
Citation: López-Gómez, R.; Panizo, L.;

Gallardo, M.-d.-M. FLEXTORY:

Flexible Software Factory of IoT Data

Consumers. Sensors 2024, 24, 2550.

https://doi.org/10.3390/s24082550

Academic Editors: Allel Hadjali,

Behnam Mobaraki and Jose Turmo

Received: 5 March 2024

Revised: 30 March 2024

Accepted: 13 April 2024

Published: 16 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

FLEXTORY: Flexible Software Factory of IoT Data Consumers
Rafael López-Gómez * , Laura Panizo and María-del-Mar Gallardo

ITIS Software, Andalucía Tech, Universidad de Málaga, 29071 Malaga, Spain; laurapanizo@uma.es (L.P.);
mdgallardo@uma.es (M.-d.-M.G.)
* Correspondence: rafaellopez@uma.es

Abstract: The success of the Internet of Things (IoT) has driven the development, among others, of
many different software architectures for producing, processing, and analyzing heterogeneous data.
In many cases, IoT applications share common features, such as the use of a platform or middleware,
also known as message broker, that collects and manages data traffic between endpoints. However, in
general, data processing is very dependent on the case study (sensors that send temperature data,
drones that send images, etc.). Thus, the applications responsible for receiving and processing data,
which we call consumers, have to be built ad hoc, since some of their elements have to be specially
configured to solve specific needs of the case study. This paper presents FLEXTORY, a software factory
tool to make it easier for IoT developers to automatically construct configurable consumer applications,
which we call FLEX-consumers. FLEXTORY guides developers through the process of generating Java
consumers by selecting some desired features such as, for instance, the particular communication
protocol to be used. This way, the developer only has to concentrate on designing the algorithm to
process the data. In short, the use of FLEXTORY will result in consumer applications with configurable
behavior, namely FLEX-consumers, that can connect to a messaging server (for example RabbitMQ)
and process the received messages.

Keywords: Internet of Things; software factory; message broker

1. Introduction

The Internet of Things (IoT) can be defined as the interconnection of heterogeneous
devices through the Internet. With the evolution of wireless networks, in particular the fifth
generation of mobile networks (5G), IoT has become an enabling technology for a large set of
applications from many different domains, such as smart cities, smart farming, Industry 4.0,
and e-Health [1]. In IoT applications, at least three main actors can be identified: the source
of data (the producers/publishers), such as sensors that produce information, the processors
(the consumers) that analyze and transform data following some criteria, and the actuators
that respond properly according to the information registered.

Despite the wide variety of IoT architectures, most of them rely on an intermediate
platform (middleware), called message broker, that abstracts the data transmission between
IoT peer devices. Brokers support reliable communication and, additionally, can hide the
existence of devices connected at any given time. Thus, the communication endpoints (the
producer and consumer nodes) are only self-aware. Thanks to this feature, it is possible to
develop loosely coupled and scalable IoT applications. Traditionally, when a developer
faces the task of constructing an IoT application for a given domain following this architec-
ture, he/she has to select the intermediate platform that will connect the source and target
entities, implement software modules that carry out this communication, and design the
software component that processes the data produced by the data source.

Currently, there is a wide variety of general purpose brokers, such as RabbitMQ,
Apache Kafka, and Mosquito. One of the main differences between them is the communi-
cation protocols used to connect the broker with the producer and consumer applications. In
the IoT domain, brokers usually make use of the two well-known communication protocols

Sensors 2024, 24, 2550. https://doi.org/10.3390/s24082550 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24082550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3825-196X
https://orcid.org/0000-0002-6399-6162
https://orcid.org/0000-0003-3481-5307
https://doi.org/10.3390/s24082550
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24082550?type=check_update&version=2

Sensors 2024, 24, 2550 2 of 25

AMQP [2] and MQTT [3] that take into account the limited resources of many IoT devices.
It is worth mentioning that some broker systems support both communication protocols.

In this work, we have followed the ideas of Software Product Line Engineering (SPL) [4],
a research area whose aim is to model families of software products that can be used to
generate software adapted to the final user’s needs. The SPL community has addressed
multiple problems of the IoT domain, such as the design of App Stores that support the
deployment of customized applications [5] and the self-adaptation of applications running
in heterogeneous IoT devices [6].

The term software factory is not new [7] and refers to the set of techniques and tools that
automate and simplify software creation [8]. They have been traditionally used to develop
industrial applications. Nowadays, they are part of the techniques of SPL Engineering and
are broadly used to customize software products of different domains [9]. In particular,
we have constructed the tool FLEXTORY that allows the development of IoT consumer
applications with several facilities. The tool is able to automatically construct the software
components to read the data from the producer. In addition, FLEXTORY allows the easy
integration of any data processing algorithm in the IoT application. This characteristic
is very interesting, since it means that the developer only has to focus on the design of
the algorithm suitable for the application being implemented. The tasks related to the
integration of the algorithm with the rest of the application’s software modules are already
provided by the tool. To the best of our knowledge, in the literature, there are no tools
similar to FLEXTORY that generate consumer applications with flexible behavior in the
IoT domain.

The objective of this paper is to describe FLEXTORY in detail. FLEXTORY generates
consumer applications able to read and process data received from a message broker sys-
tem. To avoid confusion due to names, we use the term FLEX-consumer for the consumer
applications built with FLEXTORY. As commented above, FLEX-consumers have a flexible
behavior with many configurable options to ease their deployment. All FLEX-consumers
have been developed in Java, which is well known for its portability. In addition, Java is
also supported by some devices with low computing power [10].

Figure 1 depicts the interaction between the tool FLEXTORY and FLEX-consumers and
their users. As shown, two different users appear in the diagram. On the one hand, the
FLEXTORY user (called developer) makes use of FLEXTORY to construct FLEX-consumers.
The developer introduces some parameters needed to construct the desired FLEX-consumer,
such as, for instance, the communication protocol to be used and the algorithm that will
process data. On the other hand, the FLEX-consumer user configures the application in
order to adapt its execution to the particular expected behavior. Usually, the FLEX-consumer
configuration is related to how and when the data processing algorithm must be executed.

Figure 1. Overview of FLEXTORY and FLEX-consumer proposal.

To demonstrate the utility of FLEXTORY and FLEX-consumers in the development and
deployment of IoT consumer applications, we present a non-trivial case study related to
the learning technique of black-box systems [11]. FLEXTORY is used to produce a FLEX-

Sensors 2024, 24, 2550 3 of 25

consumer that reads a sequence of observations and runs a learning algorithm that is able to
produce models of the system. In particular, in the case study, the FLEX-consumer is used to
learn models of the DASH protocols [12]. This example shows how FLEXTORY facilitates
the construction of complex IoT applications. As commented above, the developer only
has to focus on the construction of Java classes that carry out the learning process. Finally,
we have evaluated the tool with a user study in which a group of post-graduate students
have performed a task with FLEXTORY and have filled out a questionnaire.

The tool and the documentation is publicly available at https://gitlab.com/morse-
uma/formal-methods/flextory/, accessed on 28 March 2024.

The rest of the paper is organized as follows. First, Section 2 introduces some of
the most common IoT communication protocols and message brokers. Then, Section 3
summarizes related work. In Section 4, we describe in detail the design and implementation
of FLEXTORY and the generated FLEX-consumers. Sections 5 and 6 present two case studies
and the user study results, respectively. Finally, in Sections 7 and 8, we discuss the strengths
and weaknesses of our proposal and summarize conclusions and future work. Additionally,
we provide supplementary material in Appendix A, expanding on Sections 4 and 5 to
provide more information on the development and application of FLEXTORY.

2. Background

In this section, we first present and compare some of the most widely used IoT
communication protocols. Then, we introduce the IoT architecture based on message
brokers, which is the basis of the design of the tool FLEXTORY. We recommend that the
reader consult a state-of-the-art survey on IoT, such as [1], to gain a broader view of
this technology.

2.1. IoT Communication Protocols

In general, communication protocols establish a set of rules so that different devices
can communicate, as well as the format of the messages exchanged. In the case of the IoT
domain, communication protocols have to deal with some specific features. Firstly, they
must take into account the large number of devices that can be connected, the different
tasks that they may perform, and the disparity in devices’ computation capability. In
addition, the IoT architecture should be scalable and flexible; that is, adding or removing
devices should not produce noticeable changes in the IoT solution. This requirement entails
adopting low coupling between devices. Finally, the security of communications must also
be ensured.

IoT protocols may be based on different communication patterns, Publish/Subscribe
being one of the most widely used. In this communication pattern, there are two entities
that interchange data via a middleware broker. On the one hand, the subscriber tells a broker
the topic of the messages that it wants to receive. On the other hand, the publisher sends
data about a certain topic to the broker. As shown in Figure 2, the message broker is in
charge of distributing the messages to the subscribers subscribed to each topic.

Figure 2. Example of Publish/Subscribe communication pattern.

https://gitlab.com/morse-uma/formal-methods/flextory/
https://gitlab.com/morse-uma/formal-methods/flextory/

Sensors 2024, 24, 2550 4 of 25

We will now describe some IoT protocols based on the Publish/Subscribe pattern that
work over the application layer of the OSI network model. Since AMQP and MQTT are,
by far, the most widely used protocols, we have decided that developers can configure
FLEXTORY to allow the resulting FLEX-consumer to make use of one of these two protocols.

• MQ Telemetry Transport [13,14] (MQTT) is an OASIS open standard that defines a
Machine to Machine (M2M) communication protocol for IoT environments. MQTT typ-
ically works over TCP and transports binary data. MQTT is designed to be lightweight
so that it can be used by devices with low computing capacity. In addition, message
headers are small to accommodate low bandwidth networks. Finally, regarding se-
curity, different security mechanisms are available, such as encrypting connections
using SSL/TLS and authentication.

• Advanced Message Queuing Protocol [15] (AMQP) is also an OASIS open standard.
AMQP is designed to support a wide variety of communication patterns. Messages
are distributed between the endpoint devices by means of a flexible and complex
mechanism based on exchanges, which are abstract entities declared by users to which
messages are sent. Exchanges take a message and route it into queues. Users have to
create queues if they do not exist and bind them to a specific exchange. The routing
algorithm that distributes messages from exchanges to queues depends on the exchange
type and the binding rules. There are many exchange types, but in this project, we
have used the default exchange that is pre-declared by the broker. This exchange offers
a Publish/Subscribe pattern with one special property that makes it very useful for
applications: every queue that is created is automatically bound to the exchange with a
“topic name” (routing key in AMQP nomenclature) that is the same as the queue name.
For example, if a queue with the name “test” is declared, the message broker will bind
it to the default exchange using “test” as the topic. AMQP provides authentication
and encryption based on SASL and TLS.

• Constrained Application Protocol [16] (CoAP) is a protocol for devices with limited
resources that provides a REST model between application endpoints with messages
in binary format. Targeting efficiency, CoAP runs over the UDP transport layer
protocol to distribute messages in an asynchronous manner. Regarding security, it
supports DTLS.

• Extensible Messaging and Presence Protocol [17] (XMPP) is an IETF open standard that
uses the Extensible Markup Language (XML) as the data format. XMPP was initially
designed for instant messaging services but was later extended to cover different com-
munication patterns, such as Request/Response, Asynchronous Messaging, Publish/
Subscribe, event subscription (Observe) and delayed delivery. In terms of security,
XMPP supports SASL and TLS. However, the support of end-to-end encryption is a
work in progress.

2.2. Message Brokers

A message broker, or a messaging server, is a middleware between applications or
devices, both senders and receivers, that exchange messages. In the IoT context, a message
broker consists of a centralized notification service that is a main server with a fixed IP
address known by all devices. As shown in Figure 3, the server is responsible for receiving
messages from all sending devices (publishers) and distributing them to receivers (consumers).
The connected devices are only aware of themselves. Consumers do not know the true origin
of the data, and publishers do not know by who or how the data will be processed. This
isolation is achieved thanks to the message broker management and provides scalability
and low coupling.

Sensors 2024, 24, 2550 5 of 25

Figure 3. Message broker architecture.

Nowadays, a wide variety of message brokers are available, both self-hosted and
cloud-hosted. In particular, we have tested the FLEX-consumers using RabbitMQ, since it is
one of the message brokers that supports MQTT and AMQP. Table 1 shows a comparison
between some of the most popular message brokers (despite the fact that all solutions can
be deployed in a cloud service provider, we have only considered native cloud hosting). In
addition to the type of business model followed, either proprietary or open source, some
other differences can be highlighted. For example, the RabbitMQ model has commercial
features to gain access to a virtualized version of the message broker and even cloud
hosting and technical assistance. Regarding the protocols supported, the brokers accept
AMQP and MQTT natively or via plugin, with the exception of Apache Kafka that uses a
custom protocol. Finally, Microsoft’s and Amazon’s options also cover the integration and
communication with other services provided by these companies.

Table 1. Features of different Message brokers.

Name Business
Model Hosting Native Protocols Additional

Information

RabbitMQ [18] Open Source Self-hosting AMQP
Plugin support
including MQTT
extension

Azure IoT
Hub [19] Proprietary Cloud hosting HTTP, AMQP,

and MQTT
Integration with
Azure services

Apache
Kafka [20] Open Source Self-hosting TCP-based

protocol
Supports AMQP and
MQTT via plugin

Eclipse
Mosquitto [21] Open Source Self-hosting MQTT -

AWS IoT
Core [22] Proprietary Cloud hosting MQTT and

HTTPS

Integration with
AWS and other
Amazon services

3. Related Work

In the IoT domain, it is common to use the three-layered architecture that distinguishes
between the roles of producers, message brokers, and consumers. One of the main challenges
to be addressed when using this architecture is how to adapt it to changes in the data
format and the processing algorithm. There exist many proposals that integrate all the
components of this three-layered architecture into a custom solution. For example, JCL [23]
is a middleware whose purpose is to integrate IoT with High Performance Computing
(HPC). It also has an API in which different categories of devices can be programmed. Since
JCL requires that its own components be installed in all the systems belonging to the IoT
ecosystem, its use is limited to devices that are JCL compatible. Our proposal is focused on

Sensors 2024, 24, 2550 6 of 25

end devices that process data (consumers) and relies on the portability paradigm of the Java
language. In contrast to JCL, FLEX-consumers are automatically generated.

D-LITe [24] is another all-in-one solution that uses a choreography approach. Pro-
gramming is based on cooperation between nodes, each one performing a small part of
the total application. To program a node, D-LITe uses finite state machines with an output
alphabet, called Finite State Transducers (FSTs), to describe the logic of the application.
When a user wants to describe the application, he/she does it using a specific format called
SALT. Subsequently, the rules are transformed into a set of FSTs (one per node) that are
sent through the network. Finally, each node’s rule analyzer is responsible for executing
its FST. The use of D-LITe is limited both by the compatible devices and by programming
options offered by the SALT format. As mentioned before, our proposal offers consumers
with flexible behavior that can be changed in every execution. In addition, there are no
programming restrictions because they are built using Java.

IoTSuite [25] also offers a tool suite that covers all the layers that constitute an IoT
infrastructure. These tools automatize tasks in different phases of developing an IoT
application. For example, programmers can write high-level textual specifications that can
be analyzed and transformed into code by the compiler tool. There is also an execution
system that incorporates a middleware to coordinate nodes. IoTSuite requires that it be
compiled and installed on all devices that will be used, which limits its application.

The platform SYNAISTHISI [26] is another approach to support multiple communica-
tion protocols, such as MQTT and AMQP, by integrating different open-source frameworks
including, among others, RabbitMQ. This work does not focus on how to support the
development of IoT applications. In contrast, its objective is to support the interoperability
of these different frameworks and provide a unified user-access control on IoT data and ser-
vices. The platform is available as a set of dockerized containers; thus, it is easily deployable.
Both tools, the SYNAISTHISI framework and FLEXTORY, aim to support the fragmented
IoT ecosystem from different approaches. Clearly, the SYNAISTHISI platform can help
us to test FLEX-consumers generated by FLEXTORY in different scenarios (protocols and
brokers) and, alternatively, FLEXTORY can easily produce FLEX-consumers with different
communication protocols to test the interoperability of SYNAISTHISI.

There are also proposals that only focus on endpoint devices, either publishers or
consumers. For instance, FRASAD [27] is a framework that facilitates the development of
programs for sensor nodes (devices physically connected to sensors). FRASAD has been
built following a software architecture centered on nodes and a programming model based
on rules that allows applications to be described using a language specific to the sensor
domain. The application code is generated from models built with the language through
an automatic transformation process. FRASAD focuses on the publisher part, while our
proposal centers on the consumer applications.

On the consumers side, Midas [28] is a framework to help researchers create and
manage IoT applications with heterogeneous data sources. Midas has a module to process
the data features of interest by means of the so-called analysis functions that make use of
machine learning techniques. The main characteristic of Midas is its modularity, making it
easy to incorporate new components in order to add new data streams or analysis functions.
In addition, it is implemented as a distributed architecture to assure scalability. Compared
with Midas, FLEXTORY’s goal is different, since it is conceived as a meta-tool to create new
configurable tools with respect to the structure of input data, the type of message brokers
to be used, and the algorithms to process data, among other features.

4. Software Description

Figure 4 presents a general overview of FLEXTORY and FLEX-consumers developed in
this work. The top part of the figure shows FLEXTORY’s input and output. Thus, the user of
FLEXTORY (a developer of IoT consumer applications) introduces parameters that FLEXTORY

needs to build a FLEX-consumer. The mandatory inputs are the type and structure of the
data (in JSON format) that the FLEX-consumer will receive from the message broker, the

Sensors 2024, 24, 2550 7 of 25

algorithm for data processing, and the communication protocol (AMQP or MQTT) to be
used to connect with the message broker. With this information, FLEXTORY automatically
generates a FLEX-consumer.

Figure 4. General overview of the inputs and outputs of FLEXTORY and FLEX-consumers.

The lower part of Figure 4 shows how the resulting FLEX-consumer can be configured
and executed. Among other functionalities, the FLEX-consumer can be configured by the
user to connect to a specific message broker and to subscribe to different types of data topics
(as described in Section 2.1). Furthermore, there are some other customizable parameters
used to establish some execution conditions of the processing algorithm and to decide
when the FLEX-consumer should stop its execution. We have tested the FLEX-consumers
generated with FLEXTORY using RabbitMQ as a message broker, but FLEX-consumers can
connect to any other messaging server supporting AMQP or MQTT protocols.

The rest of the section describes the design of FLEXTORY and the FLEX-consumers
shown in Figure 4. We first present the design of FLEXTORY, including its main functional
and non-functional requirements and some implementation details. Then, we introduce
the FLEX-consumer requirements related to their configuration.

4.1. Design and Implementation of FLEXTORY

As commented before, FLEXTORY automatically creates consumer applications with
configurable behavior (the FLEX-consumers). On the one hand, FLEXTORY must be able to
generate FLEX-consumers adapted to different IoT domains. This implies that FLEXTORY

must allow both different formats for the data received by FLEX-consumers and also different
processing algorithms to be applied to data. On the other hand, FLEXTORY must construct
FLEX-consumers able to change the message broker as well as the conditions to trigger the
processing algorithm in each execution.

Table 2 contains the list of functional and non-functional requirements that have
guided the construction of FLEXTORY. These requirements have been selected to offer
developers maximum flexibility when choosing how to build a FLEX-consumer. The most
relevant requirements are FR-1 to FR-5. FR-1 establishes the need to provide the format of
the data received by the FLEX-consumer. FR-2 to FR-4 describe the requirements related to
the processing algorithm used by the consumer applications produced by FLEXTORY. FR-5
is related to the communication protocols to be included in the FLEX-consumers.

Sensors 2024, 24, 2550 8 of 25

Table 2. Functional and non-functional requirements of FLEXTORY.

Id Description

FR-1 Developers have to specify the format of the data received by the FLEX-consumer.

FR-2 FLEXTORY will have a way to enter the algorithm that the FLEX-consumer will execute to
process the received data.

FR-3 FLEXTORY should offer a template of the processing algorithm that users have to complete.

FR-4 FLEXTORY will allow the user to add external dependencies of the FLEX-consumer’s
processing algorithm in JAR format.

FR-5 Developers have to select either MQTT or AMQP as the consumer’s protocol, but not both.

FR-6 The name of the resulting FLEX-consumer has to be configured by the user.

FR-7 FLEXTORY has to give warning messages to users when an error occurs.

NFR-1 FLEXTORY must have an intuitive and easy-to-use GUI.

NFR-2 FLEXTORY should be offered as a stand-alone application in JAR format.

NFR-3 FLEXTORY should be compatible with several operating systems.

NFR-4 FLEXTORY must be executable on systems that have the Java Development Kit (Java JDK).

Figure 5 shows the use case diagram that describes FLEXTORY’s main capabilities. The
main actor is the FLEXTORY user interacting with FLEXTORY to generate a FLEX-consumer.
To this end, the user uploads the format of the messages to be processed, currently using
a JSON schema. In addition, the user defines the processing algorithm. This requires
uploading, at a minimum, the implementation of the Algorithm class. To ease the process,
the user can download a template to be completed. Optionally, if needed, the user can
upload external dependencies packaged in JAR format. Moreover, the user must select the
communication protocol between the two that are currently available (AMQP and MQTT).
Finally, FLEXTORY uses the Java compiler to generate the FLEX-consumer, so it is essential
that it be installed.

Figure 5. FLEXTORY use case diagram.

Figure 6 shows FLEXTORY’s architecture. In Appendix A, we have included supplemen-
tary material, such as the class diagram. FLEXTORY follows the classical Model/View/Controller
design pattern. The View module includes the visual components used by the Graphi-
cal User Interface (GUI) to guide the user through the configuration and generation of
the FLEX-consumer application. There are two main visual components: the MainFrame,
which provides the skeleton of the FLEXTORY GUI, along with different panels that remain

Sensors 2024, 24, 2550 9 of 25

visible during the creation of the FLEX-consumer in order to ease the interaction with the
user. The Model module is in charge of generating the FLEX-consumerand is composed
of two sub-components, the Consumer Templates and the Compiler. The former contains
the code templates of different consumer components, such as the User Interaction module
or different versions of the Connection Management module. The Compiler is in charge
of integrating the templates with the data provided by the user in order to generate the
FLEX-consumer executable. Finally, as usual, the Controller is the link between the View and
the Model, reacting to user inputs and performing interactions on the Model. In addition, it
can also react to Compiler events to properly update the View.

Figure 6. FLEXTORY components diagram implementing Model/View/Controller design pattern.

The current version of FLEXTORY is a Java application with a Java Swing GUI, packed
in an executable JAR file. To generate FLEX-consumers, FLEXTORY guides users through a
sequence of steps shown in the flow diagram in Figure 7. Although it is not explicit in the
diagram, the user cannot advance to the next step if the selection made in the current step
is wrong. We will use this diagram to present FLEXTORY’s main implementation decisions.

Figure 7. Simplified activity diagram of FLEXTORY.

In the first step, the user has to provide a JSON schema describing the format of the
data distributed by the message broker. Then, the user uploads the processing algorithm
to be used by the FLEX-consumer. The algorithm has to be coded in a special Java class
called Algorithm that implements the Java Runnable interface, so that the user only has to
implement the run method. To make this step easier, FLEXTORY provides a downloadable
template of the Algorithm class. In addition, if the Algorithm class has some dependencies,
they have to be provided as JAR files. In the fourth step, the user selects the communication
protocol supported by the broker (AMQP or MQTT). With all the necessary files, the
Compiler module transforms the data description (JSON schema) into a set of Plain Old
Java Objects (POJOs) classes that will be part of the FLEX-consumer, and will support the
deserialization of the data received from the message broker. Finally, the FLEX-consumer is
built as a Java application that integrates the POJOs classes and the Algorithm class with its
dependencies and the templates.

To illustrate the use of FLEXTORY, we show how to build a simple application that
receives data from the well-known Iris dataset [29] and counts the number of flowers of
each species. The dataset has samples of different iris species. Four traits (the length and
width of the sepal and petal) are associated with each species. The FLEXTORY user (the
developer) has to provide the file with this JSON schema in the first step (see the specific

Sensors 2024, 24, 2550 10 of 25

format in Appendix A). Next, the user has to complete the Algorithm class to count the
number of samples of each species, as show in Listing 1. This algorithm has no external
dependencies, so the user, after providing this class, can jump directly to the fourth step and
select the communication protocol to generate the FLEX-consumer binaries (this example
and the generated FLEX-consumers are available in gitlab).

Listing 1. Implementation of the Algorithm class of the Iris dataset example.

1 public class Algorithm implements Runnable {
LinkedBlockingQueue <IrisSchema > data;

3

public Algorithm(LinkedBlockingQueue <IrisSchema > data){
5 this.data = data;

}
7

@Override
9 public void run() {

float vir= 0, ver= 0, set= 0, other= 0;
11 for (IrisSchema flower : data) {

switch (flower.getSpecies ()) {
13 case "setosa": set++;

break;
15 case "versicolor": ver++;

break;
17 case "virginica": vir++;

break;
19 default: other ++;

}
21 }

/* Log % of each specie */
23 }

}

4.2. Design and Implementation of FLEX-Consumers

The main purpose of a consumer application is to connect to a message broker and
process the messages received by applying a processing algorithm. The design of the
FLEX-consumers takes into account the following aspects. On the one hand, FLEX-consumers
have to use a standard protocol to communicate with a message broker, such as the AMQP
and MQTT protocols introduced in Section 2. To simplify the design, we assume that a
FLEX-consumer uses only one of these protocols. On the other hand, FLEX-consumers can be
configured in a persistent or repetition mode, since the internal behavior of the algorithm
is unknown, i.e., it can be designed to process all incoming data in a persistent manner
or, on the contrary, to process data batch. In particular, given a processing algorithm,
we could define different repetition conditions that establish when the algorithm has to
iterate again: each time a new message arrives, when a fixed number of messages are
received, or after a specific time has elapsed. In consequence, the design of FLEX-consumers
allows the configuration of different execution modes for the same algorithm. Moreover,
FLEX-consumers can be configured with different halting conditions that define when the
FLEX-consumer must close connections and stop the execution. For instance, data processing
could stop when a FLEX-consumer reaches a maximum number of messages received or
when a given time without receiving messages has elapsed.

Considering the foregoing, we have identified the main functional (FR) and non-
functional (NFR) requirements of FLEX-consumers, which are listed in Table 3. We now
describe the most relevant ones. FR-1 to FR-4 define the necessary parameters to establish
a connection with a message broker, such as the communication protocol and the topic to
subscribe. FR-5 to FR-7 focus on the behavior of the processing algorithm. For example,
there will be repetition conditions due to elapsed time or number of messages. FR-8
mentions the need to include options to define conditions of when a FLEX-consumer should
close connections and end.

Sensors 2024, 24, 2550 11 of 25

Table 3. Functional and non-functional requirements of FLEX-consumers.

Id Description

FR-1 A FLEX-consumer has to connect to a message broker using AMQP or
MQTT protocols.

FR-2 The IP address and port of the message broker has to be configurable.

FR-3 FLEX-consumers should be able to subscribe to a specific queue or topic depending
on the protocol.

FR-4 The topic or the queue name to be subscribed has to be configurable.

FR-5 FLEX-consumers must include configurable trigger conditions to control the
processing algorithm execution.

FR-6 A FLEX-consumer user can configure whether messages are discarded once
processed or they continue to be processed in subsequent calls to the algorithm.

FR-7 There should be an option to decide if the processing algorithm can be executed one
last time before closing the connection with the message broker.

FR-8 FLEX-consumers will offer options to configure when their execution stops.

FR-9 FLEX-consumers must include an option to invoke the processing algorithm at the
beginning of the lifecycle.

FR-10 FLEX-consumers should include an error reporting system.

FR-11 FLEX-consumers should provide help or usage information to users.

NFR-1 FLEX-consumers must be executable on a system that has the Java Development Kit
(Java JDK).

NFR-2 The FLEX-consumer’s user interface should be user friendly.

Figure 8 shows the use case diagram of a FLEX-consumer. The main actor is the
FLEX-consumer user that launches the consumer in order to process data coming from the
message broker. To this end, the user has to configure some mandatory parameters, such
as the message broker IP address as well as the queue or topic depending on whether
the FLEX-consumer uses AMQP or MQTT, and the trigger and halting conditions of the
processing algorithm. Additionally, the user can configure connection credentials.

Figure 8. FLEX-consumer use case diagram.

Sensors 2024, 24, 2550 12 of 25

These requirements lead us to the FLEX-consumer architecture shown in Figure 9.
A FLEX-consumer comprises three main components. The “User Interaction” module is
responsible for interacting with the user through the command line terminal, mainly to
read the configuration parameters and display the results of the processing algorithm,
including the errors, if they occur. The “Connection Management” module is in charge
of establishing and managing the communication with the message broker. Finally, the
“Data Processing” module deals with the execution of the processing algorithm following
the entered configuration. Since this algorithm, which is specific to each FLEX-consumer,
can have different internal sub-modules, this module can be conceived as a wrapper that
controls the algorithm’s execution and stop conditions.

Figure 9. FLEX-consumer components diagram.

Regarding implementation, FLEX-consumers are Java applications in JAR format that
are invoked by users using a command line. When FLEX-consumers are executed, they
receive arguments that define how they must behave. For example, there exist parameters
to state different connection options, such as the IP address of the message brokers, their
listening port, and the topic to subscribe. For instance, for the Iris example introduced
in Section 4.1, the FLEX-consumer produced by FLEXTORY can be run following different
execution modes. All the invocations have the same structure: “java -jar <FLEX-consumer
name> -ip <broker address> -t <topic name> <optional arguments>”. The optional ar-
guments offer very different customization options. For example, with “-mr 300 -d”, the
FLEX-consumer of Iris will count the number of flowers of each species every 300 received
messages, deleting the current messages after they have been processed, i.e., it will only
count the new data that have arrived in the last 300 messages. Another possibility is “-tr
4 -w 8”, which indicates “count the number of each Iris species every 4 min and stop
the FLEX-consumer execution if there are no new messages after 8 min since the last one
received”. Note that, in this case, the messages will not be deleted after being processed,
meaning that all the received messages will be processed each time.

Finally, Figure 10 describes the lifecycle of a FLEX-consumer. In order to connect to the
message broker (in the example RabbitMQ), the user provides the networking configuration
(e.g., IP address and port of message broker, the topic name). In addition, the user can
also define other configurable options such as the termination condition. Then, the FLEX-
consumer establishes the connection with the broker and, depending on the configuration
used, waits until a repetition or halt condition is triggered. FLEX-consumers can behave
as long-lived connection applications, i.e., they can be configured without halting condi-
tions, using the persistent option to maintain the execution of the processing algorithm
indefinitely. It is worth mentioning that there are some constraints in the combination of
some of these parameters. For instance, in the networking configuration, it is mandatory to
have at least the IP address of the message broker and the topic (or queue in AMQP) to
subscribe. In addition, it seems natural that the processing algorithm is executed at least
once. Therefore, if no repetition parameters or the persistent option are specified, a halting
condition must be specified. This way, the FLEX-consumer could execute the algorithm

Sensors 2024, 24, 2550 13 of 25

once and finish. Furthermore, if there is a repetition argument, there is no need to define a
halting condition of the FLEX-consumer, although they can also be combined.

Figure 10. Message exchange between the FLEX-consumer, its user, and the message broker.

5. Illustrative Examples

In this section, we present two examples in which FLEXTORY can help boost the
development of a FLEX-consumer. Both examples arise from the needs of real research
projects in which the authors currently participate. FLEXTORY and all the material required
to replicate these examples is published in a gitLab repository (https://gitlab.com/morse-
uma/formal-methods/flextory/, accessed on 28 March 2024).

5.1. Learning from Observations

In the last few years, there has been rising interest in the so-called digital twins, that
is, system models that can be enriched when new systems’ behaviors are observed. These
models can be used to make decisions or predict failures. In order to construct a digital twin,
a lot of information has to be collected and concurrently processed using a learning algo-
rithm. The LearnFDT project aims to automatically generate formal digital twins, i.e., models
of systems described with a formal language, using Automata Learning techniques. In
this example, we use FLEXTORY to generate a FLEX-consumer that constructs such formal
digital twins.

In particular, the system to be learned is DASH [12], a protocol for adaptive video
transmission. Thus, two entities are involved in DASH: a streaming video server and a client
application. To learn the behavior of DASH, the FLEX-consumer application implements an
algorithm based on Automata Learning techniques with passive learning [30]. The purpose
of Automata Learning techniques is to build formal models that simulate the behavior
of the systems under learning (SULs). The passive learning approach uses the observed
behavior (execution traces) of the SUL to build the formal models.

Figure 11 shows a general overview of the case study. The objective is to generate a
FLEX-consumer that is able to construct a digital twin of a DASH remote server. The setup

https://gitlab.com/morse-uma/formal-methods/flextory/
https://gitlab.com/morse-uma/formal-methods/flextory/

Sensors 2024, 24, 2550 14 of 25

for generating the digital twin consists of a publisher, a message broker, and the FLEX-
consumer. The publisher sniffs traffic exchanged between the DASH server (available
online [31]) and some clients during the execution of several video streaming sessions.
Then, these traffic captures are packed in a message in JSON format and transmitted to the
message broker. Since the publisher is beyond the scope of this work, we use a dummy
publisher that reads the traces from a file and sends them to the broker. In this example,
the message broker is a RabbitMQ instance that uses MQTT and has a topic “dash” where
all DASH traces will be stored.

Figure 11. Deployment of the DASH case study with a DASH server acting as the publisher, a
RabbitMQ message broker, and a FLEX-consumer instance integrating a learning algorithm.

The FLEX-consumer receives network traces and executes the learning algorithm in
order to incrementally produce a model of the DASH protocol. In this case study, we
have the role of developers (the FLEXTORY users) and also users of the FLEX-consumer.
First, as developers, we provide FLEXTORY with the JSON schema defining the traces
format (see Appendix A for JSON schema definition). Then, we provide the Algorithm
class that launches the learning algorithm and feeds it with incoming traces. The algorithm
constructs a model of the system in an incremental manner, extending the learned model
when new behaviors are read. The Algorithm class also deploys a web server that allows us
to inspect the model under construction. We have integrated a learning automata algorithm,
in which the system models are described as timed automata with one timer. The details of
the learning algorithm are beyond the scope of this paper, but, in general, we can integrate
any learning algorithm by injecting it as a dependency. Finally, we select MQTT as the
communicating protocol in order to communicate with the RabbitMQ broker.

Once the FLEX-consumer is built, it is invoked with the following configuration: “java -jar
Dash.jar -ip <ip address of the message broker> -pers -t dash”; that is, the FLEX-consumer is
configured to establish a connection with the message broker, subscribe to the topic “dash”,
and execute the processing algorithm in a persistent way. Then, the FLEX-consumer will
start the connection and wait for new data. As mentioned before, the processing algorithm
deploys a web server to check the progress of the Automata Learning algorithm. Figure 12
shows the timed automata learned during the FLEX-consumer execution (left) and the final
automata produced after processing 92 traces.

5.2. Validating Data Format

The EPICENTRE project [32] proposes a 5G distributed experimentation platform.
The platform, whose architecture is beyond the scope of this paper, includes a RabbitMQ
broker with multiple queues. The first queue is used to inject the results of the experiments.
These data are processed by a consumer application (called Validator in the project) that
collects messages with a correct data format and injects them into a second queue in order
to be processed by different analytics modules, which can also be considered as consumer
applications. The broker communicates with all these entities using the MQTT protocol.
In this project, most of these consumers (the Validator and the analytic modules) have been
developed in Python. Anyhow, the programming language of the consumer is transparent
to the broker message.

Sensors 2024, 24, 2550 15 of 25

In this example, we use FLEXTORY to generate a Java Validator so that it subscribes
to the first queue and collects the correct messages. We have limited this example to the
Validator, since it is the module developed by our research group. However, the rest of
the other analytic modules used in the 5G-EPICENTRE project could also be generated
using FLEXTORY.

Figure 12. Intermediate automaton (left) and final automaton after learning 92 traces (right).

The development of the Validator follows the workflow of FLEXTORY. In the first
step, we upload the JSON schema and in the second step, we provide the Algorithm class.
Both the definition of the JSON schema and the implementation of the Algorithm class are
included in Appendix A. In this case, the Validator just logs in a file whether the messages
are either correct or not. Since the Algorithm class does not include third-party libraries, we
can directly move to the fourth step, in which we select the MQTT protocol. The last step is
the compilation of the FLEX-consumer that finishes without reporting errors.

Finally, we have executed the generated FLEX-consumer to collect real data from the
EPICENTRE platform. In particular, we configure the FLEX-consumer to check the format of
each message when it is received and to stop (terminate execution) when 100 messages have
been processed. The results have been quite satisfactory; the Validator created is similar
to the original one, and the time required to produce it is minimal once the validation
algorithm is coded in Java.

Sensors 2024, 24, 2550 16 of 25

6. Evaluation: User Study

We have conducted a user study with ten participants recruited from post-graduate
students with different knowledge levels in IoT technologies and communication protocols
(see Figure 13). In the study, each participant is assigned an exercise that consists of
(1) creating a FLEX-consumer using FLEXTORY and (2) deploying and using it in a real
environment. The FLEX-consumer has to process a sequence of messages coming from a
message broker with information of different types of boats and use a machine learning
algorithm to classify them. Finally, participants are requested to run the FLEX-consumer
with different configurations. To reduce the time required to carry out the exercise, we
have deployed a message broker that will interact with the resulting FLEX-consumer.
Thus, the participants have to focus only on creating the consumer and using it. In
order to successfully complete the implementation of the FLEX-consumer, they can follow
the tutorial of FLEXTORY (https://gitlab.com/morse-uma/formal-methods/flextory/,
accessed on 28 March 2024). In case a participant is not familiar with some of the technology
(e.g., specifying a JSON schema), we provide some backup material.

We have collected the users’ opinions and suggestions using an online questionnaire
(https://forms.gle/DwBEA7mUw1jkw5Zv9, accessed on 28 March 2024). In general, users
with a higher knowledge in IoT give a very positive feedback of FLEXTORY, whereas
users with less experience do not have a clear picture of the utility of FLEXTORY and
FLEX-consumers. The conclusions of the user study are summarized as follows:

• All participants have been able to complete the practical task correctly. On average,
the task was completed in less than 1 h. A total of 90% of participants think that
FLEXTORY is user-friendly and eases the task of implementing IoT consumers.

• As a possible improvement, some participants have suggested easing the installation
process of FLEXTORY by automatically installing the Java Development Kit (JDK) if it
is not present on the machine. We believe that manually installing the JDK is not a big
deal and allows more flexibility to decide which distribution to use.

• We explicitly asked about the most confusing step when using FLEXTORY. As shown
in Figure 14, there is not a consensus: 50% of the participants have not faced any
issues using FLEXTORY whereas 20% found some difficulties with the definition of the
JSON schema.

• With respect to FLEX-consumers, 100% of users believe that they are easy to configure
and use. However, 30% of them are not sure if they are useful. We believe that this
may be related to the case study proposed in the exercise that could not be relevant or
attractive enough. One participant suggested to generate FLEX-consumers to collect
network data and perform a characterization of its behavior.

• Finally, we asked participants suggestions. Among others, they proposed to improve
the documentation of FLEXTORY and FLEX-consumers. In addition, they recommended
to run FLEXTORY as a web service in such a way that no installation is required. Finally,
they suggested the integration of FLEX-consumers with other message brokers such as
Kafka. Since Kafka uses its own communication protocol, we think that this proposal
implies to design the templates for a new FLEX-consumer that implements the protocol.

Figure 13. Participants’ experience in IoT technologies (left) and IoT communication protocols (right).

https://gitlab.com/morse-uma/formal-methods/flextory/
https://forms.gle/DwBEA7mUw1jkw5Zv9

Sensors 2024, 24, 2550 17 of 25

Figure 14. Users’ opinions on FLEXTORY’s most complex steps.

7. Discussion

In this section, we discuss the pros and cons of FLEXTORY and the FLEX-consumers.
First, we would like to highlight that the target users of FLEXTORY are developers without
extensive background in IoT communication protocols who want to process data. In this
case, FLEXTORY is a valuable tool to produce, in five steps, a fully operational IoT consumer
(FLEX-consumer) which is able to process data coming from a remote message broker. Since
the IoT ecosystem is very diverse and changing, the FLEX-consumer execution mode can
be re-configured without having to re-run FLEXTORY. Thus, a consumer can be used in
different scenarios. Clearly, this greatly simplifies the development cycle, and the results
of the user study (see Section 6) indicate that, in general, potential users of FLEXTORY are
satisfied with it.

However, an expert user could find FLEXTORY a bit limited. The main weakness of the
generated FLEX-consumers is, presumably, that it can only receive data from one message
broker and from one topic (or queue). For instance, in [33], the authors present an IoT Edge-
Cloud hybrid architecture in which consumers have to dynamically connect to different
message brokers according to different conditions. In order to adapt FLEX-consumers to
new IoT architectures or even to a changing environment, we can adopt solutions from
the SPL community, such as [5,6], that require different models (e.g., variability and goal
models) to generate IoT applications. It should be noted that these models can be very
dependent on the case study and therefore the FLEXTORYuser would need some knowledge
of the case study and modeling techniques.

Another weak point could be the limited set of execution modes of the FLEX-consumers.
Based on the literature, FLEXTORY covers the most common execution modes, such as
daemon mode and end processing after a time deadline. In addition, it is possible to set the
frequency of execution of the processing algorithm according to the elapsed time or the
number of messages received.

To finalize, the FLEX-consumers only support messages in JSON format. Although
this format it is very flexible, thanks to the definition of the JSON schema, most message
brokers support other formats. For example, RabbitMQ currently supports XML, Thrift,
and MessagePack. Despite these limitations, FLEXTORY could be useful for fast prototyping
FLEX-consumers.

Concerning the IoT communication protocols integrated in FLEX-consumers, MQTT
was a clear option for many reasons. In general, determining the most proper IoT commu-
nication protocol to use in a particular application is an important engineering problem, as
many factors have to be considered. Since IoT devices have limited hardware features, a
wide variety of IoT communication protocols have been developed to overcome distinct
application problems while aiming for low latency, maximum throughput, and low energy
consumption. Different studies [34,35] have compared the characteristics and capabilities
of the most popular protocols, such as MQTT, HTTP, COAP, AMQP, and XMPP. There is

Sensors 2024, 24, 2550 18 of 25

usually a consensus about MQTT being the most suitable option for the majority of the IoT
case studies. Even if it is not the option with the best performance, the strong points of
the MQTT protocol are its lightweight design and the fact that a message can be sent to
multiple subscribers with maximum performance, thanks the publisher/subscriber model.
Moreover, MQTT is often preferred when a secure communication environment is needed.
In the design phase of FLEXTORY, our intention was to choose multiple communication
protocols with features similar to MQTT’s. We selected AMQP because it can behave in
a manner quite similar to MQTT, enabling the same features in both implementations.
In further FLEXTORY versions, we will study how to implement other protocols without
changing the similar use of the FLEX-consumers.

8. Conclusions and Future Work

In this paper, we have presented FLEXTORY, a software factory tool whose objective is
to simplify the challenging and time-consuming task of implementing IoT data consumer
applications. Although there exist some frameworks that ease the implementation process,
they do not address the heterogeneous case studies of the IoT domain and, in many
cases, developers are forced to build ad hoc applications. For this reason, we propose
FLEXTORY to guide a developer in the process of generating consumer applications that
are characterized by connecting to a message broker and process received data. Thanks to
FLEXTORY developers do not have to worry about implementation details such as the
communication logic with the message broker, the integration of the processing algorithm
in the FLEX-consumer, or the management of the incoming data. In addition, FLEXTORY

produces configurable FLEX-consumer applications with a flexible behavior, in the sense that
a FLEX-consumer user can define different conditions to trigger the processing algorithm or
to finish the execution.

The current version of FLEXTORY produces Java FLEX-consumers that support MQTT
or AMQP communication protocols. This paper presents the requirements and architectures
of both the software factory FLEXTORY and the resulting FLEX-consumers.

To show the versatility of FLEXTORY and the FLEX-consumers generated, we have
presented a running example to describe the methodology (Section 4.1) and a more complex
case study in Section 5. In addition to these examples, FLEXTORY has also been used in
other domains to show the wide variety of message formats and processing algorithms that
can be included in the FLEX-consumers. In the field of computational phylogenetics, we
have generated a FLEX-consumer that processes phylogenetic trees using the Sankoff [36,37]
algorithm. Another case study is a FLEX-consumer that checks if data have been properly
encoded using different cryptography algorithms. Finally, FLEXTORY has been used to build
a FLEX-consumer application that collects the result messages from different experiments
and transforms them into a specific data format, which can be found at gitLab.

To assess the user’s opinion about FLEXTORY, we have carried out a user study. The
overall feedback is very positive, and the participants have made some suggestions that we
plan to address.

As future work, we plan to extend FLEXTORY in different ways to generate more
flexible FLEX-consumers that can be used in different contexts. For instance, we have
observed the importance of enabling subscription to multiple topics or queues. In addition,
we would like to produce FLEX-consumers in Python, since it is a user-friendly language for
non-software experts and has plenty of support to develop data analytics tools. Moreover,
we would like to distribute FLEXTORY as a web application or even as an Integrated
Development Environment (IDE) plugin.

We also aim to check the compatibility of the current FLEX-consumers with other
message brokers. Although AMQP and MQTT are standardized protocols, there are
different versions, and some compatibility issues may occur depending on the version used
in the FLEX-consumer application and the message broker.

Sensors 2024, 24, 2550 19 of 25

In recent years, new IoT architectures have arisen from the evolution of wireless
and mobile networks and require new features in the IoT applications. We plan to study
in depth these new architectures in order to generate FLEX-consumers suitable for these
dynamic scenarios.

Author Contributions: Implementation and Evaluation, R.L.-G.; Research, R.L.-G., L.P. and M.-d.-M.G.;
Funding acquisition, L.P. and M.-d.-M.G.; Writing, R.L.-G., L.P. and M.-d.-M.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the UNICO I+D Advanced 5G and 6G program (Spanish
Ministry of Economy and Digital Transformation) grant number TSI-063000-2021-11 (5G+TACTILE)
and the State Plan for Scientific, Technical and Innovation Research 2021-2023 (Spanish Ministry of
Science, Innovation and Universities) grant number PID2022-142181OB-I00 (LearnFDT).

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

This appendix includes supplementary material to clarify the implementation of
FLEXTORY and the examples presented in Sections 4.1 and 5.

Figure A1 shows the class diagram of the current implementation of FLEXTORY,
which is related to the components diagram shown in Figure 6. Classes with suffixes
Panel and Frame are part of the View component. The ConsumerTemplates and Compiler
classes are part of the Model component. The former class includes the code of a generic
MQTT and AMQP client in String format. The AMQP client’s template code uses an
external library provided by RabbitMQ [38], while the MQTT client relies on the Eclipse
Paho library [39]. The Compiler class includes methods to generate and compile all the
Java code of the FLEX-consumer and package the result in JAR format. For instance, to
convert the JSON schema into serializable classes, FLEXTORY uses the Jackson library (https:
//github.com/FasterXML/jackson, accessed on 28 March 2024). Finally, the Controller
class includes all the events handlers in order to properly update the View and the Model.

Listings A1 and A2 show part of the code of the AMQP and MQTT FLEX-consumers.
We would like to clarify that the main differences between them only concern the com-
munication module. As mentioned above, the AMQP template (Listing A1) uses the Rab-
bitMQ library that supports AMQP communications. In Figure A1, the method connect
(lines 22–53) is in charge of establishing the connection with the broker to create a chan-
nel to receive the messages of a specific queue. In addition, we have to define a callback
(deliverCallback lines 34–51) that will be executed when a new message arrives. Basically,
depending on the configuration, this callback will launch the processing algorithm in a
worker thread or will delete the queue, close the connection with the broker, and end the
FLEX-consumer execution. The method end (lines 55–64) implements this functionality.

Listing A1. Communication module of an AMQP FLEX-consumer.

public class ConsumerNameAMQP {
2 // Configuration attributes

private Timer timerWaitTime , timerTimeRep , timerPersistent;
4 private int numMessages , numMessagescont , maxMessages , maxMessagescont;

private boolean finalexec;
6

// Connection attributes
8 private String host , queueName , username , password ,consTag;

private int port;
10 private Connection connection;

private Channel channel;
12 //Queue to store messages

private LinkedBlockingQueue <Schema > lbq;
14

public ConsumerNameAMQP(String configuration []){
16 // Initialize attributes , queue and timers tasks

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson

Sensors 2024, 24, 2550 20 of 25

//..
18 // Establish connection

connect ();
20 }

22 private void connect () throws Exception{
ConnectionFactory factory = new ConnectionFactory ();

24 factory.setHost(host);
if (port != -1) factory.setPort(port);

26 if (! username.equals("")) factory.setUsername(username);
if (! password.equals("")) factory.setPassword(password);

28

connection = factory.newConnection ();
30 channel = connection.createChannel ();

channel.queueDeclare(queueName , false , false , false , null);
32 channel.basicQos (2);

// Definition of callback
34 DeliverCallback deliverCallback = (consumerTag , delivery) -> {

if (timerWaitTime != null)
36 reset ();

try { processMessage(new String(delivery.getBody (), "UTF -8"));
38 if (maxMessages != 0){

maxMessagescont ++;
40 if (maxMessages == maxMessagescont) end();

}
42 if (numMessages != 0){

numMessagescont ++;
44 if (numMessages == numMessagescont) {

doWork ();
46 numMessagescont = 0;

}
48 }

}
50 catch (Exception e) {e.printStackTrace (); }

};
52 consTag = channel.basicConsume(queueName , true , deliverCallback ,

consumerTag -> {});
}

54

private void end() throws Exception {
56 channel.basicCancel(consTag);

channel.queueDelete(queueName);
58 channel.close();

connection.close();
60 if (timerWaitTime != null) timerWaitTime.cancel ();

if (timerTimeRep != null) timerTimeRep.cancel ();
62 if (finalexec) doWork ();

System.exit (0);
64 }

}

In the MQTT client shown in Figure A1, we use the Eclipse Paho library. In this case,
the connect method (lines 16–27) creates a session with the broker and subscribes to a
specific topic. When a new message arrives, it is managed by the messageArrived method
(lines 29–54). Observe that its implementation is similar to deliveryCallback of the AMQP
template. Finally, the method end (lines 56–63) closes the session with the broker and ends
the execution of the client.

Sensors 2024, 24, 2550 21 of 25

Figure A1. FLEXTORY class diagram.

Listing A2. Communication module of an MQTT FLEX-consumer.

1 public class ConsumerNameMQTT {
// Configuration attributes (same as AMQP) ...

3 // Connection attributes
private String brokerUrl , host , topic , username , password , clientId;

5 int port;
MqttClient client;

7 //Queue to store messages
private LinkedBlockingQueue <Schema > lbq;

9

public ConsumerNameMQTT(String configuration []){
11 // Initialize attributes , queue and timers tasks ...

// Establish connection
13 connect ();

}
15

private void connect () throws Exception{
17 client = new MqttClient(brokerUrl , clientId , null);

MqttConnectOptions connOpts = new MqttConnectOptions ();
19 connOpts.setCleanSession(true);

connOpts.setAutomaticReconnect(true);

Sensors 2024, 24, 2550 22 of 25

21 connOpts.setConnectionTimeout (0);
if (! username.equals("")) connOpts.setUserName(username);

23 if (! password.equals("")) connOpts.setPassword(password.toCharArray ());
client.connect(connOpts);

25 client.setCallback(this);
client.subscribe(topic);

27 }

29 public void messageArrived(String topic , MqttMessage message) {
if (timerWaitTime != null) reset();

31 try { processMessage(new String(message.getPayload (), "UTF -8"));
if (maxMessages != 0) {

33 maxMessagescont ++;
if (maxMessages == maxMessagescont) {

35 timerEnd = new Timer ();
TimerTask task_end = new TimerTask () {

37 @Override
public void run() {

39 try { end();}
catch (Exception e) {e.printStackTrace (); }

41 }
};

43 timerEnd.schedule(task_end , 0);
}

45 }
if (numMessages != 0) {

47 numMessagescont ++;
if (numMessages == numMessagescont) {

49 doWork ();
numMessagescont = 0;

51 }
}

53 } catch (Exception e) { e.printStackTrace (); }
}

55

private void end() throws Exception {
57 client.disconnect ();

client.close ();
59 if (timerWaitTime != null) timerWaitTime.cancel ();

if (timerTimeRep != null) timerTimeRep.cancel ();
61 if (finalexec) doWork ();

System.exit (0);
63 }

}

We continue with the definition of the JSON schema of the examples presented in
Sections 4.1 and 5. JavaScript Object Notation (JSON) is a lightweight data-interchange
format commonly used for communication in the IoT domain. A JSON schema (https:
//json-schema.org/, accessed on 28 March 2024) provides a formal description of the
expected format of JSON messages, including the data type of each field, any constraints
on the data, and the relationships between different parts of the message. Using a JSON
schema allows for validation of incoming and outgoing messages.

Listing A3 shows the JSON schemas used in the DASH example (left) and the Val-
idator example (right). Both schemas include the fields title, type, properties, and
additionalProperties. However, in each example, the messages include a different set of
properties. For example, the DASH example includes information of the TCP header, such
as the flags activated (flags) or the sequence number (seqN). In the Validator example, the
properties include information of the experiments such as the experiment id or the scenario,
among others.

https://json-schema.org/
https://json-schema.org/

Sensors 2024, 24, 2550 23 of 25

Listing A3. JSON schemas of the DASH example (left) and the Validator example (right).

{
"title": "Dash tcp format",
"type":"object",
"properties":{

"timestamp":{"type":"string"},
"flags":{"type":"integer"},
"source":{"type":"integer"},
"target":{"type":"integer"},
"seqN":{"type":"integer"}

},
"additionalProperties":{

"type":"string"
}

}

{
"title": "Epicentre exp. data",
"type":"object",
"properties":{

"category":{"type":"string"},
"testbed_id":{"type":"integer"},
"scenario_id":{"type":"integer"},
"use_case_id":{"type":"integer"},
"experiment_id":{"type":"integer"},
"netapp_id":{"type":"string"},
"data":{

"type":"array",
"items":{

"type":"object",
"javaName":"Data",
"properties":{

"type":{"type":"string"},
"timestamp":{"type":"number"},
"origin":{"type":"string"},
"unit":{"type":"string"}

}
}

}
},
"additionalProperties": false

}

To conclude, we present the implementation of the Algorithm class used in the Validator
case study (Listing A4). The Algorithm class implements the Runnable interface so that the
processing algorithm can be executed in a different thread. The processing algorithm is
coded in the run method and can include references to external libraries. In the example, it
only logs in a file that the messages are either correct or not. Observe that the run method
processes messages from the class attribute data (line 14), which consist of a queue where
the communication module stores all incoming messages.

Listing A4. Implementation of the Algorithm class of the Validator consumer.

public class Algorithm implements Runnable {
2 LinkedBlockingQueue <EpiSchema > data;

private final static String log_filename = "output.txt";
4 public Algorithm(LinkedBlockingQueue <EpiSchema > data){

this.data = data;
6 }

8 @Override
public void run() {

10 ArrayList <String > category = new
ArrayList <String >(Arrays.asList("5g_network", "nfv_mano",
"vnf_chain", "experiment"));

ArrayList <String > origin = new ArrayList <String >(Arrays.asList("UE",
"RAN", "5GC", "EPC", "main data server", "edge"));

12 try {
PrintWriter outputFile = new PrintWriter(new

FileWriter(log_filename , true));
14 for(EpiSchema message : data) {

if (! category.contains(message.getCategory ())) {
16 outputFile.println("*** Invalid or missing category ***");

outputFile.println(message.toString ());
18 }

if (message.getTestbedId () == null)
20 outputFile.println("*** Missing testbed ID***");

22 for (Data d : message.getData ()) {
if (d.getType () == null || d.getTimestamp () == null ||

!origin.contains(d.getOrigin ())) {

Sensors 2024, 24, 2550 24 of 25

24 outputFile.println("*** Missing one or more required data
arguments **");

break;
26 }

}
28 /*Print rest of message content to outputFile */

}
30 outputFile.close();

} catch (Exception e) { e.printStackTrace ();}
32 }

}

References
1. Hassan, R.; Qamar, F.; Hasan, M.K.; Aman, A.H.M.; Ahmed, A.S. Internet of Things and Its Applications: A Comprehensive

Survey. Symmetry 2020, 12, 1674. [CrossRef]
2. Advanced Message Queuing Protocol. Available online: https://www.amqp.org/ (accessed on 28 March 2024).
3. MQTT: The Standard for IoT Messaging. Available online: https://mqtt.org/mqtt-specification/ (accessed on 28 March 2024).
4. Pohl, K.; Böckle, G.; Van Der Linden, F. Software Product Line Engineering: Foundations, Principles, and Techniques; Springer:

Berlin/Heidelberg, Germany, 2005; pp. 1–467. [CrossRef]
5. Butting, A.; Kirchhof, J.C.; Kleiss, A.; Michael, J.; Orlov, R.; Rumpe, B. Model-Driven IoT App Stores: Deploying Customizable

Software Products to Heterogeneous Devices. In Proceedings of the 21st ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE 2022), New York, NY, USA, 6–7 December 2022; Association for Computing
Machinery: New York, NY, USA, 2022; pp. 108–121. [CrossRef]

6. Ayala, I.; Amor, M.; Horcas, J.M.; Fuentes, L. A goal-driven software product line approach for evolving multi-agent systems in
the Internet of Things. Knowl. Based Syst. 2019, 184, 104883. [CrossRef]

7. Cusumano, M.A. The Software Factory: A Historical Interpretation. IEEE Softw. 1989, 6, 23–30. [CrossRef]
8. Greenfield, J.; Short, K. Software factories: assembling applications with patterns, models, frameworks and tools. In Proceedings

of the Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’03), Anaheim, CA, USA, 26–30 October 2003; Association for Computing Machinery: New York, NY,
USA, 2003; pp. 16–27. [CrossRef]

9. Benaddi, L.; Ouaddi, C.; Jakimi, A.; Ouchao, B. Towards A Software Factory for Developing the Chatbots in Smart Tourism
Mobile Applications. Procedia Comput. Sci. 2024, 231, 275–280. [CrossRef]

10. Beneke, T. A Perfect Match: Java and the Internet of Things. 2014. Available online: https://www.oracle.com/technical-
resources/articles/java/java-maker-iot.html (accessed on 28 March 2024).

11. Angluin, D. Learning regular sets from queries and counterexamples. Inf. Comput. 1987, 75, 87–106. [CrossRef]
12. International Organization for Standardization (ISO), I.E.C.I. Dynamic Adaptive Streaming over HTTP (DASH). Parts 1–9.

Available online: https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html (accessed on 28 March 2024).
13. MQTT Version 3.1.1. Available online: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html (accessed on 28 March 2024).
14. MQTT Version 5.0. Available online: http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html (accessed on 28 March 2024).
15. OASIS Advanced Message Queuing Protocol (AMQP). Available online: https://docs.oasis-open.org/amqp/core/v1.0/os/

amqp-core-overview-v1.0-os.html (accessed on 28 March 2024).
16. The Constrained Application Protocol (CoAP). Available online: https://datatracker.ietf.org/doc/html/rfc7252 (accessed on 28

March 2024).
17. Extensible Messaging and Presence Protocol (XMPP): Address Format. Available online: https://datatracker.ietf.org/doc/rfc7622/

(accessed on 28 March 2024).
18. RabbitMQ. Available online: https://www.rabbitmq.com/ (accessed on 28 March 2024).
19. Azure IoT Hub. Available online: https://azure.microsoft.com/products/iot-hub (accessed on 28 March 2024).
20. Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 28 March 2024).
21. Eclipse Mosquitto. Available online: https://mosquitto.org/ (accessed on 28 March 2024).
22. AWS IoT Core. Available online: https://aws.amazon.com/iot-core/ (accessed on 28 March 2024).
23. de Souza Cimino, L.; de Resende, J.E.E.; Silva, L.H.M.; Rocha, S.Q.S.; de Oliveira Correia, M.; Monteiro, G.S.; de Souza Fernandes, G.N.;

da Silva Moreira, R.; de Silva, J.G.; Santos, M.I.B.; et al. A middleware solution for integrating and exploring IoT and HPC
capabilities. Softw. Pract. Exp. 2019, 49, 584–616. [CrossRef]

24. Cherrier, S.; Ghamri-Doudane, Y.M.; Lohier, S.; Roussel, G. D-LITe: Distributed logic for internet of things sErvices. In Proceedings
of the 2011 IEEE International Conferences on Internet of Things and Cyber, Physical and Social Computing, iThings/CPSCom
2011, Dalian, China, 19–22 October 2011; pp. 16–24. [CrossRef]

25. Chauhan, S.; Patel, P.; Sureka, A.; Delicato, F.C.; Chaudhary, S. Demonstration Abstract: IoTSuite—A Framework to Design,
Implement, and Deploy IoT Applications. In Proceedings of the 2016 15th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), Vienna, Austria, 11–14 April 2016. [CrossRef]

http://doi.org/10.3390/sym12101674
https://www.amqp.org/
https://mqtt.org/mqtt-specification/
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1145/3564719.3568689
http://dx.doi.org/10.1016/j.knosys.2019.104883
http://dx.doi.org/10.1109/MS.1989.1430446
http://dx.doi.org/10.1145/949344.949348
http://dx.doi.org/10.1016/j.procs.2023.12.203
https://www.oracle.com/technical-resources/articles/java/java-maker-iot.html
https://www.oracle.com/technical-resources/articles/java/java-maker-iot.html
http://dx.doi.org/10.1016/0890-5401(87)90052-6
https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/rfc7622/
https://www.rabbitmq.com/
https://azure.microsoft.com/products/iot-hub
https://kafka.apache.org/
https://mosquitto.org/
https://aws.amazon.com/iot-core/
http://dx.doi.org/10.1002/spe.2630
http://dx.doi.org/10.1109/iThings/CPSCom.2011.33
http://dx.doi.org/10.1109/IPSN.2016.7460669

Sensors 2024, 24, 2550 25 of 25

26. Akasiadis, C.; Pitsilis, V.; Spyropoulos, C.D. A Multi-Protocol IoT Platform Based on Open-Source Frameworks. Sensors 2019,
19, 4217. [CrossRef] [PubMed]

27. Nguyen, X.T.; Tran, H.T.; Baraki, H.; Geihs, K. FRASAD: A framework for model-driven IoT Application Development. In
Proceedings of the IEEE World Forum on Internet of Things, WF-IoT 2015, Reston, VA, USA, 12–14 December 2015; pp. 387–392.
[CrossRef]

28. Henelius, A.; Torniainen, J. MIDAS: Open-source framework for distributed online analysis of data streams. SoftwareX 2018,
7, 156–161. [CrossRef]

29. Iris Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/iris (accessed on 28 March 2024).
30. Aichernig, B.K.; Muškardin, E.; Pferscher, A. Active vs. Passive: A Comparison of Automata Learning Paradigms for Network

Protocols. Electron. Proc. Theor. Comput. Sci. 2022, 371, 1–19. [CrossRef]
31. DASH, HLS or PROGRESSIVE Stream Test. Available online: https://bitmovin.com/demos/stream-test?format=dash&

manifest=https%3A%2F%2Fcdn.bitmovin.com%2Fcontent%2Fassets%2Fart-of-motion-dash-hls-progressive%2Fmpds%2Ff0
8e80da-bf1d-4e3d-8899-f0f6155f6efa.mpd (accessed on 28 March 2024).

32. Arampatzis, D.; Apostolakis, K.C.; Margetis, G.; Stephanidis, C.; Atxutegi, E.; Amor, M.; Di Pietro, N.; Henriques, J.; Cordeiro, L.;
Carapinha, J.; et al. Unification architecture of cross-site 5G testbed resources for PPDR verticals. In Proceedings of the 2021 IEEE
International Mediterranean Conference on Communications and Networking, MeditCom 2021, Athens, Greece, 7–10 September
2021; pp. 13–19. [CrossRef]

33. Pham, V.N.; Lee, G.W.; Nguyen, V.; Huh, E.N. Efficient Solution for Large-Scale IoT Applications with Proactive Edge-Cloud
Publish/Subscribe Brokers Clustering. Sensors 2021, 21, 8232. [CrossRef] [PubMed]

34. Bayılmış, C.; Ebleme, M.A.; Ünal Çavuşoğlu.; Küçük, K.; Sevin, A. A survey on communication protocols and performance
evaluations for Internet of Things. Digit. Commun. Netw. 2022, 8, 1094–1104. [CrossRef]

35. Wytrębowicz, J.; Cabaj, K.; Krawiec, J. Messaging Protocols for IoT Systems—A Pragmatic Comparison. Sensors 2021, 21, 6904.
[CrossRef] [PubMed]

36. Sankoff, D. Minimal Mutation Trees of Sequences. SIAM J. Appl. Math. 1975, 28, 35–42. [CrossRef]
37. Sankoff, D.; Rousseau, P. Locating the vertices of a steiner tree in an arbitrary metric space. Math. Program. 1975, 9, 240–246.

[CrossRef]
38. RabbitMQ Java Client Library. Available online: https://www.rabbitmq.com/java-client.html (accessed on 28 March 2024).
39. Eclipse Paho Java Client. Available online: https://github.com/eclipse/paho.mqtt.java (accessed on 28 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s19194217
http://www.ncbi.nlm.nih.gov/pubmed/31569338
http://dx.doi.org/10.1109/WF-IoT.2015.7389085
http://dx.doi.org/10.1016/j.softx.2018.04.004
https://archive.ics.uci.edu/ml/datasets/iris
http://dx.doi.org/10.4204/EPTCS.371.1
https://bitmovin.com/demos/stream-test?format=dash&manifest=https%3A%2F%2Fcdn.bitmovin.com%2Fcontent%2Fassets%2Fart-of-motion-dash-hls-progressive%2Fmpds%2Ff08e80da-bf1d-4e3d-8899-f0f6155f6efa.mpd
https://bitmovin.com/demos/stream-test?format=dash&manifest=https%3A%2F%2Fcdn.bitmovin.com%2Fcontent%2Fassets%2Fart-of-motion-dash-hls-progressive%2Fmpds%2Ff08e80da-bf1d-4e3d-8899-f0f6155f6efa.mpd
https://bitmovin.com/demos/stream-test?format=dash&manifest=https%3A%2F%2Fcdn.bitmovin.com%2Fcontent%2Fassets%2Fart-of-motion-dash-hls-progressive%2Fmpds%2Ff08e80da-bf1d-4e3d-8899-f0f6155f6efa.mpd
http://dx.doi.org/10.1109/MeditCom49071.2021.9647591
http://dx.doi.org/10.3390/s21248232
http://www.ncbi.nlm.nih.gov/pubmed/34960325
http://dx.doi.org/10.1016/j.dcan.2022.03.013
http://dx.doi.org/10.3390/s21206904
http://www.ncbi.nlm.nih.gov/pubmed/34696117
http://dx.doi.org/10.1137/0128004
http://dx.doi.org/10.1007/BF01681346
https://www.rabbitmq.com/java-client.html
https://github.com/eclipse/paho.mqtt.java

	Introduction
	Background
	IoT Communication Protocols
	Message Brokers

	Related Work
	Software Description
	Design and Implementation of Flextory
	Design and Implementation of FLEX-Consumers

	Illustrative Examples
	Learning from Observations
	Validating Data Format

	Evaluation: User Study
	Discussion
	Conclusions and Future Work
	Appendix A
	References

