,635 0.1753 1.6801 18,927
15 0.1032 2.0458 9707 0.3373 0.8312 78,438 0.3412 0.8137 73,335 0.1537 1.6943 14,755
20 0.1000 2.1764 7766 0.3294 0.8284 77,257 0.3406 0.7807 73,952 0.1483 1.7404 12,251
25 0.0839 2.2417 6556 0.3262 0.8287 76,505 0.3406 0.7826 74,813 0.1428 1.7605 10,572
30 0.0826 2.259 5719 0.3254 0.8194 76,092 0.3425 0.7883 74,835 0.1321 1.7655 9361
35 0.0786 2.2819 5092 0.3309 0.8145 76,371 0.3403 0.7956 74,798 0.1304 1.7801 8490

Mean 0.1174 2.0982 12,660 0.3490 0.8372 79,672 0.3480 0.8160 72,826 0.1649 1.7083 18,141
STD 0.03 0.15 7637 0.02 0.02 3699 0.01 0.04 2682 0.03 0.06 9314

We have confirmed our hypothesis regarding the effectiveness of deep features in
revealing macro patterns within the soundscape. We computed centroid spectrograms by
passing the centroid feature vector in each cluster to the decoder part of the autoencoder.
In this manner, we reconstructed spectrograms associated with inputs generated by the
K-means clustering algorithm. This process allowed us to visualize the representative
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spectrograms corresponding to each cluster, providing insights into the characteristic
acoustic patterns captured by the clusters (refer to Figure 7). This part of our methodology
is a novel way to represent clusters’ information for soundscape applications due to the fact
that, in general, cluster prototypes are ignored in clustering procedures, despite containing
valuable information about the composition of the clusters.

Specifically, the distinct centroid spectrograms (refer to Figure 7) effectively delineate
noticeable changes in frequency bands, primarily reflecting distinct occupied bands. Our
analysis revealed that cluster one mostly represented a quiet soundscape. Upon further
investigating the cluster contents, we found mainly light rainfall, some insect sounds,
and natural sounds like river sounds for cluster one. Given the frequent occurrence
of cicadas and rainfall in most recordings and the study area, this result was expected.
Cluster two also featured recordings of insects, albeit with additional biophonies such as
anuran vocalizations represented in lower frequency ranges around 2 KHz, as it can be
seen in Figure 7. Cluster three captured a medium-high spectral band, predominantly
around 4 kHz, showcasing anuran and bird vocalizations; also, we can specify that these
patterns correspond to animal vocalizations because there are accentuated intensities for
thin frequency bands (2 Khz to 3 Khz, 3.5 Khz to 4 Khz, and 5 Khz to 6 Khz). These
frequency ranges are commonly utilized by animals as part of their acoustic niche and are
relevant for studying bioacoustic richness [53].
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Figure 7. Centroid spectrograms computed by passing the feature vector of each cluster centroid to
the decoder part of the autoencoder.

Finally, we computed histograms for the three clusters discussed above to examine
temporal trends within the groups, as depicted in Figure 8. This analysis unveiled distinct
temporal distributions among the clusters. For instance, we discerned two primary time
intervals in the three clusters. The most pronounced temporal interval spanned clusters
three, encompassing a nocturnal time-frame from 6 p.m. to 5 a.m. Given Colombia’s
proximity to the equator, the sunrise and sunset hours remain nearly the same all year-
round, typically around 6 a.m. and 6 p.m., respectively. A diurnal time-frame was prevalent
in the remaining clusters. However, it is noteworthy that cluster two exhibited broader
temporal ranges. Most recordings in cluster two primarily spanned 10 a.m. to 6 p.m., while
in cluster one, recordings between 4 a.m. and 11 a.m. prevailed. The latter indicates the
presence of acoustic landscapes characterized by silence, indicating a minimal detection of
biophonies, geophonies, and anthropophonies.
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Figure 8. Histograms of audio membership in each cluster using K-Means and UMAP projections at
different times of day.

6. Discussion and Future Work

We introduce an unsupervised learning framework based on an autoencoder archi-
tecture to extract representative features from soundscapes of a Colombian region, in
association with the K-means clustering algorithm to reveal patterns present in acoustic
recordings. Following ten epochs, we assessed the accuracy of the representations using
Mean Squared Error (MSE) and the learning rate curve of the Deep Neural Network, and
we conducted a visual inspection by comparing spectrogram inputs and outputs. During
evaluation, we identified challenges in assessing the reconstructions despite achieving low
MSE values. The absence of a defined baseline or cut-off point made it difficult to establish
a clear threshold to assess reconstruction accuracy. We addressed this issue by conducting
supervised learning experiment using landscape labels to discriminate between forest and
non-forest areas. This allowed us to compare the performance of autoencoder features with
baseline methodologies such as acoustic indices and VGGish. The classification results
revealed that autoencoder features outperformed several metrics, especially after reducing
the feature space with dimensional reduction methods (PCA, t-SNE adn UMAP). Despite
UMAP not yielding the highest classification scores, it significantly reduced the embedded
space while maintaining performance close to that obtained using the full feature space.

For the unsupervised learning experimentation, because UMAP allows us to project
back features to the original space, we could create centroid spectrograms, which are
spectrograms made from the reduced information of the reduced space, giving a better
interpretability to the clusters and guiding along with conventional metrics such as Silhou-
ette for the selection of a correct number of clusters. Additionally, employing metadata of
the dataset was possible to establish temporal dynamics which are associated with acoustic
biodiversity represented by the occupied range of frequencies.

In the unsupervised learning experimentation, as the autoencoder enables the projec-
tion of features back to the original space, we could generate cluster centroid spectrograms
from the reduced information of the feature space. These spectrograms enhanced cluster
interpretability, and in conjunction with conventional metrics, they can aid in finding an
appropriate number of clusters. Additionally, the metadata of the dataset enabled us to es-
tablish temporal dynamics associated with acoustic biodiversity in the clusters, represented
by the occupied range of frequencies.
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We are confident that our proposal will expand the research horizons of non-species-
specific soundscape studies, further exploring the multifaceted dimensions of biocom-
plexity. Nevertheless, ongoing work persists, especially in unsupervised studies within
soundscape and ecoacoustics. Establishing a precise distribution of the data remains chal-
lenging, given the presence of not only explicit and observable patterns but also intricate
dynamics within ecosystems. Deep learning algorithms hold promise in capturing these
complex dynamics; however, challenges persist in interpreting and understanding eco-
logical behaviors. Despite these obstacles, our efforts contribute to advancing the field
by addressing these complexities and striving for deeper insights into the dynamics of
soundscapes and ecoacoustic environments.

7. Conclusions

Despite the significant advances and remarkable progress in leveraging machine
learning for ecoacoustic analysis, several challenges persist regarding conservation and
monitoring strategies. A primary obstacle is the limited availability of labeled data essential
for training machine learning algorithms, hindering the accurate recognition of vocaliza-
tions at the species level for animals such as birds and insects. Moreover, the dynamic
and intricate nature of the acoustic landscape demands algorithms capable of handling
vast amounts of data in real time and scaling to manage the environment’s complexity
effectively. Thus, ecoacoustics, on a large scale, is imperative to glean environmental at-
tributes and changes. Unsupervised learning emerges as a practical solution for analyzing
and exploring soundscapes capable of addressing some of these challenges. Unsupervised
learning offers several advantages, including independence from labels, versatility in ex-
amining multiple sound sources present in recordings, and the automatic exploration of
relationships among acoustic patterns. However, it is crucial to note that unsupervised
learning relies on informative features to perform clustering effectively. Efforts to develop
robust feature representations remain integral to advancing unsupervised learning methods
in ecoacoustic analysis.

Our findings pave the way for further explorations in soundscape ecology, advocating
for the integration of unsupervised learning approaches to gain a deeper understanding
of landscape heterogeneity. The success of autoencoder-based features in classification
tasks, alongside the identification of meaningful patterns in unsupervised clustering, high-
lights their potential as valuable tools in soundscape research. Moreover, our research
underscores the importance of selecting appropriate dimensionality reduction techniques
for unsupervised learning in soundscape studies. UMAP emerges as a robust method,
demonstrating its ability to reveal meaningful patterns and heterogeneity within acoustic
landscapes. Moving forward, future research endeavors should prioritize the refinement of
spatial analysis techniques, the exploration of alternative unsupervised learning method-
ologies, and a comprehensive comparison of ecological and biological information across
various dimensionality reduction methods tailored to the specified number of clusters.
These initiatives will further enhance our understanding of acoustic environments and
their ecological significance.
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