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Abstract: Haptic hands and grippers, designed to enable skillful object manipulation, are pivotal for
high-precision interaction with environments. These technologies are particularly vital in fields such
as minimally invasive surgery, where they enhance surgical accuracy and tactile feedback: in the
development of advanced prosthetic limbs, offering users improved functionality and a more natural
sense of touch, and within industrial automation and manufacturing, they contribute to more efficient,
safe, and flexible production processes. This paper presents the development of a two-finger robotic
hand that employs simple yet precise strategies to manipulate objects without damaging or dropping
them. Our innovative approach fused force-sensitive resistor (FSR) sensors with the average current
of servomotors to enhance both the speed and accuracy of grasping. Therefore, we aim to create
a grasping mechanism that is more dexterous than grippers and less complex than robotic hands.
To achieve this goal, we designed a two-finger robotic hand with two degrees of freedom on each
finger; an FSR was integrated into each fingertip to enable object categorization and the detection of
the initial contact. Subsequently, servomotor currents were monitored continuously to implement
impedance control and maintain the grasp of objects in a wide range of stiffness. The proposed hand
categorized objects’ stiffness upon initial contact and exerted accurate force by fusing FSR and the
motor currents. An experimental test was conducted using a Yale–CMU–Berkeley (YCB) object set
consisted of a foam ball, an empty soda can, an apple, a glass cup, a plastic cup, and a small milk
packet. The robotic hand successfully picked up these objects from a table and sat them down without
inflicting any damage or dropping them midway. Our results represent a significant step forward in
developing haptic robotic hands with advanced object perception and manipulation capabilities.

Keywords: robotics; haptic; robotic hand; impedance control; grasp; gripper

1. Introduction

Haptics refers to the sense of touch and tactile sensations and serves as the term for
technology that enables these touch-based interactions. In the context of robot design
and control, haptic technology specifically encompasses interactions between humans
and machines and between machines and objects [1]. This technology is dedicated to
creating and advancing touch-based devices and machines that mimic the capabilities
of the human hand for grasping and manipulating objects [2]. During object–machine
interactions, the device will encounter various sensory feedback experiences from objects,
including pressure and temperature perception, surface texture recognition, vibrations,
stiffness, and force feedback. Consequently, multiple feedback from the object will allow
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the machine to explore a three-dimensional perception based on the object’s size, weight,
and surface characteristics. Haptics allows users to interact with machines by transmitting
and conveying motor control action [3]. This information, resembling the afferent sensory
information in the human nervous system, enables haptics to apply controlled forces to
objects and simulate the sense of manipulation for the operator. Given the frequent and
crucial requirement to skillfully grasp objects, haptic hands and grippers are extensively
employed in crucial subfields where precise object control and smooth interaction with the
environment are crucial. Notably, in various contexts, such as minimally invasive surg-
eries [4,5], advanced prosthetic limbs, and industrial automation and manufacturing [6],
the central importance of haptic hands becomes evident. Given the significance of these
applications, the design and enhancement of these hands carry paramount importance.
Through continuous improvement, these hands empower robots to execute delicate tasks
precisely and replicate human touch sensations. Thus, a multitude of researchers in the
field of robotics have directed their efforts toward advancing the kinematics and control
mechanisms of haptic hands and grippers, all in pursuit of enhancing object manipulation
capabilities. Their specific emphasis is on skillfully navigating the uncertainties associated
with unknown object characteristics and their dynamic interactions with the robot. Various
control strategies, including tactile, visual, and force feedback, have been individually
employed or integrated in tandem to mitigate these uncertainties.

An end effector holds a central role within haptic robots as a pivotal component for
orchestrating interactions between the robot and its working environment. It contains
tasks ranging from smoothly grasping to skillfully manipulating objects. Consequently, a
robot’s performance is closely intertwined with the efficacy of its end effector’s design. End
effectors manifest in diverse configurations, yet hands and grippers emerge as predominant
components in the context of haptic robots. Grippers, characterized by a straightforward de-
sign with, typically, two jaws, facilitate uncomplicated actions such as direct grasping [7–9].
On the other hand, robotic hands are more intricate, often featuring articulated fingers
with additional degrees of freedom that mimic human-like bending and flexing. This
heightened dexterity and precision position robotic hands to excel in tasks demanding
a refined touch and an intricate maneuvering field [10,11]. This work aims to develop a
highly versatile robotic hand capable of effectively grasping and manipulating objects that
exhibit a wide range of stiffness levels. We evaluated the ability of this hand, equipped
with five electronic servomotors, to grasp a diverse range of unknown objects, each varying
in stiffness and weight. The key inputs for the proposed manipulation process include
force data, servomotor currents, and kinematic information.

The structure of this paper is as follows: Section 2 presents the background and
approaches used for designing this device. Section 3 introduces detailed information
about the prototype and controller design of the haptic hand. Section 4 provides the
experimental implementation details, including experiment setup and protocols, followed
by the preliminary experimental results in Section 5. Finally, Section 6 concludes this paper.

2. Background and Approach

Numerous researchers have put forth various grippers and robotic hands, each de-
signed to manipulate diverse objects. Despite the diversity in approaches, the unifying goal
is to ensure robotic systems can manipulate objects seamlessly, avoiding any potential dam-
age or unintended impact by integrating sophisticated control algorithms and innovative
design features.

In a pioneering study in 1989, Mark Cutkosky developed a haptic gripper model with
two arms, each possessing different degrees of freedom, to explore the implementation
of touch capabilities for human perception and to study the applicability of human body
mechanisms to enhance the design of robotic systems [12]. A collaborative venture between
the National Aeronautics and Space Administration (NASA) and the Defense Advanced
Research Projects Agency (DARPA) resulted in the development of a tactile glove designed
for their dexterous humanoid robot [13]. This study delved into the utilization of diverse
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sensory data and the iterative evolution of the glove’s design. The findings underscored the
significant enhancements observed in the robot’s grasping proficiency and its adeptness in
tool manipulation when using force and tactile data. The results demonstrated the promis-
ing impact of this integrated approach on augmenting the robot’s capabilities for intricate
tasks and complex interactions. A sophisticated tactile feedback system incorporating
force sensors, a control system, and a pneumatic balloon tactile display was developed
and implemented in the DaVinci surgical robot [14]. The successful integration of this
system resulted in a notable reduction in the force applied by surgeons during surgeries.
Leveraging haptic feedback, the technology optimized the application of force, thereby
enhancing the precision and delicacy with which tissues were handled during surgical
procedures. After conducting experiments with 20 individuals of varying ages and skill
levels, they found that, on average, each person could employ optimal force after five
minutes of working with this tool. Ultimately, the group found that the average force
consumption in the presence of the tactile feedback system was 4.6 Newtons less than the
condition without the tactile feedback system.

Dollar and Howe introduced a two-finger grasper with dual degrees of freedom on
each finger [15,16]. Their study delved into joint-coupling schemes for grasping in unstruc-
tured environments. This research assessed the performance of a simple, underactuated
gripper in diverse conditions, focusing on its efficacy in grasping objects with minimal
contact forces. The study leveraged motion equations to implement grasping and high-
lighted the impact of the stiffness ratio and kinematic configuration on the grasper’s ability
to manipulate objects, demonstrating its adaptability even without prior information about
object location and size. In 2009, Romano et al. introduced an innovative grasp approach,
drawing inspiration from human mechanisms, to enhance the performance of a parallel-jaw
gripper mounted on a PR2 robotic arm [17]. The PR2 was equipped with a precision gear
mechanism, enabling accurate position control. Complementing this, a force controller
enabled the PR2 to achieve high-accuracy loading interactions with objects. Through the
integration of haptic sensory feedback with a fine position and a force-controlling algorithm,
this grasping controller significantly elevated the robot’s proficiency in safely and securely
lifting a diverse array of objects from a table, effectively mitigating the risks of damage
or slippage.

In a separate study, Bicchi et al. designed a gripper to apply the appropriate force to
objects with varying stiffness [18]. Their approach involved utilizing feedback from both
the displacement of objects and force sensors. This combined sensory information was
employed to determine the stiffness of objects, enabling the gripper to apply the requisite
force tailored to the specific stiffness characteristics of each object. In 2018, Montana and
Suarez introduced a novel gripping approach centered on enhancing the grasp quality of
unknown objects [19]. Their focus involved refining hand configuration, grasp quality, and
object positioning, relying solely on tactile and kinematic information gathered during
object manipulation. This approach aimed to optimize the manipulation of unfamiliar
objects through a strategic combination of tactile feedback and kinematic adjustments.

While a predominant reliance on tactile feedback is evident in many studies, a subset
of investigations has underscored the significance of force feedback as a central element in
their approaches. This shift toward prioritizing force data suggests an evolving trend in the
field, indicating that force-based methodologies offer unique insights and advantages for
addressing the challenges associated with manipulating unknown objects. This approach,
as demonstrated by Shaw and Dubey, enabled the application of optimized forces, leading
to the swift and effective handling of flexible and delicate objects while minimizing slip-
page [20]. Instead of tactile sensors, they employed data from flexible FlexiForce sensors
at each fingertip as the input, with servo angles serving as the output for adjusting the
appropriate loading. Control over the appropriate servo angles was achieved through a
proportional–integral–derivative (PID) controller, operating based on an innovative anti-
slip algorithm. This methodology showcased a departure from traditional tactile-based
systems, highlighting the effectiveness of force-centric approaches in enhancing the ma-
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nipulation of objects with varying properties. In a separate study, M. Al-Mohammed et al.
devised an adaptive closed-loop grasping algorithm capable of applying minimal force to
grip objects without causing damage or slippage [21]. This back-stepping adaptive algo-
rithm utilized gripper velocity as the controller input and effectively measured slip velocity
and force for detecting instances of slippage. This approach demonstrated an advanced
control strategy to achieve secure and damage-free grasping during object manipulation.

These studies have presented a variety of algorithms and techniques geared toward
enhancing gripper capabilities in object manipulation without causing damage. However,
these approaches are not without limitations. For instance, the gripper employed in [17]
lacked the precision required to accurately grasp asymmetrical objects due to its parallel
jaws. The mechanism designed by [18] is primarily aimed at measuring the stiffness
of various objects, lacking sufficient accuracy for other applications. Furthermore, the
gripper developed by [15,16], utilizing compliant actuators, demonstrated lower force
capabilities. Lastly, the gripper designed in [20] exhibited limitations in dexterity. Given
these constraints, the present study seeks to address these shortcomings by proposing a
new gripper model. Additionally, drawing inspiration from the methodologies presented
in these studies, our research endeavors to introduce a novel controlling algorithm that
builds upon the insights gained from the limitations of existing approaches.

Our objective was to design a robotic hand using inexpensive sensors and feedback
capable of gripping unknown objects. To this end, our proposed hand operated reactively,
executing localized control over movements and contact forces to safeguard against object
drop and breakage. Our design followed an iterative approach, with force and kinematic
configurations serving as inputs for each iteration. Forces on each fingertip were accurately
computed using force sensors to initiate a preliminary sense of touch and acquire essential
insights into the unknown object’s geometry. Moreover, the average current values from
each servomotor were employed to discern object stiffness, facilitating object categorization
based on this attribute. Current data were transformed into an impedance form and
harnessed as the primary input for a control algorithm. This algorithm, in turn, optimized
the grip and lifting of each object, ensuring slip-free and breakage-free handling. The
inverse kinematic measurements played a vital role as a control observer, dynamically
adjusting the geometric positions of fingers and joints to ensure precise grasping and
manipulation while moving objects.

Key considerations in our hand design include the following:

• The robotic hand is equipped with force sensors to gather information about contacts
with manipulated objects. No other feedback source, such as visual information,
is utilized.

• A two-fingered design, with each finger having two joints, is employed for manipu-
lation. This design mirrors a human grasp using the thumb and index fingers, with
fingertip movements confined to a plane. Despite this limitation, the design offers a
wide range of motion and dexterity, comparable to the human hand’s ability to grasp
objects from various orientations and positions.

• Manipulated objects are chosen with varying stiffness and shapes, demonstrating the
design’s ability to handle a diverse range of objects, including delicate and rigid ones.

• Aluminum and polylactic acid (PLA) were chosen as the primary materials for manu-
facturing fingers and related parts to ensure that the hand is lightweight, facilitating
swift movements and preventing excessive strain on the robot’s actuators.

• Electronic servomotors are selected as actuators, meeting several design requirements.
These motors are equipped with encoders to provide accurate angular position feed-
back for precise finger positioning. This servo-based gripper enables a fine level of
force and speed control, accommodating diverse tasks with variable parameters. More-
over, the use of servo-based grippers contributes to efficient power usage, a crucial
factor in extended operation and increased autonomy.
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3. Design of the Robotic Hand
3.1. Prototype Design

Figure 1 illustrates the geometric model of our hand module. In designing this
module, our objective was to work with and manipulate a variety of objects effectively. Our
designed hand comprises two fingers that emulate the functions of the thumb and index
fingers. Each finger is equipped with two high-precision servomotors with an impressive
accuracy of 4096 resolution by 0.088 degrees. Servomotors are a type of mechanical rotary
actuators renowned for their ability to offer precise control over angular position, speed,
and torque. These servomotors were positioned at the base and middle segments of
each finger to replicate the metacarpophalangeal joint (MCP) at the finger’s base and
the proximal interphalangeal joint (PIP) at the middle. Additionally, a single servomotor
was employed in the hand module to simulate wrist flexion and extension. We used
Dynamixel MX64 servomotors for the finger actuators and one Dynamixel MX106 for the
wrist. Dynamixel servomotors are recognized for their intelligence, offering high precision
and an impressive torque-to-weight ratio; they are complemented by negligible backlash,
gearboxes, and encoders, ensuring smooth and accurate movements. These qualities make
them exceptionally suitable for applications that demand both strength and precision in
motion. Each of these servomotors can produce a maximum torque of approximately 6 N.m
in 12 volts and 4.1 amperes and are designed for full 360-degree rotation, allowing for
precise control of angular position. This wide range of motion in each finger joint enables a
diverse range of hand configurations for grasping various objects, including symmetric
and asymmetric objects.
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Figure 1. (a) A 3D model of the hand design featuring servomotors for actuation, highlighting the
end-effector position and incorporating a combination of aluminum and 3D-printed parts. The
diverse range of hand configurations enabled it to grip both (b) symmetric and (c) asymmetric objects.

Each fingertip of the robotic hand was equipped with a force-sensitive resistor (FSR)
pressure sensor, a key component in our grasp control system. These sensors are composed
of a polymer resistance material that exhibits a decrease in electrical resistance when
subjected to applied pressure or force on their surfaces. Specifically, we utilized FSR
400 sensors featuring a circular active sensing area with a diameter of 12.7 mm. These
sensors provide a broad range of resistance values, spanning from tens of ohms in the
high-force state to several megaohms in the low-force state, corresponding to a force range
of 0–100 N. One notable advantage of these FSR 400 sensors is their rapid response time,
allowing our robotic fingers to react quickly to changes in force. To enhance grip and
tactile interaction, the entire sensing surface of each sensor was strategically positioned at
the center of the fingertips and coated with a layer of silicone rubber. This silicone layer
contributes to compliance and provides friction for effective grasping. In our control system,
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an Arduino board was the interface for reading and processing data from the FSR sensors.
The Arduino processed this information in real-time and subsequently transmitted it to the
Python programming environment, where our gripper control algorithms were executed.
Leveraging the data collected from the FSR sensors, our control software developed in
Python (version 3.9) precisely orchestrated commands to the servomotors, enabling the
robot to perform comprehensive and reliable grasping operations.

As illustrated in gray in Figure 1a, several 3D-printed PLA and aluminum parts were
designed for secure attachment around the two fingers and connections to the actuators.
These frames were meticulously designed with precisely sized cavities and channels to
accommodate the mounting and wiring of numerous sensors and actuators. The entire
modeling and design process of the mechanism and hand module was carried out using
the SolidWorks (version 2019) software.

3.2. Object and Hand Geometrical Configurations

To determine the appropriate lengths of the robotic hand links, the degrees of freedom
at the joints, and the optimized configuration for effective grasping and object manipulation,
it is essential to consider the intended functions of the hand and the nature of the objects
it will handle. The primary objectives of this hand are to securely grasp objects without
causing damage and to manipulate them without the risk of slippage. Achieving these
goals necessitates a comprehensive understanding of the size and stiffness characteristics
of the objects to be handled.

In this study, a selection of everyday objects was chosen from the Yale–CMU–Berkeley
(YCB) object set, a collection designed to benchmark robotic manipulation capabilities.
These objects were carefully chosen to encompass a diverse range of sizes, shapes, and
stiffness levels. The target objects for the gripping operations include a sponge ball, an
empty soda can, an apple, a glass cup, a plastic cup, and a small milk packet. Visual
representations of these objects can be found in Figure 2.
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Figure 2. The experimental test objects included a foam ball, an empty soda can, an apple, a glass
cup, a plastic cup, and a small milk packet.

Upon measurement, it was ascertained that all objects had effective diameters falling
within the 5-to-7 cm range. Therefore, the initial critical consideration in the design process
is to ensure that the robot’s gripper jaws can accommodate these six objects effectively. In
simpler terms, the length of the fabricated links (l) and the motor rotation range (θ) must
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allow the robot to grasp these objects. The findings of the preliminary experiments are
presented in Table 1, which outlines the final link lengths and the range of rotation for the
servomotors. These specifications resulted in an aperture that can expand to a maximum
width of 8 cm, as demonstrated in Figure 3a.

Table 1. The length of links and servo rotation range are specified for each joint.

Links Length (mm) Joints Joint Constraints (Degree)

Link 1 67 mm Servo 1 0 < θ1 < 90
Link 2 67 mm Servo 2 90 < θ2 < 180
Link 3 40.3 mm Servo 3 0 < θ3 < 110
Link 4 40.3 mm Servo 4 70 < θ4 < 180
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Utilizing these specified lengths and ranges of motion, we depicted the operational
area for the robot’s right end effector in Figure 3b, as denoted by the blue diagram. Notably,
the working space for the left end effector is an exact mirror image of the right finger.
Figure 3b also visualizes the overall hand configuration when all servomotors are set
to zero.

In addition to establishing the initial hand configuration, achieving the correct end-
effector positioning for the secure grasping of each item without risk of slippage or object
damage was a pivotal aspect of the hand’s design. To ascertain this optimal configuration,
a series of grasping tests was conducted for each of the six objects. These tests aimed
to identify the precise end-effector position and distance (fingertip-to-fingertip distance)
needed to securely grasp each object. Table 2 provides an overview of the effective diameter
of each object and the corresponding required fingertip distance to ensure a secure and
damage-free grasp.

Table 2. Results of manual gripping experiments: effective diameter refers to the diameter of each
object before gripping; fingertip-to-fingertip diameter refers to the diameter of each object after
gripping; and the rigidity percentage represents the ratio of an object’s diameter after gripping to its
diameter before gripping.

Objects Effective Diameter
(mm)

Fingertip-to-Fingertip
Distance (mm)

Rigidity Percentage
(%)

Sponge Ball 65 58 89
Empty Soda Can 50 47 94

Apple 60 60 100
Glass Cup 52 52 100
Plastic Cup 60 59 98
Milk Packet 42 40 95
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The rigidity percentage was calculated by dividing the fingertip-to-fingertip distance
by the effective diameter. This ratio was employed to estimate the objects’ stiffness. Using
this parameter, the objects were categorized from highest stiffness to lowest stiffness as
follows: glass cup, apple, plastic cup, milk packet, empty soda can, and sponge ball.

3.3. Joint Controlling Using Inverse Kinematic Equations

The position of the end effectors, which represent the endpoints of the kinematic chain,
were calculated using kinematic and inverse kinematic equations.

Based on the Denavit–Hartenberg (DH) convention, the transformation matrix be-
tween the end effector’s position and wrist position can be expressed as

B
W T =0

3T = 0
1T 1

2T 2
3T (1)

B
W T =


C1C23 −C1S23 S1 L1C1 + L2C1C2
S1C23 −S1S23 −C1 L1S1 + L2S1C2

S23 C23 0 L2S2
0 0 0 1

 (2)

where “C” and “S” stand for cosine and sine, respectively.
By equating the transformation matrices obtained from the forward kinematic equation

and the inverse kinematic equation, as they were also used in our previous work [22], the
joint angles were determined as follows:

θ1 = atan2(R13 , −R23) θ2 = atan2
(

Pz

L2
, C2

)
θ3 = atan2( R31 , R32 )− θ2 (3)

3.4. Controller Design

There are several different types of robotic controller algorithms, each suited to specific
tasks and applications. Some common types of robotic controller algorithms are as follows:

• Position Control: This control algorithm involves controlling the position of the robotic
joints to achieve the desired configuration of the end-effectors [23].

• Force Control: This control algorithm involves controlling the forces at the robotic
hand’s end effector and is useful for tasks requiring gentle interaction with the envi-
ronment or objects [24].

• Impedance Control: This control algorithm regulates the mechanical impedance of the
end effectors, which involves managing the responses of end effectors to the applied
forces and motions. This technique adjusts the resistance of the system to external
forces during interactions with objects or the environment [25,26].

The selection of a control strategy depends on factors such as task complexity and
performance demands. In this study, given the robot’s intended interaction with various
unfamiliar objects, a novel impedance control algorithm was devised to enhance the robot’s
adaptability in diverse environments. This adaptability is key to handling a range of tasks,
particularly when dealing with soft or deformable materials. It helps the robot to be as
rigid or as flexible as needed—firm in free space for precise movements and gentle when
interacting with delicate objects to avoid damage. This control algorithm was implemented
to improve the robot’s compliance and facilitate smoother motion and interactions by
simultaneously controlling velocity and force.

A mass–spring–damper system, as shown in Figure 4, was used to simulate impedance
control because it provides a simplified yet effective model for implementing compliant
behavior in robotic systems by adjusting their stiffness and damping properties. The
system’s mathematical model is expressed as

Z(s) =
F(s)
V(s)

=
K
s
+ B + Ms (4)
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where Z(s) represents the system’s impedance in the Laplace domain; F(s) and V(s) are
the Laplace transforms of force and velocity, respectively; and K, B, and M symbolize the
system’s stiffness, damping, and mass parameters. Equation (5) describes the motion of
a system consisting of a mass matrix, M(q), attached to a spring with a spring constant
matrix, K(q), and a damper with a damping coefficient matrix, B(q), when subjected to an
external force, F(t), as shown in Figure 4. q represents the joint angular position.

M(q).
..
xe + B(q).

.
xe + K(q).xe = F(t) (5)

In this equation, xe is defined as xe = xd − x, representing the discrepancy between
the desired position, xd, and the current position, x, of the end effectors.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 17 
 

 

unfamiliar objects, a novel impedance control algorithm was devised to enhance the ro-
bot’s adaptability in diverse environments. This adaptability is key to handling a range of 
tasks, particularly when dealing with soft or deformable materials. It helps the robot to be 
as rigid or as flexible as needed—firm in free space for precise movements and gentle 
when interacting with delicate objects to avoid damage. This control algorithm was im-
plemented to improve the robot’s compliance and facilitate smoother motion and interac-
tions by simultaneously controlling velocity and force. 

A mass–spring–damper system, as shown in Figure 4, was used to simulate imped-
ance control because it provides a simplified yet effective model for implementing com-
pliant behavior in robotic systems by adjusting their stiffness and damping properties. 
The system’s mathematical model is expressed as 𝑍(𝑠) = 𝐹(𝑠)𝑉(𝑠) = 𝐾𝑠 + 𝐵 + 𝑀𝑠 (4)

where 𝑍(𝑠) represents the system’s impedance in the Laplace domain; 𝐹(𝑠) and 𝑉(𝑠) are 
the Laplace transforms of force and velocity, respectively; and 𝐾, 𝐵, and 𝑀 symbolize the 
system’s stiffness, damping, and mass parameters. Equation (5) describes the motion of a 
system consisting of a mass matrix, 𝑀(𝑞), attached to a spring with a spring constant ma-
trix, 𝐾(𝑞), and a damper with a damping coefficient matrix, 𝐵(𝑞), when subjected to an 
external force, 𝐹(𝑡), as shown in Figure 4. 𝑞 represents the joint angular position. 𝑀(𝑞). 𝑥 +  𝐵(𝑞). 𝑥 + 𝐾(𝑞). 𝑥 = 𝐹(𝑡) (5)

In this equation, 𝑥  is defined as 𝑥 = 𝑥 − 𝑥, representing the discrepancy between 
the desired position, 𝑥 , and the current position, 𝑥, of the end effectors.  

 
Figure 4. Free body diagram illustrating the dynamics of a mass–spring–damper system. 

The system stiffness, damping coefficient, and mass were chosen for the system as 
follows: 

Lower stiffness was chosen for softer objects to allow the robotic hand to deform and 
conform to the object’s shape without applying excessive force. For stiffer objects, higher 
stiffness was preferable to provide better control, stability, and precision during the grasp. 

A lower mass was often desirable for manipulating the soft objects to allow for gen-
tler interactions, which prevents damaging the object. For stiffer objects, a moderate to 
high mass was chosen to provide higher resistance against deformation. However, it was 
essential to find a balance to avoid excessive force. 

A moderate damping coefficient was optimal for soft objects, facilitating smooth and 
controlled movements that prevent object deformation. For stiffer objects, a higher damp-
ing coefficient allowed the system to quickly dissipate energy and minimize oscillations. 
The higher damping coefficient was crucial for enhancing the system stability and main-
taining control during precise or firm gripping tasks. 

The performance of the controller algorithm throughout each step of the gripping 
task is as follows: 
• Approach: The robot starts with a relatively low stiffness and approaches the object. 

Lower stiffness allows for compliant interaction during the initial contact. 

Figure 4. Free body diagram illustrating the dynamics of a mass–spring–damper system.

The system stiffness, damping coefficient, and mass were chosen for the system
as follows: Lower stiffness was chosen for softer objects to allow the robotic hand to
deform and conform to the object’s shape without applying excessive force. For stiffer
objects, higher stiffness was preferable to provide better control, stability, and precision
during the grasp.

A lower mass was often desirable for manipulating the soft objects to allow for gentler
interactions, which prevents damaging the object. For stiffer objects, a moderate to high
mass was chosen to provide higher resistance against deformation. However, it was
essential to find a balance to avoid excessive force.

A moderate damping coefficient was optimal for soft objects, facilitating smooth and
controlled movements that prevent object deformation. For stiffer objects, a higher damping
coefficient allowed the system to quickly dissipate energy and minimize oscillations. The
higher damping coefficient was crucial for enhancing the system stability and maintaining
control during precise or firm gripping tasks.

The performance of the controller algorithm throughout each step of the gripping task
is as follows:

• Approach: The robot starts with a relatively low stiffness and approaches the object.
Lower stiffness allows for compliant interaction during the initial contact.

• Contact: As the robot contacts the object, it may gradually increase its stiffness to
ensure stability during the grasp. This prevents the excessive deformation of the object.

• Holding: Once the object is securely grasped, the robot can maintain a stable grip by
adjusting the stiffness and damping. The control system may continuously adapt to
the object’s properties and environmental conditions.

• Lifting: If the task involves lifting the object, the robot can adjust the stiffness and
damping to ensure a smooth and controlled lift, minimizing the risk of dropping
the object.
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Throughout all these steps, the impedance controller adeptly coordinated the move-
ments of the four servomotors, enabling the hand to emulate natural, human-like motions
while continuously adjusting the stiffness and damping characteristics of the robotic fingers.
In this controller design, the current values measured at each servomotor were used to
estimate the external forces acting on the hand. Unlike voltage, which is more commonly
used in controller systems, current provides a more precise and direct means of controlling
the torque and force output of the servomotors. The integration of current feedback into
the impedance control system enhanced the system’s performance by offering more precise
insights into the external forces encountered by the robotic hand.

The robotic hand had a sense of touch using FSRs integrated into the fingertips. After
categorizing objects based on differences in the servomotors’ current, the hand continuously
monitored its current and calibrated it, if necessary, to control its grip based on the object’s
characteristics, such as stiffness. For example, when grasping a soft object like a milk packet,
the required current may vary as the hand adjusts to stabilize the grip. By continuously
monitoring, the hand was able to regulate the necessary force. Figure 5 illustrates the five
stages of a complete grasping procedure.
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the fingers approaching the object. Step 2 demonstrates the fingers making contact with the object
and holding it. Step 3 displays the hand lifting the object. Step 4 exhibits the hand setting the object
down, and Step 5 portrays the fingers releasing the object. The images in (b,c) represent the side view
and top view of each step, respectively.

4. Experimental Implementation

Before implementing the controller, we conducted manual grasping experiments on
all six objects to establish the grip force threshold for each. FSR sensors on each fingertip
measured the force applied by the fingertips to securely hold each object. A series of
experiments yielded a relationship between force and resistance for the FSR sensors. Based
on the applied fingertip force measured for each of the six objects, we conducted stiffness
categorization, spanning very soft to very stiff, and assigned each object to one of these five
distinct categories. Notably, our selection of objects from the YCB object set was deliberate,
ensuring that each of the five stiffness categories was represented by at least one object.
Table 3 represents the object classification based on the forces recorded by the FSR.

In the manual gripping tests, not only were the applied forces assessed using the FSR,
but the servomotor angles for each joint were also meticulously recorded (θdesired). These
angle measurements served a dual purpose: a crucial parameter of our controller observer
and an additional insight into the kinematics of the robotic hand during the gripping
process. Finally, for each class of objects, categorized based on their stiffness and FSR
outputs, a force threshold and motor angle were obtained.
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Table 3. Stiffness classification of objects based on the FSR values.

Degrees of Stiffness Values from FSR Sensors

Very Soft 0–200
Soft 201–400

Moderate 401–550
Stiff 551–700

Very Stiff 701–800

After performing the initial manual tests, the actual automated gripping tests involving
the controller mechanism and current measurements were performed. These gripping tests
were conducted in two separate phases. The first phase was called the close phase. This
procedure began with the hands transitioning from an open state, with no contact with
the objects, to the point where both fingertips made initial contact with objects. Before the
closing phase began, we ensured that each fingertip was on each side of an object. This
phase finished with the hand being stopped as soon as a sense of touch was detected. This
sense of touch was identified by comparing the force at the fingertips with a contact force
threshold previously measured using the FSR for our categorization system. In scenarios
where the object is not perfectly centered within the gripper, the force calculated from each
fingertip may vary. To address this, we ensured that the smaller value was compared with
the contact threshold force from the FSRs.

Fg,min = min(FL, FR) (6)

where FL and FR are calculated forces from FSRs for the left and right fingertips, respectively.
This approach empowered the robot to make decisions, ensuring effective operation even
when the object was not perfectly centered within the gripper. It is important to note that,
before comparing the force values from the FSRs and motor currents, several experiments
were conducted to relate the force from the FSRs to Newtons, revealing that ~200 g from an
FSR (associated with the softest object in our YCB set) could be equated to ~0.5 N. Thus,
as soon as the condition Fg,min > Flimit = 0.5 N was satisfied, the hands paused, and the
closing phase was completed with a full touch sensation. FSRs were used at this stage due
to their detection speed, which was especially required for detecting the initial contact.

The subsequent phase in grasping objects was the load phase, commencing a few
milliseconds after the end of the close phase (initial contact with the object and full touch
sensation). The goal of this phase was to apply an appropriate load to the object for
lifting. During this phase, the hand closed an additional 1 mm on each fingertip to ensure
that it securely held the object. The current in each of the four servomotors at each joint
was measured at this stage and averaged across the two servomotors at each finger. The
difference between the current measurement for fingers at the load phase (IlL and IlR) and
the current measurement for fingers at the close phase (IcL and IcR) was then calculated. A
new classification of objects based on their stiffness was developed based on the current
differences in these two phases. Table 4 presents the classification of objects based on the
current differences in these two phases.

Table 4. Stiffness classification of objects based on the current differences in the close and load phases.

Degrees of Stiffness Current Differences in Close and Load Phases (mA)

Very Soft 80–289
Soft 290–339

Moderate 340–379
Stiff 380–429

Very Stiff ≥430



Sensors 2024, 24, 2585 12 of 17

When the hand determined the stiffness class of the object based on the current
measurements, the gripping procedure entered its third phase: load adjustment. In this
phase, based on the degree of stiffness, the servomotors finetuned their angles to apply the
necessary load for securely holding objects. For each object, the servomotors adjusted their
angles to attain the forces outlined in Table 3, derived from manual experiments across
different object classes. This phase also involved minor adjustments in fingertip positions
from the loading stage to ensure a more secure and reliable grip. To validate the success of
the grasping process, servomotor angles were employed as independent observers. During
the load adjustment stage, the servomotor angles (θreal) were measured for each finger
when the fingertip applied the appropriate loading. These measured values were then
compared with the angles (θdesired) recorded during manual object gripping experiments for
each object. Specifically, θdesired represents the expected servomotor configuration when the
distance between two fingertips equals the fingertip-to-fingertip distance for each object,
as detailed in Table 2. θreal denotes the actual angle of the servomotor during the load
adjustment cycle obtained in the load adjustment phase. The difference between these two
angles is represented as α =| θa − θm|. Through multiple experiments, we consistently
observed that α falls within the range of 0 to 2. To achieve more precise adjustments during
this phase, allowing for further fingertip loading and positioning accuracy, a target angle
was calculated based on the following algorithm.

I f α < 1 → Target position = (θreal + θdes)/2 (7)

I f α > 1 → Target position = (θreal + θdes)/2 + (0.5 → θreal) (8)

Through these adjustments in force and positioning, the hand was carefully maneu-
vered into the final configuration, which was considered a secure and reliable configuration
for gripping objects.

5. Results

In this study, our primary objective was to explore the reliability of our control mech-
anism in the classification of objects based on their stiffness. The controller’s ability to
accurately identify objects’ stiffness is of paramount importance, as it enables the robot
to apply suitable loading and positioning configurations, ensuring the safe grasping, and
lifting of various objects.

As previously mentioned, our initial approach involved manually gripping objects to
assess their stiffness based on load values and subsequently classifying them according
to their stiffness characteristics. If the classification derived from the current measure-
ments aligns with the FSR-based classification we established earlier, it would validate
the effectiveness of our control mechanism. This alignment would further ensure that the
appropriate loading is applied so that the robot can grasp the objects securely.

To evaluate the robustness of our control techniques in object classification, we con-
ducted ten comprehensive grasping experiments for each of the six objects. During these
experiments, we recorded current values for the touching and grasping operations at the
end of the close and load phases, respectively. The difference between these current values
was employed to categorize the objects according to the criteria outlined in Table 4. The
outcomes of these experiments are illustrated in Figure 6 and Table 5. Figure 6 presents
box plots for each object, depicting the distribution of current difference values recorded
during the ten experiments and illustrating how each object aligns with various stiffness
classes based on current differences. Complementing this visual representation, Table 5
summarizes the number of experiments out of ten, where each object has been categorized
into different stiffness classes.
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Table 5. The number of times each object fell into a stiffness category out of ten grasping trials.

Objects Very Soft Soft Moderate Stiff Very Stiff

Sponge Ball 10 0 0 0 0
Empty Soda Can 9 1 0 0 0

Plastic Cup 1 8 1 0 0
Milk Packet 1 7 2 0 0

Apple 0 0 3 7 0
Glass Cup 0 0 0 0 10
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Figure 6. The current difference values for each object measured across ten complete grasping
experiments.

Interpreting the obtained results, the sponge ball and empty soda can exhibit char-
acteristics indicative of very soft objects; the plastic cup and milk packet fall into the
category of soft objects; the apple and glass cup can be classified as stiff and very stiff
objects, respectively.

Following the categorization of objects based on the observed current differences, the
robotic hand needed to apply an appropriate force corresponding to the stiffness group
identified during manual gripping operations, as detailed in Table 6. The controller sent
calculated equivalent current derived from the fingertips’ forces and the associated angles
observed by the system to the respective servomotors. This action directed the hand to
move to its final configuration.

During 60 experiments, encompassing touching, gripping, and lifting, all objects
were handled securely, with no instances of crushing, damage, or slippage recorded. The
resultant loading and positional configurations for each object were averaged through ten
experiments and are presented in Table 6, providing a comprehensive overview of the safe
and effective manipulation achieved through the control system.
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Table 6. A summary of grasping experiment results for different objects.

Experimental Results Sponge Ball Empty Soda Can Plastic Cup Milk Packet Apple Glass Cup

Average servomotor current values during initial touch
(end of close phase) 157.7 mA 142.7 mA 167.4 mA 155 mA 167.2 mA 163.5 mA

Average servomotor current values during loading (end of
load phase) 319.2 mA 445 mA 469.9 mA 472 mA 571.5 mA 600.2 mA

The current difference at the close and load phases 161.5 mA 282.2 mA 302.5 mA 317 mA 404.2 mA 436.7 mA
Degrees of stiffness Very Soft Very Soft Soft Soft Stiff Very Stiff

The position of left and right fingertips during touch (x,y) (166, 40) and
(166, −40)

(166, 40) and
(166, −40)

(166, 35) and
(166, −35)

(170, 19) and
(170, −19)

(166, 34) and
(166, −34)

(166, 34) and
(166, −34)

The position of left and right fingertips during
gripping (x,y)

(175, 25) and
(175, −25)

(171, 29) and
(171, −29)

168, 32) and
(168, −32)

(175, 14) and
(175, −14)

(169, 31) and
(169, −31)

(167, 33) and
(167, −33)

The position of left and right fingertips during destructive
deformation (x,y) NA (176, 24) and

(176, −24)
(170, 31) and

(176, −31)
(180, 9) and

(180, −9) NA NA
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6. Summary and Conclusions

This paper aimed to design, prototype, and evaluate a novel robotic hand augmented
with an inexpensive haptic mechanism capable of lifting unknown objects. To this end, we
successfully fused FSRs to improve speed and servomotor current to improve accuracy in
grasping objects. FSR sensors granted the robotic hand a basic touch sensitivity akin to
the human hand’s initial contact with an object. The control strategy then refined the grip
by adjusting the servomotors’ force based on current measurements, marrying delicate
touch with precise force control. Six predetermined objects were selected for evaluation;
however, the robot has the ability to grasp new objects. Our designed hand showed a high
level of accuracy and skill compared with previously proposed designs. To prototype the
mechanical structure of the proposed hand, the griping aperture limit (considering the
dimensions of the test objects) and the workspace of each finger were examined.

For the mechatronic design of the robot, a communication protocol between the motors
and the processor was established, and two parallel procedures were employed to control
the robot: first, touching the object, which was detected through the fingertips’ FSRs and
commanded the motors to stop; second, lifting the object by monitoring the motor currents
and the impedance control. Inverse kinematic equations were used as observers for the
control system. Our results demonstrated the following:

• The use of servomotors in the design of the hand or gripper increased accuracy and
ease of operation, enabling the implementation of control algorithms.

• Two degrees of freedom in each finger enhanced the robot’s dexterity.
• Using precise servomotors allowed for the application of direct and inverse kinematics

to control the robot’s position as a controller or observer.
• Impedance control allowed for an acceptable understanding of touching different

objects and control of the hand, providing simplicity and high precision.

In the future, we will use this design to grasp an object using all connected linkages.
Each link will not move after touching the object. To improve grasping, we will design a
control algorithm that prevents the slippage of objects. For example, by reading the current
at each end effector and employing multiple force sensors at the fingertips, the robot can
profile the slippage trajectory and intervene accordingly. Furthermore, designing an arm
robot using our proposed hand as an end effector or combining the hand with an industrial
arm to relocate objects could be interesting.

Developing a robotic hand that can match the dexterity of a human hand is still a
distant reality. However, it is crucial to prioritize human-robot interactions and intuitive
control when designing such a robotic hand to ensure high user compliance. We need to
reduce the cost of our design and improve the range of objects it can handle. Currently, the
design is limited to the servomotors that provide the current feedback. Nevertheless, we
have made significant progress toward achieving this goal.
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